
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

5

Competency-based Learning Object
Sequencing using Particle Swarms

Luis de Marcos, Carmen Pagés, José Javier Martínez
and José Antonio Gutiérrez

University of Alcalá.
Spain

1. Introduction

Brusilovsky (1999) envisaged Web-based adaptive courses and systems as being able to
achieve some important features including the ability to substitute teachers and other
students support, and the ability to adapt to (and so be used in) different environments by
different users (learners). These systems may use a wide variety of techniques and methods.
Among them, curriculum sequencing technology is “to provide the student with the most
suitable individually planned sequence of knowledge units to learn and sequence of
learning tasks […] to work with”. These methods derive from the adaptive hypermedia field
(Brusilovsky, 1996) and rely on complex conceptual models, usually driven by sequencing
rules (De Bra et al., 1999; Karampiperis, 2006). E-learning traditional approaches and
paradigms, that promote reusability and interoperability, are generally ignored, thus
resulting in (adaptive) proprietary systems (such as AHA! (De Bra et al., 2003)) and non-
portable courseware.
On the other side, traditional approaches promote standards usage to ensure
interoperability but they lack of flexibility which is in increasing demand. “In offering
flexible [e-learning] programmes, providers essentially rule out the possibility of having
instructional designers set fixed paths through the curriculum” (van den Berg et al., 2005).
But offering personalized paths to each learner will impose prohibitive costs to these
providers, because sequencing process is usually performed by instructors. So, “it is critical
to automate the instructor’s role in online training, in order to reduce the cost of high quality
learning” (Barr, 2006) and, among these roles, sequencing seems to be a priority.
In this chapter an innovative sequencing technique that automates teacher´s role is
proposed. E-Learning standards and the learning object paradigm are encouraged in order
to promote and ensure interoperability. Learning units’ sequences are defined in terms of
competencies in such a way that sequencing problem can be modelled like a classical
Constraint Satisfaction Problem (CSP) and Artificial Intelligent (AI) approaches could be
used to solve it. Particle Swarm Optimization (PSO) is an AI technique and it has proven
with a good performance for solving a wide variety of problems. So, PSO is used to find a
suitable sequence within the solution space respecting the constraints. In section 2, the
conceptual model for competency-based learning object sequencing is presented. Section 3
describes the PSO approach for solving the problem. Section 4 presents the results obtained

www.intechopen.com

 Tools in Artificial Intelligence

78

from the intelligent algorithm implementation and testing in a real world situation (course
sequencing in an online Master in Engineering program). And finally, in Section 5
conclusions are summarized and future research lines are presented.

2. Competency-based sequencing

Within e-learning, the learning object paradigm drives almost all initiatives. This paradigm
encourages the creation of small reusable learning units called Learning Objects (LOs).
These LOs are then assembled and/or aggregated in order to create greater units of
instruction (lessons, courses, etc) (Wiley, 2000).
LOs must be arranged in a suitable sequence prior to its delivery to learners. Currently,
sequencing is performed by instructors who do not create a personalized sequence for each
learner, but instead they create generic courses, which are targeted to generic learner
profiles. Then, these sequences are coded using a standard specification to ensure
interoperability. The most commonly used specification is SCORM (ADL, 2004). Courseware
that conforms to SCORM´s Content Aggregation Model is virtually portable among a wide
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders the
automatic LO sequencing due to its system-centered view. Other metadata-driven
approaches offer better possibilities i.e. just LO metadata will enable automatic sequencing
process to be performed, and the appropriate combination of metadata and competencies
will allow personalized and automatic content sequencing. This section describes how to
overcome these problems by defining a conceptual data model for learning object
sequencing through competencies.

2.1 Competency definition

As for many other terms, there are a wide variety of definitions that try to catch the essence
of the word competency in the e-learning environment. The confusion has even been
increased by the work developed, often independently, in the three main fields that are
nowadays primarily concerned with competencies, namely, pedagogy, human resources
management and computer science. Anyway, we consider competencies as
“multidimensional, comprised of knowledge, skills and psychological factors that are
brought together in complex behavioural responses to environmental cues” (Wilkinson,
2001). This definition emphasizes that competencies are not only knowledge but a set of
factors and that competencies are employed (bring together) in real or simulated contexts
(or environments). Conceptual models for competency definitions also use to consider this
multidimensionality. As an example, RDCEO specification (IMS, 2002a) describes a
competency as four-dimensional element (fig. 1).
The competency ‘Definition’ is the record that contains general information about the

competency. Each competency can be exhibited in one or more different ‘Contexts‘. And a

set of factual data must be used to ‘Evidence’ that an individual has or has not acquired a

particular competency. Finally ‘Dimensions’ are used to relate each context with its

particular evidence and to store relation information such as the proficiency level.

