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1. Introduction 

Recently, a lot of interest arose in the artificial intelligence and database communities 
concerning the topic of preference elicitation, modelling and reasoning. In fact, due to the 
huge amount of information users are faced up to daily, the development of formalisms 
allowing preference specification and reasoning turns out to be an essential task. A lot of 
work has been done in this area so far (Boulilier et al., 2004); (Brafman et al., 2006a); 
(Chomicki, 2003); (Kießling, 2002); (Wilson, 2004). Most of this work focus on specifying and 
reasoning with preferences over objects in some universe U. In most applications, mainly 
those related to the database field, one deals with huge set of objects, which makes 
unfeasible for the users to specify their preferences in a quantitative way, that is, by explicitly 
associating to each object (or tuple) o a number pref(o) standing for her degree of preference 
concerning this object. A qualitative framework for expressing preferences over objects is 
more suitable in this case. The user is asked to provide a set of statements or rules which 
express her generic preferences over the attribute values of the objects. For instance, the user 
can express her preferences about films by stating that (1) concerning comedies, she prefers 
those from Woody Allen to those from Nanni Moretti (2) concerning Nanni Moretti’s 
movies, she prefers comedies to dramas. Such frameworks, besides providing a compact 
way for expressing preferences, are also supposed to derive an explicit preference ordering 
over the objects, given the compact specification provided by the user, and produce an 
algorithm to determine the most preferred objects according to this ordering. 
Some recent research on preference elicitation and reasoning has focused on preference over 
more complex entities, like sets of objects (Brafman et al., 2006b); (des Jardin & Wagstaff, 
2005). Indeed, in many situations, instead of selecting a most preferred object, one may be 
interested in selecting a best set of objects whose components satisfy certain criteria of 
diversity and mutual compatibility. For instance, in the creation of a film festival program, a 
criteria for a “good” program could be “a program including a comedy is better than a program 
which doesn’t include one”. 
However, more complex entities other than simple sets of objects have been appearing in 
recent applications. For instance, in the design of a web page, the developer can take into 
account user preferences about hyperlink structures (trees). In our example of the film 
festival program, an optimal program should not only be characterized by the quality, 
diversity and compatibility of its components but also by the ordering in which each film is 
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presented in the program. So, it is natural to think about preference elicitation and reasoning 
over structures rather than merely over simple objects or non-structured sets of objects. 
In this chapter, we cover with some details some classical and important formalisms to 
specify preferences over objects and sets of objects and we address the problem of 
specifying and reasoning with preferences over sequences of objects. The material we present 
here addressing this topic is an extension of our previous work (de Amo & Giacometti, 
2007). Preferences over sequences of objects naturally appear when a decision maker is faced 
to the problem of producing an optimal sequence of objects. The following example 
illustrates the kind of preference statements we will deal with. 
Example 1 Let us suppose a decision maker who works on the creation of a program for a 
film festival. Based on his past experiences on film festivals, there are some rules he thinks 
are crucial to the success of such an event. 
1. For comedies, it is better to choose those by Woody Allen than those by Nanni Moretti. 

Concerning Nanni Moretti’s movies, comedies are better than dramas. 
2. It is better to start the festival by presenting a comedy. 
3. If the previous film was a comedy, then it is better to follow it by a drama. However, if 

the previous film was a drama, then it is better to follow it by a comedy, unless it is a 
film by Nanni Moretti, in which case, it is better to follow it by another drama. 

4. If there is a drama in the program, then it is better to present a comedy sometime before 
it. 

We introduce the logic framework TPref allowing preference elicitation and reasoning over 
sequences of objects as well as an algorithm to yield the most preferred sequences satisfying 
a given set of temporal constraints. Our elicitation procedure consists in obtaining from the 
user (1) a set of temporal conditions which affects her preferences over sequences of objects 
and (2) a set of statements or rules involving these temporal conditions, which express her 
preferences. The four statements illustrated in Example 1 are preference statements we treat 
in this paper. 
After preference elicitation, the statements provided by the user are translated into formulae 
of the logic TPref. Our formalism, which is based on Propositional Temporal Logic (PTL), 
generalizes the language introduced in (Wilson, 2004) for expressing preference over single 
objects. We show a procedure to decide the consistency of a set of statements in the past 

fragment of the logic TPref, that is, if a set of statements Φ (a compact preference 

representation) derives an explicit preference ordering > φ over sequences of objects. We 

discuss the difficulties for using this same idea in proving consistency in the general case of 
preference statements involving past and future conditions. Finally, we provide an 
algorithm for producing the best sequences of objects given a set of temporal preference 

statements Φ. 

1.1 Related work 

The research literature on preference reasoning and elicitation over objects is extensive. The 
approach of CP-Nets (Boutilier et al., 2004) uses a very simple graphical model which 
captures users qualitative conditional preference over objects, under a ceteris paribus 
semantics. The order on objects induced by a CP-Net is rather restrictive, due mainly to the 
ceteris paribus semantics and also by the fact that all attributes are equally important where 
comparing two objects. The approach of TCP-Nets (Brafman et al., 2006a) generalizes the 
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CP-Nets by introducing the ability of expressing a relative importance and conditional 
relative importance of object attributes. Thus, a TCP-Net is a more refined tool for 
comparing objects than CP-Nets. The approach introduced in (Wilson, 2004) uses a logical 
framework for expressing conditional preference statements. It consists of a formalism in the 
same lines of CP-Nets but with a richer language allowing to express not only the usual CP-
Nets ceteris paribus statements but also TCP-Nets statements and more general conditional 
statements (called stronger conditional statements). The temporal conditional preference 
statements we introduce in Section 4 for specifying preferences over sequences of objects is a 
generalization, in the temporal context, of the stronger conditional statements of (Wilson, 
2004). The conditions in a stronger conditional statement can be viewed as a propositional 
logic formula. In our approach for specifying preferences over sequences of objects, the 
conditions are propositional temporal logic formulae. 
In the database area, the problem of enhancing well-known query languages with 
preference features has been tackled in several recent and important works in the area. In 
(Chomicki, 2003), a simple logical framework is proposed for expressing preferences. 
Preferences are expressed by preference formulae. These formulae are incorporated into 
relational algebra and into SQL, through the operator winnow parameterized by a preference 
formula. (Kießling, 2002) introduced Preference SQL which extends SQL by a preference 
model based on strict partial orders. Several built-in base preference constructors are 
proposed. The optimizer uses an efficient rewriting procedure which transforms preference 
queries into standard SQL queries. 
Recent work on preference modelling in AI has focused on sets of objects instead of single 
objects. In (Brafman et al., 2006b), a language for specifying qualitative preferences over sets 
is introduced. The language allows users to express preferences over sets of objects taking 
into account a class of basic properties which affect their choice. It is shown that a set-
preference statement specified in this language can be transformed into a conditional 
preference statement over attributed objects. The language introduced in (des 
Jardins&Wagstaff, 2005) allows quantitative preference specification over sets of objects. It 
supports two important preference notions: diversity and depth. Diversity specifies the 
amount of variability among objects in a set, and depth specifies preferred feature values. 
Most work on temporal reasoning with preferences is related to automated plannning. 

Preferences concerns the relative execution times of a set of events {e1, ..., en} (Khatib, 2001); 

(Kumar, 2007). A preference statement in such an explicit temporal framework may establish 

for instance that event ei must be scheduled between xi and yi seconds before event ej . 

Propositional Temporal Logic (PTL) was introduced in (Prior, 1997) as a formal system for 
specifying and reasoning with paralell programs. Recently, PTL has been used in the 
automated planning context, as a formalism to specify “good” executing plans (which can 
be viewed as sequences of state transitions). In (Bacchus et al., 1996), PTL has been used in 
the automated planning context where actions depend on past and current states. The 
problem considered there is of rewarding temporally extended behaviors, that is, rewarding 
sequence of actions (or state transitions) achieving a predefined goal. Rewards are 
associated to properties that sequences must satisfy. Such properties are expressed by PTL 
formulae. In (Bienvenue et al., 2006), a formalism based on temporal logic and situation 
calculus was introduced in order to express qualitative preferences about executing plans. 
Such formalism allows to specify, to reason and to generated preferred plans. This approach 
generalizes the one proposed in (Son & Pontelli, 2006), which also uses temporal logic for 
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expressing preferences over executing plans with an implementation using answer-set 
programming. At the best of our knowledge, there are no work treating qualitative 
conditional preferences elicitation and reasoning over sequence of attributed objects in the lines 
of the CP-Net formalism. The approach we propose in this chapter is a first step towards 
incorporating a formalism for reasonning with preferences over sequences of objects into a 
temporal relational query language, and so, building a bridge between the two disciplines 
(AI and Temporal Databases), in the lines of which has been done in (Endres & Kießling, 
2006), where a method for transforming TCP-Nets queries into database preference queries 
has been proposed. 
Chapter Organization. This chapter is organized as follows. In Section 2, we present three 

classical approaches for preference specification over objects, the CP-Nets, the TCP-Nets and 

the strong conditional statements of (Wilson, 2004). We discuss important problems related 

to this topic, such as finding the most preferred objects, comparing objects (dominance 

queries) and ordering objects (ordering queries). We describe the third approach (Wilson, 

2004) with more details since it constitutes a necessary background for our work on 

sequences of objects. In Section 3, we present a simple approach for specifying preferences 

over sets of objects. In Section 4, we present our approach for eliciting and reasoning with 

preference over sequences of objects. In this Section, we introduce the syntax and semantics of 

the language TPref allowing to express preferences over sequence of objects, we show how 

to test the consistency of a set of statements Φ in TPref, and discuss its complexity. Besides, 

we present an algorithm to produce the optimal sequences satisfying a set of simple 

temporal constraints. 

2. Preferences over objects 

In most AI applications involving the ability of making decisions, users are required to 

compare different alternatives and must be able to choose those which better conform to 

their needs or personal preferences. Thus, such applications must support the ability of 

automate the preference elicitation process. In this section we will present three important 

approaches for representing and reasoning with preferences over objects. The first approach 

is based on a graphical model focusing on the notion of conditional preferential 

independence. The second approach is also based on a graphical model and generalizes the 

first one. The third approach is quite general and is based on a logical framework allowing 

users to express their preferences through a set of rules. 