Some e-learning trends (RDCEO have just been mentioned) are trying to formalize

competency definitions. It is worth quoting the following specifications: (1) IMS "Reusable

Definition of Competency or Educational Objective” (RDCEO) specification (IMS, 2002b), (2)

IEEE Learning Technology Standards Committee (LTSC) “Draft Standard for Learning

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

79

Technology - Standard for Reusable Competency Definitions " specification (currently an

approved draft) (IEEE, 2008), (3) HR-XML Consortium "Competencies (Measurable

Characteristics) Recommendation" (HR-XML, 2006) and (4) CEN/ISSS “A European Model

for Learner Competencies” workshop agreement (CEN/ISSS, 2006).

Fig. 1. RDCEO competency conceptual model (from (IMS, 2002a))

Every specification offers its own understanding of what a competency is (i.e. the definition

of competency) plus a formal way to define competencies (i.e. competency definitions) so

that they can be interchanged and processed by machines. A deeper analysis of these

recommendations shows that, although they do not present great differences in its own

definition of competency, great dissimilarities arise when the information that must conform

a competency definition are confronted. In this way, it could be said that IMS and IEEE

specifications are minimalist recommendations that define a small set of fields that the

competency definitions should contain (in fact, only an identifier and a name are required

for a conformant record). Deeper definitions of some dimensions that concern competencies

(namely evidence and context) are left without specification or free to developers’

interpretation. On the other hand, HR-XML specification provides competency users with a

huge set of entities, fields and relations that they must fulfil in order to get conformant

competency records (although many of them are optional too).

For the purpose of our study we just needed a universal way to define, identify and access

to competency definitions and that is exactly what RDCEO specification offers. Moreover,

RDCEO is also the oldest specification and so the most used (and the most criticized). These

factors lead us to employ RDCEO records for our competency definitions. Code fragment 1

shows a sample RDCEO competency record.

<?xml version="1.0" encoding="utf-8"?>
<rdceo xsi:schemaLocation="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0"
xmlns="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <identifier>
 http://www.uah.es/cc/comps/CompsTaxon.xml#1IntroWeb
 </identifier>
 <title>
 <langstring xml:lang="en">
 Web, Internet and Distributed Systems Introduction
 </langstring>
 </title>
</rdceo>

Code 1. Sample Competency Record.

www.intechopen.com

 Tools in Artificial Intelligence

80

2.2 Competencies for interoperable learning object sequencing

According to RDCEO and IEEE nomenclature, a competency record is called ‘Reusable
Competency Definition’ (or RCD). RCDs can be attached to LOs in order to define its
prerequisites and its learning outcomes. We have used this approach to model LO
sequences. By defining a competency (or a set of competencies) as a LO outcome, and by
identifying the same competency as the prerequisite for another LO (fig. 2), a constraint
between the two LOs is established so that the first LO must precede the second one in a
valid sequence.
Meta-Data (MD) definitions are attached to LOs, and within those definitions references to

competencies (prerequisites and learning outcomes) are included. LOM (IEEE, 2002) records

have been used for specifying LO Meta-Data. LOM element 9, ‘Classification’, is used to

include competency references as recommended in by IMS (2002a). So, LOM element 9.1,

‘Purpose’, is set to ‘prerequisite’ or ‘educational objective’ from among the permitted

vocabulary for this element; and LOM element 9.2 ‘Taxon Path’, including its sub-elements,

is used to reference the competency. Note that more than one ‘Classification’ element can be

included in one single LO in order to specify more than one prerequisite and/or learning

outcome. In code fragment 2 it is shown a sample LO metadata record that holds two

competency references, a prerequisite relation and a learning outcome relation.

Fig. 2. LO sequencing through competencies

<?xml version="1.0" encoding="iso-8859-1"?>
 <lom:lom xmlns:lom="http://ltsc.ieee.org/xsd/LOM">
 <lom:general>
 <lom:title>
 <lom:string language="en">HTML</lom:string>
 </lom:title>
 <lom:language>en</lom:language>
 <lom:description>
 <lom:string language="en">HTML Course</lom:string>
 </lom:description>
 </lom:general>
 <lom:lifeCycle>
 <lom:version>
 <lom:string language="en">1.0</lom:string>
 </lom:version>

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

81

 <lom:contribute>
 <lom:date>
 <lom:dateTime>2007-01-10</lom:dateTime>
 </lom:date>
 </lom:contribute>
 </lom:lifeCycle>
 <lom:educational>
 <lom:difficulty>
 <lom:value>easy</lom:value>
 </lom:difficulty>
 <lom:typicalLearningTime>
 <lom:duration>PT50H</lom:duration>
 </lom:typicalLearningTime>
 <lom:language>en</lom:language>
 </lom:educational>
 <lom:classification>
 <lom:purpose>prerequisite</lom:purpose>
 <lom:taxonPath>
 <lom:source>
 <lom:string language="en">

 http://www.uah.es/cc/comps/CompsTaxon/
 </lom:string>
 </lom:source>
 <lom:id>1IntroWeb</lom:id>
 </lom:taxonPath>
 </lom:classification>
 <lom:classification>
 <lom:purpose>educational objective</lom:purpose>
 <lom:taxonPath>
 <lom:source>
 <lom:string language="en">
 http://www.uah.es/cc/comps/CompsTaxon/
 </lom:string>
 </lom:source>
 <lom:id>3HTML</lom:id>
 </lom:taxonPath>
 </lom:classification>

 </lom:lom>

Code 2. Sample LO metadata record containing competency references

Simple metadata (i.e. LOM records) is enough to model LOs’ sequences in a similar way.

Then, Why use competencies? Competency usage is encouraged, besides its usefulness for

modelling prerequisites and learning outcomes, because competencies are also useful for

modelling user current knowledge and learning initiatives’ expected outcomes (future

learner knowledge).We are proposing a wider framework (fig. 3) in which learner (user)

modelling is done in terms of competencies, which are also used to define the expected

learning outcomes from a learning program. Both sets of competencies constitute the input

for a gap analysis process. This process performs a search in local and/or distributed remote

repositories in order to identify the set of learning objects that fill the gap between learner

current knowledge and the learning objectives. Gap analysis process returns a set of

unordered LOs that must be assembled and structured in a comprehensive way, so that

basic units (LOs) are presented to the learner previously to advanced lessons. These actions

will be performed by the LO sequencing process depicted in figure 3.

www.intechopen.com

 Tools in Artificial Intelligence

82

Fig. 3. Competency-driven content generation model

3. Competency-based intelligent sequencing

Given a random LOs’ sequence modelled as described above (with competencies
representing LOs prerequisites and learning outcomes), the question of finding a correct
sequence can be envisaged as a classical artificial intelligent Constraint Satisfaction Problem
(CSP). In this way, the solution space comprises all possible sequences (n! will be its size,
total number of states, for n LOs), and a (feasible) solution is a sequence that satisfies all
established constraints. LO permutations inside the sequence are the operations that define
transitions among states. So we face a permutation problem, which is a special kind of CSP.
PSO is an AI evolutionary computing technique that can be used to solve CSP problems
(among other kind of problems). This section presents a mathematical characterization of
the learning object sequencing problem so that a PSO implementation can be formally
specified. Then this PSO implementation is presented and some improvements over the
original algorithm are proposed.

3.1 Mathematical characterization

According to (Tsang, 1993) a CSP is a triple (X,D,C) where X = {xo, x1,…,xn-1} is finite set of
variables, D is a function that maps each variable to its corresponding domain D(X), and

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

83

Ci,j⊂ Di x Dj is a set of constraints for each pair of values (i, j) with 0 ≤ i < j < n . To solve
the CSP is to assign all variables xi in X a value from its domain D, in such a way that all
constraints are satisfied. A constraint is satisfied when (xi, xj)∈Ci,j and (xi ,xj) it is said to be a

valid assignment. If(xi ,xj)∉ C i,j then the assignment (xi , xj) violates the constraint.