2.1 Conditional preference networks (CP-Nets) 

The graphical model we describe in this section was introduced in (Boutilier et al., 2004) and 

is similar to a Baysesian Network (Pearl, 1988) from a syntactical point of view. Nevertheless 

both models differ with respect to their semantics. The model we present here, called 

Conditional Preference Networks (CP-Nets) uses a graph in order to capture statements of 

qualitative conditional preference independence. The semantics of the model is based on the 

ceteris paribus semantics which has been largely exploited in the AI field in the past (Doyle et 

al., 1991). Other approaches for representing and reasoning with preferences have employed 

graphical representations of preference relations such as (Bacchus & Grove, 1995) and 

(Bacchus and Grove, 1996), but with a different semantics. 
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In the CP-Net preference model, the user is required to specify, for any specific attribut A of 
interest, which other attributes can influence her preferences for values of A. For each 
instantiation of the relevant attributes for A (the parents of A in the graphical 
representation) the user must specify her preference ordering over values of A according to 
the values of its parents. For instance, let us consider a set of objects with attributes A,B,C,D 
and let us suppose that preference over attribute A depends on attributes B and C. So, the 
user may specify that if the value of B is b1 and the value of C is c2, and everything else is equal then 
she prefers a2 to a1 as a value for attribute A. Based on this preference rule, the user can decide 
that between two objects o1 = (a1, b1, c2, d1) and o2 = (a2, b1, c2, d1) she prefers object o2 to object 
o1. On the other hand, this rule cannot allow her to decide that object o2 is preferred to object 
o3 = (a1, b1, c2, d2), since the values of the attribute D in both objects are different. The ceteris 
paribus semantics (everything else being equal) imposes that we can only compare objects 
according to a given preference rule r if the objects have the same values on the attributes 
not appearing in r. 

Notation. We suppose a set V = {X1,X2, ...,Xn} of attributes. For each attribute X ∈ V , we 

denote by dom(X) the finite set of values of X (the domain of X). For Z = {Z1, ...,Zm}⊆V we 

denote by dom(Z) the set dom(Z1) × dom(Z2) × ... × dom(Zm). If Z = V , we denote by O the 

set dom(Z). The elements of O are called objects, tuples or outcomes. If o = (x1, ..., xn) is an 

object, we denote by o[Xi] the element xi∈dom(Xi). If Z = {Z1, ...,Zm} ⊆V , we denote by o[Z] 
the tuple of elements (o[Z1], ..., o[Zm]). Sometimes we abbreviate this tuple by z. 
Definition 1 (CP-Net Preference Model) A CP-Net over a set of attributes V is a directed 

graph N = (V , E) where each node X∈V is annotated with a conditional preference table (CP 

table) CPT(X). Each CP table CPT(X) associates a total order Z u with each instantiation u of 

the attributes which are parents of X in the graph. 
The following example illustrates the concept of CP-Net as a formalism for specifying user’s 
preferences. 
Example 2 Let V = {Director (D), Genre (G) }, dom(D) = {Woody Allen (w), Nanni Moretti 

(n), Hitchcock (h)}, dom(G) = {comedy (c), drama (d), thriller (t)}. Let us suppose that I 

strictly prefer comedies to dramas and thrillers to comedies but my preference about film 

directors is conditioned to the film genre: I prefer Nanni Moretti’s dramas toWoody Allen’s 

dramas, and Woody Allen’s dramas to Hitchcock’s dramas. However, I prefer Woody 

Allen’s comedies to Nanni Moretti’s comedies and Nanni Moretti’s comedies to Hitchcock’s 

comedies. On the other hand, for thrillers I largely prefer Hitchcock’s ones than Woody 

Allen’s. But if I had to choose between a Woody Allen’s thriller and a Nanni Moretti’s 

thriller I would choose a Woody Allen’s thriller. These preference rules can be expressed by 

the CP-Net depicted in Figure 1(a). 

A CP-Net aims at capturing a preference ordering (a total order) over the objects in O. Thus, 

the semantics of a CP-Net is defined as the set of preference orderings which are consistent 
with the preference constraints imposed by the given CP-Net. In Figure 1(b) one represents 
by thin arrows the relationships between objects which are entailed by the CP-Net of Figure 

1(a). An arrow from object o to object o’ means that o Z o’. The arrows resulting from 

transitivity (e.g. from (t, h) to (d, n)) are not showed in the figure. The thick arrows are not 
entailed by the CP-Net of Figure 1(a) but are consistent with it (see the discussion following 
Theorem 1 below). 
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(a) (b) 

Fig. 1. (a) A CP-Net N (b) A preference ordering satisfying N 

Definition 2 (Satisfiability of a CP-Net) Let N be a CP-Net over the set of attributes V , X 

∈V and U ⊂ V the set of parents of X in N. Let Y be the set of attributes other than X and its 

parents. Let Zu be the ordering over dom(X) imposed by the CPT(X) for a given 

instantiation u of the attributes in U. We say that a preference ordering Z over O is 

compatible with Zu iff for all instantiations y of the attributes in Y we have yxu Z yx’u iff x Zu 

x’. A preference ordering Z satisfies the CP table CPT(X) iff it is compatible with Zu for any 

instantiation u of the attributes in U. We say that the preference ordering Z satisfies the CP-

Net N iff it satisfies all the CP tables of N. A CP-Net N is satisfiable iff there exists some 

preference ordering Z satifying it. 

In Figure 1(b) it is depicted a preference ordering satisfying the CP-Net of Figure 1(a). The 
following theorem guarantees that for acyclic CP-Nets it is possible to build an ordering 
satisfying it. 
Theorem 1 Every acyclic CP-Net is satisfiable. 
The detailed proof of Theorem 1 can be found in (Boutilier et al., 2004). The ordering given 
by this theorem is built by induction on the number of attributes in the CP-Net and uses the 
topological ordering on these attributes induced by the acyclic graph. The preference 
ordering depicted in Figure 1(b) is obtained by using the construction of Theorem 1. The 
thick arrows are specific to this particular ordering. They are built respecting the ordering 
given in the CP table CPT(G). A preference ordering satisfying an acyclic CP-Net is not 
unique in general. For instance, if we consider an arrow going from (d, n) to (c, h) in Figure 1(a) 
instead of the opposite arrow depicted in this figure, and we keep the other arrows, we 

obtain another ordering satisfying N. 

Best Outcomes. Given an acyclic CP-Net N, the task of determining the best outcomes with 

respect to the preference orderings satisfying N is very simple. Even if the preference 

ordering satisfying N is not unique, surprisingly, the best outcome is unique and independs 

on the particular preference ordering satisfying N. The algorithm for building this unique 

best outcome consists in sweeping through the graph from ancestors to descendents 
instantiating each attribute to its most preferred value given the instantiation of its parents. 
We describe the process of determining the best outcome in the following example. 
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Example 3 (Producing the best outcome determined by a CP-Net) Let us consider the  

CP-Net of Example 2. We begin by choosing the best value for attribute G (the attribute with 

no ancestors). This best value is t. Next, we take the children of attribute G. In our case, we 

have only one child, the attribute D. For G instantiated as t, the best value for the attribute D 

is h. Then, the best outcome is the object (t, h), that is, the most preferred movie is a 

Hitchcock’s thriller. 

This process of sweeping through the graph from ancestors to descendents and instantiating 

the attributes with the most preferred values given the instantiation of their parents is called 

forward sweep. The following theorem guarantees that this procedure produces the best 

outcome. The proof can be found in (Boutilier et al., 2004). 

Theorem 2 Let N be an acyclic CP-Net. The best outcome with respect to any preference 

ordering satisfying N is unique and is produced by the forward sweep procedure. 

Discussion. The CP-Net model for preference reasoning is not restricted to acyclic graphs. 
The advantage of considering acyclic CP-Nets is that the acyclicity of the graph implies that 
the model is consistent, that is, the CP-Net induces a preference ordering over the objects. If 
the graph is cyclic, the existence of such preference ordering is not guaranteed. In 
(Domshlak & Brafman, 2002) some initial results on consistency testing for cyclic CP-Nets 
were presented. More recently (Prestwich et al., 2005) showed that the optimal outcomes of 
an unconstrained (and possibly cyclic) CP-Net are the solutions of a set of hard constraints. 
They proposed a new algorithm for finding optimal outcomes which makes use of hard 
constraint solving. This new algorithm works even for cyclic CP-Nets. Besides, it works also 
with any preference formalism which produces a preorder over the outcomes. Another 
aspect which has to be considered is the constraint enforcing that in each CP table CPT(X), 
the domain dom(X) is totally ordered. The general definition of a CP-Net allows an arbitrary 
total preorder over dom(X), that is, the antisymmetric property is not required to be satisfied 

(a Z b and b Z a do not imply a = b). The difficulty with such general CP-Nets is that 

consistency is not verified in general. In (Boutilier et al., 2004) it is proved that consistency 
can be guaranteed if some special conditions are verified by the acyclic CP-Net. 

Besides the problem of finding the best outcomes determined by a CP-Net N, two other 

problems are particularly important: the dominance problem and the ordering problem. 
Both problems involve the task of comparing two objects o and o’. The first problem asks if 

N can deduce o Z o’(denoted by N |= o Z o’). That is, it asks if for all preference orderings Z 

consistent with N it is true that o Z o’. The second problem asks if the CP-Net is incapable of 

deducing o’ Z o (denoted by N |≠ o’ Z o). That is, it asks if there exists a preference ordering Z 

consistent with N such that o Z o’. The second problem is easier than the first one. It can be 

proven that for acyclic CP-Nets, the complexity of determining the truth of at least one of 

the orderings queries N |≠ o’ Z o or N |≠ o Z o’ is O(n) over the number n of attributes 

involved in the CP-Net N (Boutilier et al., 2004). On the other hand, the dominance problem 

is polynomial (when the graph verifies some conditions) and NP-complete in general. For a 
deeper discussion on these topics, see (Boutilier et al, 2004). In (Boutilier et al. 1997) it was 
shown that the dominance problem is intrinsically related to the problem of finding optimal 
outcomes satisfying a set of given constraints (the constraint-based preferential optimization 
problem in CP-Nets). 
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2.2 Tradeoffs-enhanced conditional preference networks (TCP-Nets) 