If all solutions from a CSP are permutations of a given tuple then it is said that the problem
is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple (X,D,C,P)
where (X,D,C) is a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. A solution S of a
PermutCSP must be a solution of (X,D,C) and a complete permutation of P.
The learning object sequencing problem could be modeled as a PermutCSP. For example,
considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which only solution is
the set S = {1,2,3,4,5} (all learning objects must be ordered) can be defined as:

 X = {x1, x2, x3, x4, x5}

 D (Xi) = {1,2,3,4,5} ∀ xi ∈X

 C = {xi+1 – xi > 0 : xi ∈X , i∈ {1,2,3,4}}

 P= <1,2,3,4,5>

As it will be demonstrated later a good definition of the constraint set C critically affects the
solving algorithm performance and even its completeness.

3.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is an evolutionary computing optimization algorithm.
PSO mimics the behaviour of social insects like bees. A random initialized particles’
population (states) flies through the solution space sharing the information they gather.
Particles use this information to dynamically adjust its velocity and cooperate towards
finding a solution. Best solution found: (1) by a particle is called pbest, (2) within a set of
neighbour particles is called nbest, (3) and within the whole swarm is called gbest. Goodness
of each solution is calculated using a function called fitness function. A basic PSO
procedure, adapted from (Hu et al., 2003), is showed in code fragment 3. PSOs have been
used to solve a wide variety of problems (Hinchey et al., 2007).
The original PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) is intended to

work on continuous spaces, and velocity is computed for each dimension xi ∈ x .

Particles’ initial position and initial velocity are randomly assigned when the population
(swarm) is initialized. A discrete binary version of the PSO was presented by Kennedy and
Eberhart (1997). This version uses the concept of velocity as a probability of changing a bit
state from zero to one or vice versa. A version that deals with permutation problems was
introduced by Hu et al., (2003). In this latter version, velocity is computed for each element
in the sequence, and this velocity is also used as a probability of changing the element, but
in this case, the element is swapped establishing its value to the value in the same position
in nbest. Velocity is updated using the same formula for each variable in the permutation set
(xi∈X), but it is also normalized to the range 0 to 1 by dividing each xi by the maximum
range of the particle (i.e. maximum value of all xi∈X). The mutation concept is also
introduced in this permutation PSO version; after updating each particle´s velocity, if the
current particle is equal to nbest then two randomly selected positions from the particle

www.intechopen.com

 Tools in Artificial Intelligence

84

sequence are swapped. Hu et al., (2003) have also demonstrated that permutation PSO
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO, before
any other technique, for the LO sequencing problem.

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness > pBest)
 set pbest = current value
 }
 nbest = particle with the best fitness value of all the topological neighbors
 for each particle {
 Calculate new velocity as

 V new=w x V old + c1 x rand () x (P best - X) + c2 x rand() x (P nbest- X)

 Update particle position

 X new= X old + V new

 }
} until termination criterion is met

Code 3. PSO Procedure Pseudo-code

rand() is a function that returns a random number between 0 and 1. Each instance of rand() in
the algorithm represents a new call to the function, i.e. a new random number is computed
and returned.
Each particle shares its information with a, usually fixed, number of neighbor particles to
determine nbest value. Determining the number of neighbor particles (the neighbor size) and
how neighborhood is implemented has been a subject of deep research in an area that has
been called sociometry. Topologies define structures that determine neighborhood relations,
and several of them (ring, four cluster, pyramid, square and all topologies) have been
studied. It has been proved that fully informed approaches outperform all other methods
(Mendes et al., 2004). The fully informed approach prompts using an ‘all’ topology and a
neighborhood size equal to the total number of particles in the swarm (i.e. every particle is
connected with all other particles when nbest values are calculated, hence gbest is always
equal to nbest).

3.3 PSO for learning object sequencing

Discrete full-informed version of the PSO was implemented in order to test its performance
for solving the LO sequencing problem. Code fragment 4 shows the basic procedure for LO
sequencing pseudo code. Several other issues concerning design and implementation have
to be decided. In the rest of this section each of these issues is discussed and the selection
criteria are explained.
Fitness Function. It is critical to choose a function that accurately represents the goodness of
a solution (Robinson & Rahmat-Samii, 2004). In PSO, like in other evolutionary techniques
algorithms and meta-heuristics search procedures, there is usually no objective function to
be maximized. A common used fitness function when dealing with CSP problems is a
standard penalty function (Schoofs & Naudts, 2000):

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

85

,

0

() (,)
i j i j

i j n

f X V x x
≤ < <

= ∑ (1)

where Vi,j : Di x Dj →{0,1} is the violation function

i j ,

, i j

0 if (x , x)
(x , x)