In preference elicitation with CP-Nets the user describes how her preference over the values 
of an attribute depends on the values of other attributes. CP-Nets are able to specify a class 
of intuitive and useful preference statements of the form: “I prefer the value a0 for attribute A 
given that B = b and C = c”. However, there are other intuitive and important preference 
statements which cannot be represented by a CP-Net. These statements have the form: “It is 
more important to me that the value of attribute A be better than the value of attribute B be better”. 
For instance, I could say that when choosing a movie, a most preferred genre is more 

important than a most preferred director. So, when comparing the films f1 = (c,w) and f2 = (t, 

n) in Example 2, I would prefer f2 to f1. Notice that the CP-Net N given in Example 2 is not 

able to infer f2 Z f1 nor f1 Z f2. Another kind of intuitive statements which cannot be 

represented by a CP-Net has the form: “Given that C = c, a better assignement of attribute A is 
more important to me than a better assignement of attribute B”. For instance, I could say that 
when choosing a movie produced in the 50’s, a most preferred genre is more important than 
a most preferred director. However, for movies produced during the 60’s, directors play a 
more important role in my decision than the movie genre. 
A CP-Net is able to specify only one kind of relationship between attributes, the conditional 
preference dependence relationship. In this section we consider an extension of the CP-Net 
formalism allowing two other kind of relationships between attributes: relative importance 
(atribute A is more important than attribute B in my decision) and conditional relative 
importance (attribute A is more important than attribute B in my decision given that the 
value for attribute C is c0). This enhanced model, introduced in (Brafman et al., 2006a), is 
called Tradeoffs-enhanced Conditional Preference Network (TCP-Nets). 
Like CP-Nets, TCP-Nets are annotaded graphs where nodes are attributes. Unlike CP-Nets, 
TCP-Nets have three types of edges. The first one corresponds to CP-Nets edges, indicating 
conditional preference between attributes. The second edge type (directed) capture relative 
importance of attribute X over attribute Y . More precisely, let X and Y be two attributes 
mutually preferenctially independent given Z = V − {X, Y }, that is, for every fixed 
instantiation of the attributes in Z, the ranking of X values is independent of the value of Y . 

We say that X is more important than Y , denoted X 3Y , if for every instantiation z of the 

attributes in Z and for every x, x’ ∈ dom(X) such that x Z x’ given z, we have that xyz Z 

x’y’z. 
The third edge type (undirected) captures conditional relative importance. More precisely, let X 
and Y be a pair of attributes in V and let Z ⊆V − {X, Y }. We say that X is more important 

than Y given z ∈ dom(Z) iff for every w ∈ dom(V −({X, Y } ∪ Z)) we have: xyzw Zx’y’zw 

whenever x Z x’ given zw. We denote this relation by X 3z Y . Thus, an undirected edge of 

the third type between attributes X and Y , labelled with the set of attributes Z, means that X 

3z Y or Y 3z X, depending on the values of the attributes in Z. As in CP-Nets, each node X in 

a TCP-Net is annotaded with a CP table CPT(X). In addition, in TCP-Nets, each undirected 
edge labelled with Z between attributes X and Y is annotaded with a conditional importance 
table (or CI table) CIT(X, Y, Z), describing the relative importance of X and Y given the value 
of the corresponding importance-conditioning attributes Z. 

Definition 3 (TCP-Net Preference Model) A TCP-Net N is a tuple (V, cp, i, ci, cpt, cit) where: 

(1) V is a set of attributes (the nodes of N); (2) cp (conditional preference arcs) is a set of 
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directed arcs (X, Y ), for X, Y∈V ; (3) i (importance arcs) is a set of direct arcs (X, Y ), for X, Y 

∈ V such that X 3 Y ; ci (conditional importance) is a set of undirected arcs {X, Y } labelled 

with a set of attributes Z such that X 3z Y or Y 3z X depending on the assignement z of 

attributes in Z ; cpt associates a CP table CPT(X) to each node X of N, where CPT(X) is a 

mapping from dom(Parents(X)) to strict partial orders over dom(X); cit associates a CI table 
CTI(X, Y, Z) indicating, for each instantiation z ∈ dom(Z), the relative importance of X and 
Y. 
The following example illustrates the concept of TCP-Net as a formalism for specifying 
preferences. 
Example 4 Let V = {Director (D), Genre (G), Year (Y ) }, dom(D) = {Woody Allen (w), Nanni 
Moretti (n)}, dom(G) = {comedy (c), drama (d)}, dom(Y) = {80,90}. Let us suppose that I 
strictly prefer comedies to dramas but my preference about directors is conditioned to the 
film genre: When choosing dramas, I prefer Nanni Moretti’s to Woody Allen’s. However, for 
comedies, I prefer Woody Allen’s to Nanni Moretti’s. When choosing a film, the year of 
production is more important for my decision than the director. When choosing a Woody 
Allen’s film, its genre is more important to me than its year of production. But for Nanni 
Moretti’s films, the year of production is more important than the genre. These preference 
rules can be expressed by the TCP-Net depicted in Figure 2(a). 
 

 

  

(a) (b) (c) 

Fig. 2. (a) A TCP-net N (b) The partial ordering induced by N (c) The dependence graph 

The semantics of a TCP-Net is defined in terms of the set of strict partial orders consistent 
with the constraints imposed by the preference and importance relations expressed by the 
graph edges, the CP and CI tables. As for CP-Nets, TCP-Nets semantics is based on the 
ceteris paribus semantics. We present here only the intuitive idea behind the semantics of a 

TCP-Net. For a more formal presentation, see (Brafman et al., 2006a). A strict partial order Z 

satisfies a TCP-Net N if the following intuitive conditions are verified: (1) in each CP table 

CPT(X), for every z ∈ dom(Z) (where Z = Parents(X)), two objects o and o’differing only on 

the attribute X and whose values on Z are given by z, are ordered by Z consistently with the 

ordering on the X values given in CPT(X); (2) if X 3Y , then any two objects o and o’differing 

only on the values of X and Y are ordered as o Z o’if the relationship o[X] Z o[X’] appears in 

the CP table CPT(X) corresponding to the instantiation given by o[Parents(X)]; (3) in each CI 
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table CPI(X, Y,Z), for every z ∈ dom(Z) such that X 3z Y , any two objects o and o’ differing 

only on the attributes X and Y and whose values on Z are given by z are ordered as o Z o’ if 

the relationship o[X] Z o[X’] appears in the CP table CPT(X) corresponding to the 

instantiation given by o[Parents(X)]. In Figure 2(b) one represents the relationships between 
objects which are entailed by the TCP-Net in Figure 2(a). The arrow from object o to object o’ 

means that o Z o’. The arrows resulting from transitivity are not showed in the figure. Notice 

that the arrow from film (d, n, 80) to film (c, n, 90) is inferred using the CI table CIT(G, Y,D) 
which imposes that, for Nanni Moretti’s movies, the year of production is more important 
than the genre. So, as I prefer films produced in the 80’s than films produced in the 90’s, I 
prefer the first film to the second one, even if the first film is a drama and the second one is a 
comedy. 

Definition 4 (Satisfiability of a TCP-Net) A TCP-Net N is satisfiable (or consistent) iff there 

is some strict partial order Z over O that satisfies it. Let o, o’ ∈ O. We say that o Z o’ is 

implied (or inferred) by the TCP-Net N iff it is verified by all strict partial orders Z over O 

satisfying N. 

Satisfiability is a desired property for TCP-Nets since it is important to guarantee that the 

preference rules provided by the users do not lead to inconsistencies like “I prefer object o to 

object o’ and object o’ to object o”. However, the definition of TCP-Net satisfiability does not 

provide a mechanism for testing TCP-Net consistency. Fortunately, for a large class of TCP-

Nets consistency is guaranteed. This class of TCP-Nets is referred as conditionally acyclic and 

is defined as follows: 

Definition 5 (Conditionally Acyclic TCP-Nets) Let N be a TCP-Net over the set of 

attributes V . We associate to N a graph N*, called the dependency graph of N in the following 

way: the nodes of N* are the same as the nodes of N. Each directed edge of N is a directed 

edge of N*. For each undirected edge {X, Y } of N, labelled by the set of attributes Z, we 

insert in N* two directed edges (A,X) and (A, Y ) for each attribute A ∈ Z. Besides, for each 

assignement z ∈ dom(Z) of the attributes in Z, we insert a direct edge (X,Y) or (Y,X) 

depending on the information given in the CI table CIT(X,Y,Z) corresponding to the 

assignement z. In that way, we are able to associate a set of directed graphs G(N) to the TCP-

Net N, one for each assignement of the attributes labelling the undirected edges of N. We 

say that the TCP-Net is conditionally acyclic if each graph of G(N) is acyclic. 

For instance, the dependence graph associated to the TCP-Net of Figure 2(a) is given in 

Figure 2(c). As we see, this TCP-Net is not conditionally acyclic, since the graph N* is cyclic. 

Now, if we consider the TCP-Net depicted in Figure 3(a), it is easy to see that it is 

conditionally acyclic, since all graphs in G(N) (showed in Figure 3(b)) are acyclic. 

For conditionally acyclic TCP-Nets we have the following result, whose proof can be found 
in (Brafman et al. 2006a). 
Theorem 3 Every conditionally acyclic TCP-Net is satisfiable. 
Discussion. (1) Complexity: Unfortunately, testing for conditionally acyclicity is not an easy 

task. This problem is shown to be coNP-hard in (Brafman et al. 2006a). (2) Best Outcomes: 
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One of the central properties of the CP-Net model is that, given an acyclic CP-Net N and a 

(possibly empty) partial instantiation x of some of its attributes, it is simple to determine a 

best object consistent with x. In the previous section, we presented the forward sweep 

procedure which produces the best object of an acyclic CP-Net. This procedure works also 

for conditionally acyclic TCP-Nets. The relative importance relations do not have any 

influence in the process of obtaining the optimal outcome. In order to obtain the best object, 

we simply consider the CP-Net part of the TCP-Net N (ignoring the i-edges and the ci-

edges) and we apply the forward sweep procedure for the resulting CP-Net. This simple 

algorithm for finding the best outcome can be applied to all TCP-Nets for which the CP-Net 

part is acyclic. In particular, it is applicable for conditionally acyclic TCP-Nets. However, 

finding the best outcome associated to a TCP-Net N satisfying a set of hard constraints is not 

trivial. In (Brafman et al., 2006a), an algorithm (Search-TCP) is developed for producing the 

best outcomes associated to a conditionally acyclic TCP-Net N satisfying a set of hard 

constraints C on the attributes of N. 

 

 

(a) (b) 

Fig. 3. (a) A conditionally acyclic TCP-net N (b) The set of acyclic graphs G(N) 

2.3 A logical framework for preferences over objects 

In this section we present a third approach for preference elicitation and reasoning 
introduced in (Wilson, 2004). This approach is based on a logical framework and generalizes 
the CP-Nets and TCP-Nets approaches. 

The Preference Language L. The language L is constituted by statemets of the form ϕ: u 

→(X = x) > (X = x’), where u is a formula of the form (Xi
1

= x1) ∧ ... ∧ (Xi k  = xk), with Xi j ∈ V 

− {X} and xj ∈ dom(Xi j ) for all j ∈ {1, ..., k} and x, x’ ∈ dom(X). We call such statements 

conditional preference rules or cp-rules for short. The formula u is called the condition of the cp-

rule ϕ. The set of attributes appearing in u is denoted by Attr(u). If ϕ is the statement u→ (X 
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= x) > (X = x’) then sometimes we denote u by u ϕ , X by X ϕ  and x, x’ by x ϕ  and x’ ϕ  

respectively. A conditional preference theory over V is a finite set of statements of L. 

Example 5 Let V = {G,D} as in Example 2. Let ϕ1 and ϕ2 the following conditional preference 

rules: 

ϕ1 : (G = c) → (D = w) > (D = n), 

ϕ2 : (D = n) → (G = c) > (G = d). 

Then Γ = {ϕ1, ϕ2} is a conditional preference theory which expresses the first preference 

statement of Example 1. 

A conditional preference statement ϕ : u → (X = x) > (X = x’) induces a preference ordering 

on objects over V. Let o = tyx and o’ = tyx’ be objects over V, where y is an object over Attr(u), 

t is an object over V − (Attr(u) ∪ {X}). We say that o is preferred to o’ according ϕ. The set of 

pairs of objects (o, o’) where o is preferred to o’ according to ϕ is denoted by ϕ*. If Γ is a 

conditional preference theory, we denote by >Γ the transitive closure of the binary relation  

Γ* = ∈Γ∪ ϕ ϕ*. 

Example 6 Let us compare the objects o1 = (c,w) and o2 = (d, n) according to Γ. We have that 

(c,w) is preferred to (c, n) according to ϕ1. And (c, n) is preferred to (d, n) according to ϕ2. 

Then, using transitivity, we conclude that (c,w) is preferred to (d, n), that is, o1 >Γ o2. 

Consistency Test. One important feature of preference conditional theories is that there is 

no need of eliciting a total order on the values of an attribute given each assignement to its 

parents, as in the CP-Net preference model. So, a conditional preference theory is a compact 

way of expressing preference: we can reason with any theory Γ specified by the user, 

provided this theory satisfies some properties which guarantee its consistency. Besides, the 

user can add new statements later on; because the logic used in the deduction system is 

monotonic, all previous deductions concerning preferences will hold. 

Now, we present the concept of consistency for a preference conditional theory Γ. A model of 

Γ is a strict partial order (that is, a transitive and irreflexive relation) > on objects O over V 

such that > contains the induced ordering >Γ. We say that Γ is consistent if there exists a 

model > for Γ. It is easy to see that a theory Γ is consistent if and only if its induced relation 

>Γ is irreflexive, since >Γ is transitive by definition. 

Example 7 The theory Γ presented in Example 5 is consistent. Indeed >Γ = {(o1, o3), (o3, o4), (o1, 

o4)} is a strict partial order over the set of objects O = {o1,o2, o3, o4 }, where o1 = (c,w), o2 = 

(d,w), o3 = (c, n), o4 = (d, n). Note that (o1, o3) ∈ *

1
ϕ , (o3, o4) ∈ *

2
ϕ  and (o1, o4) is inferred by 

transivity. However, the theory Γ’= Γ ∪ {ϕ3, ϕ4} where: ϕ3 : (G = d) → (D = n) > (D = w) and 

ϕ4 : (D = w) →(G = d) > (G = c), is not consistent. Indeed, (o4, o2) ∈ *

3
ϕ  and (o2, o1) ∈ *

4
ϕ . So, o1 

>Γ’ o1, since (o4, o1) ∈ > Γ’ and (o1, o4) ∈ > Γ’ , which proves that > Γ’ is not irreflexive. 
We associate to each preference conditional theory Γ a graph G(Γ) defined as follows: the 

nodes of G(Γ) are the attributes appearing in the rules of Γ and the set of edges is given by 

{(Y,Xϕ) : Y ∈ Uϕ}, where Uϕ denotes the set of attributes appearing in the condition uϕ. The 

preference conditional theory Γ is acyclic if its graph G(Γ) is acyclic. 
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As we will see in Theorem 4, in order to ensure consistency for acyclic theories it will be 

sufficient to ensure local consistency. More precisely : Let o be a fixed object over V and X be 

an attribute in V . Let x, x’ ∈ dom(X). We say that (x, x’) is validated by o if there exists a 

statement (ϕ : uϕ → X = x > X = x’) ∈ Γ such that o satisfies the formula uϕ (the conditions of 

ϕ). We define the relation > X

o
 on dom(X) as the transitive closure of the set of all pairs (x, x’) 

validated by o. We say that the preference theory Γ is locally consistent if for all objects o and 

all attributes X, the relation > X

o
 is irreflexive. 

Example 8 Let us consider the situation of Example 7 except that the set of attributes V is 

augmented with a third attribute Y (year of production), so V = {G,D, Y }. Let us consider the 

preference theory Γ1 = {ϕ1, ϕ5}, where ϕ5 : (Y = 1990) → (D = n) > (D = w). Let o = (c,w, 1990) 

and let us fix the attribute D. Then w > D

o
 n since (w, n) is validated by o, if we consider the 

statement ϕ1. But (n,w) is also validated by o, if we consider the statement ϕ5. Thus, Γ1 is not 

locally consistent. 

The following theorem gives necessary and sufficient conditions for ensuring consistency of 

a preference theory Γ. 

Theorem 4 Let Γ be a conditional preference theory. Then, we have : (1) If Γ is consistent 

then Γ is local consistent. (2) If Γ is local consistent and acyclic then Γ is consistent. (3) If all 

the attributes in V are binary, local consistency can be determined in time proportional to 

| Γ |2 × |V |. 

The theory Γ1 presented in Example 8 is not locally consistent, so it is not consistent by 

Theorem 4. Notice that its graph G(Γ 1) = {(G,D),(Y,D)} is acyclic. On the other hand, the 

theory Γ given in Example 5 is consistent but its graph G(Γ) = {(G,D),(D,G)} is cyclic. By 

Theorem 4 we can conclude that it is local consistent. This is an example of a local consistent 

theory whose graph is cyclic. 

Finding optimal outcomes. Let Γ be a preference conditional theory over a set of attributs V. 

Given an object o over V ’ ⊆ V , we say that a value xi ∈ dom(Xi) is undominated given the 

object o if there is no statement u → (Xi = x) > (Xi = xi) in Γ, such that o satisfies u. The 

algorithm for finding optimal objects with respect to a locally consistent preference theory Γ 

with acyclic G(Γ) works as follows: (1) enumerate the attributes of V in such a way that the 

ordering 〈X1, ...,Xn〉 is compatible with the graph G(Γ) (that is, if i > j then there is no path 

going from Xj to Xi in G(Γ)). (2) For each i ∈ {1, ..., n} let α (Xi) = x, where x ∈ dom(Xi) and x is 

undominated with respect to the object o = (α(X1), ..., α(Xi−1)). Local consistency of Γ ensures 

that such x always exists. 

Example 9 Let us consider V = {G, D, Y } as in Example 8. Let us consider the preference 

theory Γ1 = {ϕ1, ϕ6}, where ϕ6 : (G = d) → (Y = 1990) > (Y = 2000). We have G(Γ1) = {(G,D), (G, 

Y )}. Then, the ordering 〈G, D, Y 〉 is compatible with G(Γ1). We choose α(G) = c. For α(D), the 

only undominated value given (c) is w. For α(Y), both values 1990 and 2000 are 

undominated given (c,w). So, a best object is o1 = (c,w, 1990). Another one is o2 = (c,w, 2000). 

By choosing α(G) = d, we also get o3 = (d,w, 1990) and o4 = (d, n, 1990) as best objects. 
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3. Preferences over sets of objects 

For the time being, we have been interested in formalisms allowing to eliciting and 
reasoning with preferences over objects. We have introduced some important frameworks 
for specifying user’s preferences in a compact way, besides discussing important issues 
related to this topic, such as decidability and complexity of the problems of finding the best 
objects, dominance and ordering queries and introduction of hard constraints. In this section 
we tackle these issues in a broader context, by considering a simple framework for dealing 
with preferences over sets of objects. This problem arises naturally in the context of our 
running example. Let us suppose the task of creating a program for a film festival. Here, the 
crucial task is not to obtain user’s preferences about movies considered individually, but 
about several possible sets of movies. Thus, the user has to be able to specify her preferences 
about a group of films, taking into account aspects like genre diversity, genre adaptability 
(for instance, a user may not be interested in programs containing both comedies and 
dramas), etc. In such situation, we would like to be able to determine the preferred 
characteristics which must be satisfied by a group of objects, and then to be able to select from 
a set of objects the best subset satisfying these preference rules. A simple way to treat the 
problem of finding the best subset of objects is to produce a set containing the k best 
elements according to a set of preference rules on individual objects. This naive solution is 
not suitable since the attractiveness of particular objects does not imply that these same 
objects put together would constitute an atractive set. If one of the requirements for a 
“good” set is the diversity of its elements, putting together a set of good objects would not 
necessarily produce the required diversity. Several recent works on preference modelling in 
AI have focused on eliciting and reasoning with preference over sets of objects, from a 
quantitative and a qualitative perspectives. In (des Jardins & Wagstaff, 2005) for instance, it 
was proposed a formalism to deal with preferences over sets of objects supporting the 
notions of diversity and depth. These concepts allows expressing preferences in a quantitative 
way, by measuring in some sort the degree of diversity and depth of a preferred set of 
objects. Since in this chapter we are focusing on formalisms based on a qualitative 
perspective, we will describe here the very simple and elegant approach of (Brafman et al., 
2006b). This approach allows the user to specify a broad class of interesting properties about 
sets of objects. And surprisingly, such set-preference statements can be naturally 
transformed into conditional preference statements over attributed objects. 
The Specification Language. Most properties of sets of objects which are important for 

users when specifying their preferences take the forms: (1) “at least one object in the set satisfies 

C = c and D = d or A = a; (2) the number of objects satisfying C = c is 2. Let L the propositional 

language where the propositions are of the form X = x, where X is an attribute in the set V of 

attributes and x ∈ dom(X). An object o ∈ O satisfies X = x if o[X] = x. This notion of 

satisfaction is extended to formulae ϕ ∈ L as usually in Propositional Logic. It is denoted by  

o |= ϕ. Now we consider the following class of properties C over sets of objects : 〈|ϕ| θ n〉, 

where ϕ ∈ L, θ ∈ {=, ≤, ≥, >, <}, n ∈ N. Using such statements, the user is able to express the 

properties about sets of objects which may affect her preferences. These properties refers to 

the number of objects in the selected subset O of objects verifying some constraints. The 

following example illustrates these properties: 

www.intechopen.com



Preferences over Objects, Sets and Sequences 

 

63 

Example 10 Let us consider the situation depicted in Example 2, but with an extra attribute 
standing for the film title. So, V = {G,D, T}. Let us suppose the following properties which 
affect user’s preferences about a film program: the fact the it contains at most two Woody 
Allen’s comedies, at least two Hitchcock’s thrillers and no dramas. This can be specified by 
the following set-preference properties: 

P1: 〈|G = c ∧ D = w| ≤ 2〉 

P2: 〈|G = t ∧ D = h| ≥ 2〉 P3: 〈|G = d| = 0〉  
Let us consider the following set of films: O = {(c,w, t1), (c,w, t2), (c,w, t3), (d, n, t4), (t, h, t5), (t, 
h, t6)}. For this set we have P1(O) = false, P2(O) = true and P3(O) = false. 