1

i j

i j

C
V

otherwise

∈⎧
⎨
⎩

 (2)

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness < gBest)
 set gbest = currentValue
 if (new fitness < pBest)
 set pbest = currentValue
 Calculate new velocity as

 V new = w x V old + c1 x rand() x (P pbest - X) + c2 x rand() x (P gbest - X)

 Normalize Velocity as

 V norm = V new /max (V new)
 Update particle value

 for each v[i] in V norm {

 if(rand() < v[i])
 swap currentValue[i] for indexOf(currentValue, gBest[i])
 }
 Check Mutation
 if (currentValue = gBest) swap two random positions from currentValue
 }
} until termination criterion is met

Code 4. PSO Procedure for LO Sequencing

The standard penalty function returns the number of constraints violated, so PSO objective
is to minimize that function (sentence if (new fitness > pBest) was changed to if (new fitness
< pBest)). When a particle returns a fitness value of 0, a sequence that satisfies all constraints
has been found and the algorithm processing is finished.
This fitness function works well if the constraint set C for the PermutCSP has been
accurately defined. In the example presented in section 3.1 that represents a 5 LO sequence
with only one feasible solution, the restriction set was defined as C={xi+1–xi > 0: xi∈X,
i∈ {1,2,3,4}}. A more accurate definition will be C= {xi-xj>0: xi∈ X, xj∈ {x1,…,xi}}. If we
consider the sequence {2,3,4,5,1} the standard penalty function will return 1 if the first
definition of C is used, while the returned value will be 4 if the second definition is used.
The second definition is more accurate because it returns a better representation of the
number of swaps required to turn the permutation into the valid solution. Moreover, the
first definition of C has additional disadvantages because some really different sequences (in
terms of its distance to the solution) return the same fitness value. For example sequences

www.intechopen.com

 Tools in Artificial Intelligence

86

{2,3,4,5,1}, {1,3,4,5,2}, {1,2,4,5,3} and {1,2,3,5,4} will return a fitness value of 1. Fortunately, the
accurate constraint definition problem could be solved programmatically. A function that
recursively processes all restrictions and calculates the most precise set of restrictions
violated by a given sequence was developed and called over the input PSO sequence. This
process was called the ‘real’ constraint calculator. The user (instructor, content provider,…)
will usually define the minimum necessary number of constraints and the system will
compute real constraints in order to ensure algorithm convergence, so user obligations are
lightened simultaneously.
PSO Parameters. One important PSO advantage is that it uses a relatively small number of
parameters compared with other techniques like genetic algorithms. However, much
literature on PSO parameter selection has been written. Among it, Hu et. al. (2003)
established the set of parameters in such a way that PSO works properly for solving
permutation problems. So we decided to follow their recommendations, and parameters
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight (w) is
computed according to the equation (3).

 w= 0.5 + (rand()/2) (3)

where rand() represents a call to a function that returns a random number between 0 and 1.
Population size was set to 20 particles. As the fully informed was used, it was not necessary
to make any consideration concerning the neighborhood size.
Initialization. The algorithm receives an initial sequence I as an input. This input is used to
initialize the first particle. All other particles are initialized randomly by permuting I. Initial
velocity for each particle is also randomly initialized as follows: Each vi ∈ V is randomly
assigned a value from the range {0,|I|}, where|I| is the total number of learning objects in
the sequence.
Termination criteria. Agent processing stops when a fitness evaluation of a particle returns
0 or when a fixed maximum number of iterations is reached. So the number of iterations was
also defined as an input parameter. It was used as a measurement of the number of calls to
the fitness function that were allowed to find a solution. It should be noted that some
problems may not have a solution, so the number of iterations setting can avoid infinite
computing.
Proposed improvements. During the initial agent development we found that in some
situations the algorithm got stuck in a local minimum, and it was not able to find a feasible
solution. For that reason, two enhancements were envisaged in order to improve algorithm
performance for LO sequencing. First improvement was to decide randomly whether the
permutation of a particle’s position was performed from gbest or from pbest (p=0.5). In the
original version all permutations were done regarding gbest. The second improvement was
consisted in changing pbest and gbest values when an equal or best fitness value was found
by a particle. In other words all particle’s comparisons concerning pbest and gbest against the
actual state were set to less or equal (<=) because the fitness function is to be minimized. The
original algorithm determines that pbest and gbest only change if a better state is found
(comparisons strictly <). Code fragment 5 presents the final sequencing algorithm pseudo
code that includes these improvements. Changes respecting the basic procedure are showed
underscored.
These changes resemble to be quite logical ways for increasing particles’ mobility and for
avoiding quick convergence to local minimums. And they were tested later in the results
phase.