Now, let us consider a set of properties P = {P1, ..., Pn} ∈ C. Each property Pi can be treated as 

an attribute taking values in the set {true, false} (dom(Pi) = {true, false}). Each subset of 

objects O ⊂ O corresponds to an “object” in V = dom(P1) × .... × dom(Pn). That is, abstractly, 

each subset O can be viewed as a vector of truth-values (an object). Moreover, any 

preference order over objects in V implicitly induces a preference order over sets of objects 

of O. So, in order to specify preferences over sets of objects, the user must simply specify (1) 

which are the properties about sets that affects her preferences and (2) her specific 
preference rules involving the validity of these properties. After such specifications, the 
problem of extracting a preference ordering over sets of objects satisfying the user’s 
requirements is reduced to the problem of extracting a preference ordering over objects. 
Thus, we can use one of the formalisms introduced in the previous section for reasoning 
with preferences over objects in order to infer a preference ranking over sets of objects. The 
following example illustrates this idea. 
Example 11 Let us consider the situation of our Example 10. Let us suppose the user 
specifies the following preference statements: (1) She prefers programs containing at most 
two Woody Allen’s comedies; (2) For programs containing more than two Woody Allen’s 
comedies she prefers a program containing at least one drama; (2) For programs containing 
no dramas he prefers a program containing at least two Hitchcock’s thrillers. These 
preference statements can be represented by the TCP-Net depicted in Figure 4. 
 

 

Fig. 4. A TCP-Net representing set-preference statements 

4. Preferences over sequences of objects 

In this section, we present our formalism allowing to specify compact preference statements 
provided by the users. First, we will formalize the notion of temporal conditions used for 
ranking sequences of objects. By viewing each object in a sequence p as a state, we propose 
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to use the formalism of Propositional Linear Temporal Logic (PTL) to capture the desired 
properties of sequence of objects, which we call temporal conditions. After formalizing our 
temporal conditions, we introduce the language TPref for expressing conditional 
preferences over sequences of objects. Preference statements in TPref use temporal 
conditions in their formulation. 

4.1 Temporal conditions 

The language we use for expressing temporal condition is basicly the Propositional 
Temporal Logic (PTL), adapted to our context. In PTL, the basic formulae are propositional 

variables p1, ..., pn. In our case, basic formulae or propositions are of the form X = a where X ∈ 

V and a ∈ dom(X). In order to emphasize the fact that our language assume a particular 
basic formula format, we will call it STL (for Simple Temporal Logic) instead of PTL. We 
stress however that both logics are essentially the same. 
Definition 6 (The language STL for temporal conditions) The STL formulae are defined as 
follows: (1) true and false are STL formulae. (2) if P is a proposition then P is a STL formula. 

(3) if F and G are STL formulae then F ∧ G, F ∨ G and ¬F are STL formulae. (4) if F and G are 
STL formulae then F Until G and F Since G are STL formulae. A temporal condition is a STL 
formula. If F is a temporal condition, we denote by Attr(F) the set of attributes appearing in 
F. 
Next, we present the semantics of temporal conditions. Temporal conditions are evaluated 

over sequences of objects. A sequence of objects of O is a structure consisting of a set of objects 

{o1, o2, ..., ok} with an (temporal) ordering o1 < o2 < ... < ok, telling us that oi comes before oi+1. 

We denote this structure simply by p = 〈o1, o2, ..., ok〉. If p = 〈o1, ..., ok〉 then k is called the 

length of p and is denoted by |p|. We denote by Seq(O) the set of sequences of objects in O 

and by Seqn(O) the set of sequences of length n in Seq(O). 

Definition 7 (STL Semantics) The notion of satisfaction of a STL formula by a sequence of 

objects p = 〈o1, ..., ok〉 at a state i ∈ {1, ..., k} (denoted by (p, i) |= F) is inductively defined as 

follows: (1) (p, i) |= (X = a) iff oi[X] = a; (2) (p, i) |= F ∧ G iff (p, i) |= F and (p, i) |= G;  

(3) (p, i) |= F ∨ G iff (p, i) |= F or (p, i) |= G; (4) (p, i) |= ¬F iff (p, i) |≠ F; 
(5) (p, i) |= F Until G iff there exists j such that i < j ≤ |p| and (p, j) |= G and for all k such 
that i < k < j we have (p, k) |= F. 
(6) (p, i) |= F Since G iff there exists j such that 1 ≤ j ≤ i and (p, j) |= G and for all k such that 
j < k < i we have (p, k) |= F. 
We say that p satisfies a STL formula F (denoted by p |= F) if (p, k) |= F, where k = |p|. We 

say that F is satisfiable if there exists p ∈ Seq(O) such that p |= F. The formula true (resp. 

false) is satisfied by any sequence (resp. by no sequence) p ∈ Seq(O). We say that two STL 

formulae F,G are equivalent iff for every sequence p, p|= F iff p |= G. We say that F,G are 

globally equivalent (g-equivalent) iff for every sequence p, (p, i) |= F iff (p, i) |= G, for all i ∈ 
{1, ..., |p|}. 
Derived Formulae: 
Prev F = false Since F (“in the previous state F”); Next F = false Until F (“in the next state 
F”); First = ¬ Prev true (“I am at the first state”); Last = ¬ Next true (“I am at the last state”).; ♦F 
= true Since F (“Sometimes in the past F”); ◊F = true Until F (“Sometimes in the future F”); ■F = 
¬♦¬F (“Always in the past F”); □F = ¬◊¬F (meaning “Always in the future F”) 
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A very important property verified by PTL formulae (and consequently, by STL formula) is 
the separability property: it says that every PTL formula is g-equivalent to a boolean 
combination of pure past, pure future and pure present formulae. Let us define these kind of 
formulae: 
Definition 8 (Present, Past and Future Formulae) A pure present formula is inductively 

defined by the following rules: (1) a proposition X = a is a pure present formula. (2) a 

boolean combination of pure present formulae is a pure present formula. A pure past 

formula (resp. a pure future formula) is inductively defined as follows: (1) if F and G are pure 

present formulae then F Since G (resp. F Until G) are pure past formula (resp. a pure future 

formula). (2) If F and G are pure past formulae (resp. pure future formulae) then F Since G 

(resp. F Until G) is a pure past formula (resp. a pure future formula). (3) a boolean 

combination of pure past formulae (resp. pure future formulae) is a pure past formula (resp. 

a pure future formula). We say that a formula F is separated if F is of the form F1 ∨ ... ∨ Fn, 

with each Fi of the form F 0

i  ∧ F
i

+
 ∧ F

i

−
 , where F 0

i  is pure present formula, F
i

+
 is a pure 

future formula and F
i

−
 is a pure past formula. 

From a semantic point of view, the pure present, pure past and pure future formulae verifies 
the following properties which are easily proved by induction on the formulae construction. 
Proposition 1 Let F be a STL formula. 

• F is a pure present formula iff for all p = 〈o1, ..., oi−1, oi, oi+1, ..., ok〉 ∈ Seqk(O) we have: (p, 

i) |= ϕ iff (p’, i) |= ϕ for any sequence p’= 〈o1, ..., oi−1, o
,

i
, oi+1, ..., ok〉 ∈ Seqk(O) which 

differ from p only at state i. 

• F is pure past formula iff for all  = 〈o1, ..., oi−1, oi, ..., ok〉 ∈ Seqk(O) we have: (, i) |= ϕ 

iff (’, i) |= ϕ for any sequence ’ = 〈o1, ..., oi−1, o
,

i
, ..., o ,

k
〉. 

• F is pure future formula iff for all  = 〈o1, ..., oi, oi+1..., ok〉 ∈ Seqk(O) we have: (, i) |= ϕ 

iff (’, i) |= ϕ for any sequence ’ = 〈o ,

1
, ..., o

,

i
, oi+1, ..., ok〉. 

Intuitively, pure past formulae are not “aware” of what is happening in the current state or 

in future states. Pure present formulae are not “aware” of what has happened in the past 

states or of what is going to happen in future states. And pure future formulae are not 

“aware” of what is happening in the current state or has happened in past states. 

Theorem 5 (Separation Theorem (Gabbay, 1989)) Let F be a STL formula. Then F is g-
equivalent to a separated formula. 

For instance, ◊((X = a) ∧ ■(Y = b)) is not separated but is equivalent to the separated formula 

■(Y = b)∧(Y = b)∧((Y = b) Until (X = a)). The property of separation of propositional temporal 

formulae is not trivial. In fact, separation is closely related to the expressivity power of a 

temporal language. For details on this important subject see (Gabbay, 1989). For a discussion 

about open problems concerning the complexity of separating a formula into its past, future 

and present components see (Hodkinson & Reynolds, 2005). 

4.2 A temporal preference language 

Now, we introduce the specification language for our temporal preference model. A 

temporal preference will be characterized by a set of temporal conditional preference rules that 

we formally define next. 
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Definition 9 (Temporal Conditional Preference Rule) Atemporal conditional preference rule 

(or tcp-rule) is an expression of the form: ϕ : F → (X = x > X = x’) where X ∈ V , x, x’ ∈ 

dom(X) and F is a STL separated formula. A simple tcp-rule is a tcp-rule where the temporal 
condition contains a unique disjunct. It is easy to see that a tcp-rule is equivalent to a set of 
simple tcp-rules. 
Definition 10 (Temporal Conditional Preference Theory) A Temporal Conditional Preference-

Theory is a finite set Φ of simple tcp-rules F → (X = x) > (X = x’), where X ∉ Attr(F0). In what 

follows, sometimes it will be useful to use the following notation for the elements appearing 

in a tcp-rule ϕ: F −
ϕ  ∧ F 0

ϕ  ∧ F +
ϕ  denotes its temporal condition and (Xϕ = xϕ) > (Xϕ = x’ϕ) 

denotes the expression appearing in its right side. 
Example 12 Let us consider the situation of our film festival program presented in Example 
1. The statements are expressed by the following tcp-rules: 

1. ϕ1 : (G = c) → (D = w) > (D = c) 

2. ϕ2 : (G = d) → (D = n) > (D = w). Here, the conditions in the tcp-rules are pure present 

formulae. 

3. ϕ3 : First → (G = c) > (G = d). Here, the condition in the tcp-rule is a pure past formula 

since First ≡ Prev False. 

4. ϕ4 : Prev(G = c) → (G = d) > (G = c) 

5. ϕ5 : Prev((G = d) ∧ (D = w)) → (G = c) > (G = d) 

6. ϕ6 : Prev((G = d) ∧ (D = n)) → (G = d) > (G = c). Here, the conditions in the tcp-rule are 

pure past formulae. 

7. ϕ7: (◊(G = d) ∧ ♦(G = c)) → (G = c) > (G = d)). Here, the conditions in the tcp-rules are 

separated formulae of the form F− ∧ F+ (with pure past and pure future components 
only). 

The ordering induced by a Temporal Preference Theory. First of all we will show how two 

sequences in Seq(O), differing at one single position i, can be compared via a temporal 

preference theory. Afterwards, we show how two sequences in Seq(O), differing in k 

positions i1, ..., ik can be compared. 

Definition 11 (Sequences differing at one single position) Let ϕ be a tcp-rule. Let Rϕ be the 

relation over Seqn(O) defined as follows: if p = 〈o1, . . . , on〉 and p’ = 〈o ,

1
, . . . , o ,

n
〉 then pRϕp’ 

iff there exists j ∈{1, . . . , n} such that: (1) oj ≠ o ,

j  and oi = o ,

i  for every i ∈ {1, . . . , n}\{j}; (2) (p, 

j) |= Fϕ and (p’, j) |= Fϕ; (3) oj [Xϕ] = xϕ and o ,

j
[Xϕ] = x ,

ϕ ; (4) For every Y ∈ V \ {Xϕ}, oj [Y ] = 

o ,

j
[Y ]. If such position j exists, it is unique and denoted by (p, p’). 

Thus, two sequences of the same size can be compared via Rϕ only if they differ at one single 

position. Roughly speaking, in order to compare two sequences differing at k > 1 positions, 

via a temporal conditional preference theory Φ, we will consider the union of Rϕ, for ϕ∈Φ 

and the transitive closure of this union. More precisely: Given a set Φ of tcp-rules, we denote 

by RΦ the set ∈∪ Φ ϕϕ R and by >Φ the transitive closure of RΦ. We say that p is preferred to p’ 
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w.r.t. the theory Φ if p >Φ p’. Lemma 1 below gives a necessary and sufficient condition in 

order to a sequence p be preferred to a sequence p’ w.r.t. Φ. Before stating this result, we 

need the following definition: 
Definition 12 (Improving Flipping Sequence (IFS)) Let p and p’ be two sequences of length 

n. We say that there exists an Improving Flipping Sequence (IFS) from p to p’ w.r.t Φ if there 

exists a set of sequences {p1, . . . , pp+1} and a set of tcp-rules {ϕ1, . . . , ϕp} in Φ such that p1 = p, 

pp+1 = p’ and pk Rϕk pk+1 for every k ∈ {1, . . . , p}. 

Lemma 1 Let Φ be a set of tcp-rules. Let p and p’ be two sequences of length n. Then p >Φ p’ 

iff there exists an IFS from p to p’ w.r.t. Φ. 

Example 13 Let us consider the theory Φ = {ϕ1, ..., ϕ7} of Example 12 and the following 

sequences: p1 = 〈(c, n), (d,w)〉, p2 = 〈(d, n), (d,w)〉 and p3 = 〈(d, n), (c,w)〉. Note that (p1, p2) = 1 

and (p2, p3) = 2. So, p1 and p3 differ in two positions, 1 and 2. We have p1 Rϕ7 p2 and p2 Rϕ6 

p3. Then there exists an IFS from p1 to p3, and so p1 >Φ p3. 

As we see, a temporal conditional preference theory Φ is a compact way of expressing 

preference between sequences of objects: we can reason with any theory Φ the user gives us, 

provided this theory is consistent. More precisely: 

Definition 13 (Consistency) Let Φ be a temporal preference theory. We say that Φ is 

consistent iff >Φ is irreflexive, that is, >Φ is a partial order over Seqn(O), for all n > 0 (remind 

that, by definition, >Φ is transitive; and that transitivity and irreflexivity imply anti-

symmetry). 

4.3 Consistency test 

The main purpose of this section is to give necessary and sufficient conditions for a temporal 

conditional preference theory Φ to be consistent. In this paper, we only give necessary and 

sufficient conditions when tcp-rules in Φ use only conjunctions of pure past and pure 

present formulae of STL, i.e. for all ϕ∈ Φ, Fϕ = F −
ϕ ∧ F 0

ϕ . In the following, we denote by 

TPref* the set of all tcp-rules of this form. 

A Method for Testing Consistency. We will show (Theorem 6) that testing the consistency 

of a temporal conditional preference theory Φ reduces to test the consistency of a number 

l(Φ) of conditional preference theories over objects. Before proving this result, we need to 

introduce some notation first. 

Let p = 〈o1, . . . , on〉 be a sequence in Seqn(O) and on+1 be an object in O. In the following, we 

denote by rlo (for Remove Last Object) and add the operators defined by: rlo(p) = 〈o1, . . . , 

on−1〉 and add(p, on+1) = 〈o1, . . . , on, on+1〉. Let ϕ be a tcp-rule where Fϕ = F −
ϕ  ∧ F 0

ϕ  ∧ F +
ϕ . We 

denote by ϕ0 the cp-rule defined by: ϕ0 : F
0

ϕ→ (Xϕ= xϕ) > (Xϕ= xϕ). Given a tcp-theory Φ and 

a sequence p ∈ Seq(O), we define for every integer j ∈ {1, . . . , |p|} the cp-theory Γj(Φ, p) as 

follows: 
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Intuitively, Γj(Φ, p) is the set of the present components of the tcp-rules conditions whose 

past and future components are satisfied by p at position j. Note that if p and p’ are two 

sequences in Seqn(O) such that rlo(p) = rlo(p’) then Γn(Φ,p) = Γn(Φ,p’). The following lemma 

gives a necessary condition for two sequences p and p’ satisfy p >Φ p’, where Φ is a theory in 

TPref* (without future components). 

Lemma 2 Let Φ be a tcp-theory such that for every ϕ ∈ Φ, ϕ ∈ TPref*. For every pair of 

sequences p = 〈o1, . . . , on+1〉 and p’ = 〈o ,

1
, . . . , o ,

1n+ 〉 in Seqn+1(O) with n > 0, if p >Φ p’, then 

rlo(p) >Φ rlo(p’), or rlo(p) = rlo(p’) and on+1 >Γ o ,

1n+  where Γ = Γn+1(Φ,p) = Γn+1(Φ,p’). 

Proof. Let p = 〈o1, . . . , on+1〉 and p’ = 〈o ,

1
, . . . , o ,

1n+ 〉 be two sequences such that p >Φ p’. If p 

>Φ p, it means that there exists an IFS from p to p’ w.r.t. Φ. Thus, there exists a set of 

sequences {q1, . . . , qp+1} in Seqn+1(O) and a set of tcp-rules {ϕ1, . . . , ϕp} such that q1 = p, qp+1 = 

p’ and for every k ∈ {1, . . . , p}, qk Rϕk qk+1. For every k ∈ {1, . . . , p + 1}, let q ,

k
 be the sequence 

in Seqn(O) defined by q ,

k  = rlo(qk). It can be easily seen that for every k ∈ {1, . . . , p}, we have: 

• q ,

k  = q ,

1k+  if qk[n + 1] ≠ qk+1[n + 1], or 

• q ,

k  ≠ q ,

1k+  if qk [n+1] = qk+1[n+1]. In that case, we have j = (qk, qk+1) =  (q ,

k
,q ,

1k+ ) < n+ 1. 

Therefore, since ϕ ∈ TPref*, (qk, j) |= Fϕk and (qk+1, j) |= Fϕk implies that (q ,

k
, j) |= Fϕk 

and (q ,

1k+ , j) |= Fϕk . Since qk Rϕk qk+1, it follows that we also have q ,

k  Rϕk q ,

1k+ . 

We now have to distinguish two cases: 

1.    Assume that there exists an integer k ∈ {1, . . . , p} such that q ,

k
 ≠q ,

1k+ . In that case, since 

       q ,

1  = rlo(p),q ,

1p+  = rlo(p’), we have shown that there exists an IFS from p to p’ w.r.t. Φ. It 

       shows that rlo(p) >Φ rlo(p’). 

2.    Assume now that for every k ∈ {1, . . . , p}, we have q ,

k  = q ,

1k+ . It means that for every k ∈ 

       {1, . . . , p+1}, rlo(qk) = rlo(p) = rlo(p’). Moreover, since qk Rϕk qk+1 and (qk, qk+1) = n+1, we 

       have (qk, n + 1) |= Fϕk. It follows that (qk, n + 1) |= F
kϕ

−
 . Thus, since rlo(qk) = rlo(p), we  

       have (p, n + 1) |= F 
kϕ

−
 and ϕ 0

k  ∈ Γn+1(Φ,p). Now, it is easy to see that (q1[n + 1] = on+1) >Γ  

           (qp+1[n + 1] = o ,

1n+ ) where Γ = Γn+1(Φ,p), which completes the proof of Proposition 2.        □ 

We now are ready to state the main result of this section. Its proof uses Lemma 2. 

Theorem 6 Let Φ be a set of tcp-rules such that for every ϕ ∈ Φ, ϕ ∈ TPref*. Φ is consistent iff 

for every sequence p of length k > 0, Γk(Φ,p) is consistent. 