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

87

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness <= gBest)
 set gbest = currentValue
 if (new fitness <= pBest)
 set pbest = currentValue
 Calculate new velocity as

 V new = w x V old + c1 x rand() x (P pbest - X) + c2 x ran() x (P gbest - X)

 Normalize Velocity as

 V norm = V new /max (V new)

 Update particle value

 for each v[i] in V norm {

 if(rand() < v[i])
 if(rand() < 0.5)
 swap currentValue[i] for currentValue[indexOf(currentValue, pBest[i]])
 else
 swap currentValue[i] for currentValue[indexOf(currentValue, gBest[i]])
 }
 Check Mutation
 if (currentValue = gBest) swap two random positions from currentValue
 }
} until termination criterion is met

Code 5. Improvements on PSO Procedure

4. Experimental results and discussion

The PSO algorithm for LOs sequencing described above was designed and implemented
using the object oriented paradigm. We wanted to test its performance in a real scenario so a
problem concerning course sequencing for a Master in Engineering (M.Eng.) program in our
institution, the Computer Science School from the University of Alcalá in Madrid (Spain),
was chosen for testing. The (web engineering) M.Eng, program comprises 23 courses
(subjects) grouped in:

• Basic courses (7) that must be taken before any other (kind of course). There may be
restrictions between two basic courses, for example ‘HTML’ course must precede
Javascript course.

• ‘Itinerary’ courses (5) that must be taken in a fixed ordered sequence.

• Compulsory courses (5). There may be restrictions between two compulsory courses.

• Elective courses (6). Additional constraints with respect to any other course may be set.
All courses have an expected learning time that ranges from 30 to 50 hours. They are
delivered online using a LMS, namely EDVI LMS (Barchino et al., 2005), and every course
has its metadata record. Competency records were created to specify LOs’ restrictions, and
LOM metadata records were updated to reflect prerequisite and learning outcome

www.intechopen.com

 Tools in Artificial Intelligence

88

competencies as detailed in section 2. A feasible sequence must have 23 LOs satisfying all
constraints. The graph showing all LOs and constraints is very complex, and so it is to
calculate the exact number of feasible solutions. Some estimations have been used, we have
estimated that the relation among feasible solutions and total solutions order is 8,9x1012.
This number reflects the number of states (non-feasible solutions) for each feasible solution.
Once the problem was established, PSO agent parameters were set to test four different
configurations that reflect all possibilities concerning proposed improvements introduced in
Section 3. These configurations are:

• Configuration 1. Permutation of the particle position is randomly selected from gbest or
from pbest. Comparison for changing particle pbest and gbest values is set to less or equal
(<=).

• Configuration 2. Permutations from gbest/pbest. Comparison set to strictly less (<).

• Configuration 3. All permutations are performed from gbest. Comparison set to less or
equal (<=).

• Configuration 4. Permutations from gbest. Comparison set to strictly less (<).
Figure 4 shows the results. Each configuration was run 1000 times allowing 20, 30, 40, 50, 75,
100, 150, 200, 300 and 500 iterations, and the succeed ratio was observed. From the results, it
can be seen that all configurations converge to a feasible solution, but configuration 4
(original settings) outperform all others. Figure 4 also shows that original settings need less
fitness evaluations. This argument is supported by table 1 results, where it is showed the
mean number of evaluation function calls required for each configuration to find a solution
(1000 runs) if the number of iterations parameter is set to a number high enough (i.e. a
number of iterations that ensures a success ratio of 1 for each configuration).

Fig. 4. PSO Configurations Comparison

An example of the PSO sequencing agent execution for the test case is shown in figure 5. The

input is a random sequence of learning objects and the output is a valid sequence (i.e. a

sequence that satisfies all restrictions). In the output sequence (1) all basic courses are placed

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

89

in the initial positions of the sequence, (2) itinerary courses are properly ordered, and (3)

compulsory, itinerary and elective courses are intercalated respecting all constraints. Output

is also complemented by the number of fitness function calls required to find the solution.