Proof. In order to prove that Φ is consistent, we have to show that >Φ is irreflexive. First, we 

show that if for every sequence p of length k > 0, Γk(Φ,p) is consistent, then the relation >Φ is 

irreflexive. We show this property by induction on the length of sequences. 

Let p = 〈o〉 be a sequence of length n = 1. If p >Φ p, it means that there exists an IFS from p to p, 

i.e. a set of sequences {〈o1〉, . . . , 〈op+1〉} and a set of tcp-rules {ϕ1, . . . , ϕp} such that o = o1 = op+1 
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and for every k ∈ {1, . . . , p}, 〈ok〉Rϕk 〈ok+1〉. By Definition 11, for every k ∈ {1, . . . , p}, we have 

(〈ok〉, 1) |= Fϕk. Thus, we have (〈ok〉, 1) |= F 
k

−
ϕ  and ϕ 0

k
∈ Γ1(Φ,〈ok〉) = Γ 1(Φ,〈o〉) because rlo(〈ok〉) 

= rlo(〈o〉). Finally, for every k ∈ {1, . . . , p}, we have ok R
0
kϕ

 ok+1. It shows that o >Γ o with  

Γ = Γ1(Φ,〈o〉), which contradicts the hypothesis that Γ k(Φ,pk) is consistent for every sequence 

pk of length k > 0 and proves that >Φ is irreflexive on Seq1(O). 

Assuming that >Φ is irreflexive on Seqn(O), we now have to prove that >Φ is a irreflexive on 

Seqn+1(O). Suppose that there exists a sequence pn+1 = 〈o1, . . . , on+1〉 in Seqn+1(O) such that pn+1 

>Φ pn+1. Using Proposition 2, we have to distinguish two cases: 

1. If rlo(pn+1) >Φ rlo(pn+1), it shows that >Φ is not irreflexive on Seqn(O), which contradicts 

the hypothesis. 

2. If rlo(pn+1) = rlo(pn+1), then we have on+1 >Γ on+1 where Γ = Γn+1(Φ,pn+1). It shows that > Γ is 

not irreflexive, which contradicts the hypothesis that Γk(Φ,pk) is consistent for every 

sequence pk of length k > 0. 

So, we have proved by induction that if for every sequence p of length k > 0, Γk(Φ,p) is 

consistent, then >Φ is a SPO on Seqn(O) for every integer n ≥ 1. 

We now prove that if >Φ is a SPO, then Γk(Φ,p) is consistent for every sequence p of length  

k > 0. Assume that there exists a sequence p of length k such that Γ = Γk(Φ,p) is not consistent. 

It means that >Φ is not irreflexive, i.e. that there exists an object ok+1 such that ok+1 > Γ ok+1. Let 
pk+1 be the sequence defined by pk+1 = add(p, ok+1). It is easy to see that pk+1 >Φ pk+1, which 

contradicts the fact that >Φ is irreflexive and completes the proof.                                               □ 

Theorem 6 is not true when the tcp-rules in Φ contain past and future components, as we 

show in the following example: 

Example 14 Let Φ = { ϕ1, ϕ2, ϕ3, ϕ4 } be the set of tcp-rules defined by: 

• ϕ1 : Next(G = d) → (D = n) > (D = w) 

• ϕ’1 : Next(G = c) → (D = w) > (D = n) 

• ϕ2 : Prev(D = n) → (G = c) > (G = d) 

• ϕ’2 : Prev(D = w) → (G = d) > (G = c) 

Since the STL formulae ϕ1 ∧ ϕ’1 and ϕ2 ∧ ϕ’2 cannot be satisfied, it is easy to see that for every 

sequence p of length k, Γ = Γk(Φ, p) is locally consistent. Moreover, for every sequence p of 

length k, G(Γk(Φ,p)) = ({G,D}, 3) is acyclic. Therefore, for every sequence p of length k,  

Γ = Γ k(Φ, p) is consistent. We now show that Φ is not consistent, which does not contradict 

Theorem 6 since Φ uses past and future STL formulae in the conditions of the tcp-rules. 

Given the objects o1 = (c, n), o2 = (d,w), o’1 = (c,w) and o’2 = (c,w), consider the sequences p1 = 

〈o1, o2〉, p2 = 〈o’1, o2〉, p3 = 〈o’1, o’2〉 and p4 = 〈o1, o’2〉. It is easy to verify the following: 

• p1 Rϕ1 p2 since  (p1, 1) |= Next(G = d), (p2, 1) |= Next(G = d), o1[D] = n and o’1[D] = w. 

• p2 Rϕ’2 p3 since (p2, 2) |= Prev(D = w), (p3, 2) |= Prev(D = w), o2[G] = d and o’2[G] = c. 
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• p3 Rϕ’1 p4 since (p3, 1) |= Next(G = c), (p4, 1) |= Next(G = c), o’1[D] = w and o1[D] = n. 

• p4 Rϕ2 p1 since  (p4, 2) |= Prev(D = n), (p1, 2) |= Prev(D = n), o’2[G] = c and o2[G] = d. 

Thus, we have p1 >Φ p1, which shows that >Φ is not consistent since it is not irreflexive. 

Complexity Issues. In practice, the condition provided by Theorem 6 to test consistency is 

unfeasible, since it involves testing consistency of the non-temporal theories Γk(Φ, p) for 

every sequence p of length k. Fortunately, for some fragments of STL, we can find a very 

satisfatory bound for the size of the sequences p which must be considered in the tests. 

Theorem 7 Let L(♦, ◊) be the fragment of STL whose formulae satisfy the following 

conditions: (1) negation appear only in front of basic propositions; (2) the only temporal 

operators are ♦ and ◊. Let F ∈ L(♦,◊) be satisfiable. Then there exists a sequence p such that 

|p| ≤ length(F) and such that p satisfies F. The length of a formula F (denoted by length(F)) is 

the number of symbols appearing in F. 

Proof. Let p = 〈o1, ..., ok〉 be a sequence. A subsequence of σ is a sequence q = 〈u1, ..., um〉 such 

that for all i ∈ {1, ...,m} there exists ji ∈ {1, ..., k} such that o
ji

 = ui. We denote the fact that q is 

a subsequence of p by q ≺ p. 

Let F ∈ STL and p = (o1, ..., ok) such that (p, i) |= F. We will prove that there exists a 

subsequence q ≺ p such that (1) q contains the object oi, (2) |q | ≤ length(F) and (3) for all 

sequence p’ such that q ≺ p’ ≺ p we have (p’, i) |= F. Particularly, we can affirm that (q, i) |= 

F, since q ≺ q ≺ p. 

The proof is by induction on the structure of F. 

• If F is atomic and (p, i) |= F, then let q =< oi >. We have that q ≺ p, |q | = 1 = length(F) 

and for all p’ such that q ≺ p’ ≺ p we have (p’, i) |= F, since p’ contains the object pi. 

• If F is ¬F1, where F1 is an atomic formula, the proof is similar: we take q =< oi >. In this 
case, |q | = 1 < length(F) = 2. 

• The cases where F = G∨H and F = G∧H do not present any difficulty and we omit it 
here. 

• If F = ◊F1 and (p, i) |= F. Then there exists j > i such that (p, j) |= F1. By the induction 

hypothesis, we can affirm that there exist a subsequence q ≺ p, such that q contains the 

object oj , |q |≤ length(F1), and for all p’ verifying q ≺ p’ ≺ p we have (p’, j) |= F1. If 

 oi ∈ q we define q’ = q . Otherwise, q’ is obtained from q by inserting the object oi in it (in 
the same order as it appears in p). Then, it is clear that (q’, i) |= ◊F1, since (q’, j) |= F1. 
Moreover, q’ ≤ q + 1 = length(F). The proof is similar for F = ♦F1. 

• If F = Next F1 and (p, i) |= F. Then i < |p| and (p, i+1) |= F1. By the induction 

hypothesis, we can affirm that there exist a subsequence q ≺ p, such that q contains the 

object oi+1, |q | ≤ length(F1), and for all p’ verifying q ≺ p’ ≺ p we have (p’, i + 1) |= F1. 

If oi ∈ q we define q’ = q. Otherwise, q’ is obtained from q by inserting the object oi+1 in it 
(following the object oi). Then, it is clear that (q’, i) |= Next F1 since (q’, i + 1) |= F1. 
Moreover q’ ≤ q + 1 = length(F). The proof is similar for F = Prev F1. 

According to (Sistla & Clarke, 1985), the satifiability problem for STL is NP-complete for  

L(♦, ◊) and PSPACE-complete for the logic STL. 
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Proposition 2 Let Φ be a set of tcp-rules in TPref* such that the temporal conditions are 

formula of L(♦, ◊). Then Φ is consistent iff Γk(Φ, p) is consistent for every sequence p of length 

≤ length(Φ), where length(Φ) = max{ length(ϕ) | ϕ ∈ Φ }. 

Notice that if we place ourselves in a context where the universe of sequences is finite, then 
there is no need to restrict the conditions of the tcp-rules to be formulae in L(♦, ◊). As the 

whole universe of sequences is contained in Seqn(O), for some n > 0, then in order to test 

consistency of a tcp theory Φ, it suffices to test the consistency of the non-temporal theories 

Γk(Φ, p) for each sequence p of size k ≤ n. In such cases, there is no relation between the size 

of the temporal conditions and the maximal size of the sequences to be tested. A situation 
where restricting the type of the formulas considered in the conditions of tcp-rules is 
worthwhile is when working in a context where the universe of sequences is potentially 
infinite, that is, the maximal size of the sequences evolves with time (for instance, in a 
temporal database context). 
The following proposition relates the result stated in Theorem 4 and the result given in 
Proposition 2. 

Proposition 3 Let Φ be a tcp-theory and l(Φ) be the length of Φ. Let us suppose that G(Φ) is 

acyclic and for every ϕ ∈ Φ, ϕ ∈ TPref*. Then, Φ is consistent iff for every sequence p of 

length k ≤ l(Φ), Γk(Φ, p) is locally consistent. Besides, if all variables in V are binary, then 

consistency of Φ can be determined in time proportional to |Γ|2 × |V | × 2
Φ)l(

. 

4.4 Finding optimal sequences 

In this section, given a tcp-theory Φ, we show how to determine the optimal sequences in 

Seqn(O), i.e. the maximal sequences in Seqn(O) with respect to >Φ that satisfy some set of 

simple temporal constraints. Our approach is incremental, meaning that for every integer n, 

we show how to compute the optimal sequences in Seqn+1(O) from the set of optimal 

sequences in Seqn(O). 