The tested scenario may seem to have many feasible solutions that would make doubtful

PSO performance in not-so-kind scenarios, so PSO agent was tested in ‘more’ difficult

situations. Test sequences containing 5, 10, 20, 30, 40, 50, 60, 75 and 100 learning objects with

only one feasible solution in the solution space were designed. Configuration 4 was used

because it showed the best performance for the above test case and unlimited iterations were

allowed to find the solution. Fitness evaluation means were observed for 100 runs (fig. 6).

Although fitness evaluations does not increase linearly to the number of learning objects, it

should be noted that learning objects increment entails an exponential explosion of solution

space size (remember that solution space size for n learning objects will be n!). For example,

the solution space with 100 learning objects will be 1048 times bigger than the solution space

with 75 learning objects, but the number of fitness evaluations required for finding a

solution is only twice bigger. In other words, X-axis could also be interpreted as the solution

space size expressed in a logarithmic scale. Therefore, the intelligent agent also handles

reasonably the combinatorial explosion inherent to many AI problems.

 Fitness Evaluations

Configuration 1 1412

Configuration 2 1817

Configuration 3 1237

Configuration 4 1158

Table 1. Number of Fitness Evaluations

Fig. 5. PSO Agent Execution Example

www.intechopen.com

 Tools in Artificial Intelligence

90

5. Conclusions

Automated LO sequencing is a recurring problem in the e-learning field that could be
undertaken employing models that ensure interoperability and artificial intelligent
techniques. The purpose of the study was to design, develop and test a PSO agent that
performs automatic LO sequencing through competencies. A model that employs
competencies as a mean for defining constraints between learning object has been presented,
so that a sequence of LOs is defined by relations among LOs and competencies. New
sequences can be derived if permutation operations are allowed between LOs in the
sequence. Hence the sequencing problem is turn into a permutation problem, and the aim is
to find a sequence that satisfies all restrictions expressed in the original model. The PSO for
permutation problem has been extended to LO sequencing problem. Testing two envisaged
improvements was also performed. Results show that: (1) PSO succeeds in solving the
problem, and (2) the original configuration is the best one.

Fig. 6. Number of fitness evaluations required for different number of LOs

Further implications arise from the model proposal and from the study conclusions: (1) E-
learning standards are promoted. XML records and bindings are used, so elements will be
easily interchanged and processed by compliant systems. (2) Instructor’s role is automated
reducing costs. Sequencing process works even in complex scenarios where humans face
difficulties. Instructors could spend saved time in performing other activities within the
learning action. And (3), the model can be extended to an automated intelligent system for
building personalized e-learning experiences. But this third implication is linked to future
work. This model has been envisaged and it was depicted in figure 3 (Section 2.2).
Sequencing process can be complemented with gap analysis process and competency
learner modelling techniques to build personalized courses. These courses could also be
SCORM (ADL, 2004) compliant, so they could be imported to current LMSs.

6. Acknowledgments

This research is co-funded by: (1) the University of Alcalá FPI research staff education
program, (2) the Spanish Ministry of Industry, Tourism and Commerce PROFIT program

www.intechopen.com

Competency-based Learning Object Sequencing using Particle Swarms

91

(grants FIT-350200-2007-6 and FIT-350101-2007-9) and Plan Avanza program (grant PAV-
070000-2007-103), (3) the Spanish Ministry of Education and Science PROFIT program (grant
CIT-410000-2007-5), (4) Castilla-La Mancha autonomous community under the educational
innovation cooperation program (grant EM2007-004) by (5) research groups’ support
program from the University of Alcalá and CAM Madrid Region (grant CCG06-UAH/TIC-
0732).

7. References

ADL (2004) Shareable Content Object Reference Model (SCORM). The SCORM 2004
Overview. Advanced Distributed Learning (ADL) Initiative.

Barchino, R.; Gutiérrez, J. M. & Otón, S. (2005) An Example of Learning Management System. In
Isaías, P., Baptista, M. & Palma, A. (Eds.) IADIS Virtual Multi Conference on
Computer Science and Information Systems (MCCSIS 2005). Virtual, IADIS Press.

Barr, A. (2006) Revisiting the -ilities: Adjusting the Distributed Learning Marketplace,
Again? Learning Technology Newsletter, 8, 3-4.

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6, 87-129.