First, we specify the set of temporal constraints that we consider. For every integer k > 0, let 
Atk(X = a) be the temporal formula defined as (Isk ∧(X = a))∨♦(Isk ∧(X = a)) where Isk is 
defined by induction on k as: Is1 = First and Isi+1 = Prev Isi for every integer i > 0. We can see 

that for every sequence p ∈ Seq(O), p |= Atk(X = a) iff (p, k) |= (X = a). Intuitively, the 

formula Atk(X = a) means that in a sequence of objects, the object at state k has value a for the 
variable X. 
In the following, we denote by AtState the set of formulas of the form Atk(X = a). Given a 

subset C of AtState, we say that C is consistent if there exists a sequence p ∈ Seq(O) such that 

for every F ∈ C, p satisfies F (denoted by p |= C ). We can easily see that C is consistent iff for 

every pair (F, F’) in C 2 where F = Atk(X = a) and F’ = Atk’ (X’ = a’), if k = k’ and X = X’, then 

we have a = a’. Given a consistent subset C of AtState and an integer k, we denote by: (1) 

Attrk(C ) the set of attributes X ∈ V such that there exists a formula Atk(X = a) in C. (1) Ck the 

subset of C defined by: Ck = {Ati(X = a) ∈ C | (i ≤ k)}. (2) Tuplek(C ) the set of present STL 

formulae defined by: Tuplek(C ) = {(X = a) | Atk(X = a) ∈ C }. 
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Example 15 Let C = {At1(G = c),At2(G = d),At2 (D = n)}. It is easy to see that C is consistent. 

Moreover, Tuple1(C ) = {(G = c)} and Tuple2(C ) = {(G = d), (D = n)}. Finally, we have C1 = 

{At1(G = c)} and C2 = C. 

Let C be a consistent subset of AtState. Given a consistent TPref theory Φ, we now show 

how to compute for every integer n, the subset Sn(Φ, C ) of Seqn(O ) defined by: Sn(Φ, C ) = 

max>Φ{p ∈ Seqn(O) | p |= Cn}. The set Sn(Φ, C ) contains the optimal sequences in Seqn(O), i.e. 

the maximal sequences in Seqn(O) w.r.t. >Φ that satisfy the constraints in Cn. 

Let pk be a sequence of length k. In the following, given the cp-theory Γ = Γ(Φ, pk) and the set 

of present STL formula T = Tuplek(C ), we denote by BestObjs(Γ, T ) the set of optimal objects 

in O that satisfy T , i.e. 

BestObjs(Γ, T ) = max>Γ{o ∈ O | o |= T }. It is shown in (Wilson, 2004) how to compute this set 

of optimal objects. 

Finally, given a tcp-theory Φ such that for every tcp-rule ϕ ∈ Φ, ϕ ∈ TPref*. We can notice 

that for every sequence p and p’ of length n + 1, if rlo(p) = rlo(p’), then Γn+1(Φ,p) = Γn+1(Φ,p’). 

Therefore, for every sequence p of length n, we introduce the following notation: Γ*(Φ, p) = 

Γn(Φ, add(p, o)) where o is any object in O. 

We now state the following theorem that shows how to compute Sn+1(Φ, C ) from Sn(Φ, C ). 

Theorem 8 Let Φ be a consistent tcp-theory such that for every tcp-rule ϕ ∈ Φ, ϕ ∈ TPref*. 

Let C be a consistent subset of AtState. For every sequence p = 〈o1, . . . , on+1〉 ∈ Seqn+1(O), p is 

in Sn+1(Φ, C ) iff rlo(p) ∈ Sn(Φ, C ) and on+1 ∈ BestObjs(Γ, T ) where Γ = Γ*(Φ, rlo(p)) and T = 

Tuplen+1(C ). 

Proof Assume that p = 〈o1, . . . , on+1〉 is in Sn+1(Φ, C ). Let pn = rlo(p). If pn ∉ Sn(Φ, C), it means 

that there exists a sequence p’n ∈ Sn(Φ, C ) such that p’n |= C and p’n >Φ pn. Since p’n >Φ pn, 

there exists an IFS from p’n to pn w.r.t. Φ, i.e. there exist a set of sequences {q1, . . . , qp+1} and a 

set of tcp-rules {ϕ1, . . . , ϕp} such that q1 = p’n, qp+1 = pn and for every k∈ {1, . . . , p}, qk Rϕk qk+1. 

For every k ∈{1, . . . , p + 1}, let q’k = add(qk, on+1). Since for every tcp-rule Fϕk = F
k

−
ϕ  ∧ F 0

kϕ  and 

q’k  Rϕk q’k +1, we also have q’k Rϕk q’k +1. Thus, since q’p+1 = p, there exists an IFS from q’1 to p 

w.r.t. Φ, i.e. q’1 >Φ p. Moreover, we can easily see that q’1  |= C. Thus, we have q’1  >Φ p and  

q’1  |= C which contradicts the fact that p ∈Sn+1(Φ, C ). 

On the other hand, assume that on+1 ∉ BestObjs(Γ, T ). It means that there exists an object o’n+1 

∈ BestObjs(Γ, T ) such that o’n+1 |= T and o’n+1 >Γ on+1. Let p’ = add(pn, o’n+1). We can easily 

show that p’ >Φ p and p’ |= C where p’ = add(pn, o’n+1) which contradicts the hypothesis that 

p is in Sk+1(Φ, C ). Thus, we have proved that if p is in Sn+1(Φ, C ), then rlo(p) ∈ Sn(Φ, C ) and 

on+1 ∈ BestObjs(Γ, T ). 
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Conversely, assume that pn = rlo(p) ∈ Sn(Φ, C ) and on+1 ∈ BestObjs(Γ, T ). If p is not in Sn+1(Φ, 

C ), then there exists a sequence p’ = 〈o’1, . . . , o’n+1〉 ∈ Sn+1(Φ, C ) such that p’ >Φ p and p’ |= C. 

Using Proposition 2, we now distinguish two cases: 

• If rlo(p’) >Φ rlo(p), then it is easy to see that we also have rlo(p’) |= Cn. Thus rlo(p’) >Φ pn  

and rlo(p’) |= Cn, which contradicts the fact that pn ∈ Sn(Φ, C ). 

• If rlo(p’) = rlo(p’), then o’n+1 > Γ on+1 with Γ = Γn+1(Φ,pn+1). Moreover, we can easily see that 

o’n+1 |= T since p’ |= C. Thus, we have o’n+1 >Γ on+1 and o’n+1 |= T , which contradicts the 

fact that on+1 ∈ BestObjs(Γ, T ). 

Thus, we show that if rlo(p) ∈ Sn(Φ, C ) and on+1 ∈ BestObjs(Γ, T ), then p is in Sn+1(Φ, C), 

which completes the proof. 
Using Theorem 8, it is easy to see that for every consistent tcp-theory and every consistent 

subset C of AtState, we have Sn(Φ, C ) = BestSeqs(〈〉,Φ, C, n) where 〈〉 represents the empty 

sequence and BestSeqs is the algorithm presented in Figure 5. 

 

 

Fig. 5. Computation of Optimal Sequences 

Example 16 Let Φ = {ϕ1, . . . , ϕ6} be the tcp-theory presented in our Running Example. Let C 

= {At1(G = c), At3(D = w)}. We show in this example how the set S3(Φ, C ) is computed using 

the algorithm presented Figure 5. Initially, we compute S = BestSeqs(〈〉,Φ, C, 3). First, we 

have Γ1 = Γ*(Φ, 〈〉) = {ϕ1, ϕ2} since Fϕ1 and Fϕ2 are STL formulae in Present. Moreover, we have 

T1 = Tuple1(C ) = {(G = c)}. Thus, we compute BestObjs(Γ1, T1) = {o1} where o1 = (G = c,D = w). 

Then, we build the sequence p’1 = add(〈〉, o’1) = 〈o1〉 and compute S = BestSeqs(p’1 ,Φ, C, 3). 
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Computing S = BestSeqs(p’1,Φ, C, 3), we successively obtain Γ2 = Γ*(Φ, 〈o1〉)= {ϕ1, ϕ2, ϕ
0

4
}, T2 = 

Tuple2(C ) = 3 and BestObjs(Γ2, T2) = {o2} where o2 = (G = d,D = n). Thus, we build the sequence 

p’2 = add(〈o1〉, o2) = 〈o1, o2〉 and compute S = BestSeqs(p’2,Φ, C, 3).  

Then, computing S = BestSeqs(p’2 ,Φ, C, 3), we successively obtain Γ3 = Γ*(Φ, 〈o1, o2〉) = {ϕ1, ϕ2, 

ϕ 0

6
}, T3 = Tuple3(C) = {(D = w)} and BestObjs(Γ3, T3) = {o3} where o3 = (G = d,D = w). Thus, we 

build the sequence p’3 = add(〈o1, o2〉, o3) = 〈o1, o2, o3〉 and compute S = BestSeqs(p’3 ,Φ, C, 3). 

Since |p’3 | = 3, we finally obtain S = BestSeqs(〈〉,Φ, C, 3) = {〈o1, o2, o3〉}. Note that in this 

example, we only obtain one optimal sequence. In general, we can obtain a set of optimal 
sequences since >Φ is a partial order. 

5. Conclusion and further research 

In this chapter, we have presented several approaches for treating preferences over objects, 

sets of objects and sequences of objects. The main contribution is centered in Section 4 which 

presents a method for preference elicitation and reasoning over sequence of objects. An 

algorithm for finding the most preferred sequences satisfying a set of temporal constraints is 

introduced. A lot of work has to be done to improve our approach. (1) Concerning the 

algorithm for finding the best sequences, we intend to generalize our method in order to 

treat more general temporal constraints. (2) Concerning the expressivity power of our 

preference language: we note that in TPref the temporal aspect is related only to the rule 

conditions, that is, only to the left side of the preference rules. We are not able, for the time 

being, to treat preference statements such as I prefer “this” before “that”. (3) Concerning the 

consistency test: we must investigate methods to ensure consistency when the temporal 

conditions involve both past and future operators. (4) Concerning dominance queries: we 

have to investigate efficient methods to determine, given two sequences, which is the 

preferred one. That implies investigating efficient methods to decide, given two sequence, if 

there exists a IFS between them. (5) Finally, concerning a database context, the work 

proposed in this paper is a first step towards incorporating a formalism for reasoning with 

preferences over sequences of objects into a temporal relational query language, and so, 

building a bridge between the two disciplines (AI and Temporal Databases). 
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