Brusilovsky, P. (1999) Adaptive and Intelligent Technologies for Web-based Education.
Künstliche Intelligenz, Special Issue on Intelligent Systems and Teleteaching, 4, 19-25.

CEN/ISSS (2006) European Model for Learner Competencies. Comité Européen de
Normalisation / Information Society Standardization System (CEN/ISSS).

De Bra, P.; Aerts, A.; Berden, B.; Lange, B. D.; Rousseau, B.; Santic, T.; Smits, D. & Stash, N.
(2003) AHA! The adaptive hypermedia architecture. Proceedings of the fourteenth
ACM conference on Hypertext and hypermedia. Nottingham, UK, ACM Press.

De Bra, P., Houben, G.-J. & Wu, H. (1999) AHAM: a Dexter-based reference model for
adaptive hypermedia. Proceedings of the tenth ACM Conference on Hypertext and
hypermedia. Darmstadt, Germany, ACM Press.

Eberhart, R. & Kennedy, J. (1995) A new optimizer using particle swarm theory. Proceedings
of the Sixth International Symposium on Micro Machine and Human Science. MHS '95.
Nagoya, Japan.

Hinchey, M. G., Sterritt, R. & Rouff, C. (2007) Swarms and Swarm Intelligence. Computer, 40,
111-113.

HR-XML (2006) Competencies (Measurable Characteristics) Recommendation. HR-XML
Consortium.

Hu, X., Eberhart, R. C. & Shi, Y. (2003) Swarm intelligence for permutation optimization: a
case study of n-queens problem. Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. Indianapolis, USA, IEEE Press.

IEEE (2002) Learning Technology Standards Committee (LTSC). Learning Object Metadata
(LOM). 1484.12.1. IEEE.

IEEE (2008) Learning Technology Standards Committee (LTSC). Standard for
LearningTechnology - Data Model for Reusable Competency Definitions. IEEE.

IMS (2002a) Reusable Definition of Competency or Educational Objective - Best Practice and
Implementation Guide. IMS Global Learning Consortium.

IMS (2002b) Reusable Definition of Competency or Educational Objective - Information
Model. IMS Global Learning Consortium.

www.intechopen.com

 Tools in Artificial Intelligence

92

Karampiperis, P. (2006) Automatic Learning Object Selection and Sequencing in Web-Based
Intelligent Learning Systems. IN ZONGMIN, M. (Ed.) Web-Based Intelligent E-
Learning Systems: Technologies and Applications. London. UK., Idea Group.

Kennedy, J. & Eberhart, R. (1995) Particle swarm optimization. Proceedings., IEEE
International Conference on Neural Networks. Perth, WA, Australia.

Kennedy, J. & Eberhart, R. C. (1997) A discrete binary version of the particle swarm
algorithm. 1997 IEEE International Conference on Systems, Man, and Cybernetics.
'Computational Cybernetics and Simulation'.

Mendes, R., Kennedy, J. & Neves, J. (2004) The fully informed particle swarm: simpler,
maybe better. Evolutionary Computation, IEEE Transactions on, 8, 204-210.

Robinson, J. & Rahmat-Samii, Y. (2004) Particle swarm optimization in electromagnetics.
Antennas and Propagation, IEEE Transactions on, 52, 397-407.

Schoofs, L. & Naudts, B. (2000) Ant colonies are good at solving constraint satisfaction
problems. Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA.

Tsang, E. (1993) Foundations of Constraint Satisfaction, Academic Press.
Van Den Berg, B., Van Es, R., Tattersall, C., Janssen, J., Manderveld, J., Brouns, F., Kurvers,

H. & Koper, R. (2005) Swarm-based sequencing recommendations in e-learning.
Proceedings 5th International Conference on Intelligent Systems Design and Applications,
2005. ISDA '05. Wroclaw, Poland.

Wiley, D. A. (2000) Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. IN WILEY, D. A. (Ed.) The Instructional Use of Learning
Objects.

Wilkinson, J. (2001) A matter of life or death: re-engineering competency-based education
through the use of a multimedia CD-ROM. IEEE International Conference on
Advanced Learning Technologies, 2001. Proceedings.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luis de Marcos, Carmen Pages, Jose Javier Martinez and Jose Antonio Gutierrez (2008). Competency-based

Learning Object Sequencing using Particle Swarms, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN:

978-953-7619-03-9, InTech, Available from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/competency-

based_learning_object_sequencing_using_particle_swarms

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

