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Abstract

It is important to study nanofluids to understand their extraordinary thermal properties
and how the size, concentration and agglomeration of the nanoparticles affect those
properties. Photopyroelectric (PPE) technique has been well established in the use of
non-destructive measurement of thermal diffusivity and thermal effusivity, by using
polyvinylidene fluoride (PVDF) films as sensitive pyroelectric sensors in thermally thick
conditions instead of using very thick ceramic sensors. There have been two proposed
practical configurations for the PPE technique, the back and the front PPE configura-
tions, to obtain both the thermal diffusivity and effusivity, which are suitable thermal
parameters of materials. This PPE technique involves the measurement of thermal
waves in the sample due to absorption of optical radiation, by placing a pyroelectric
sensor in thermal contact with the sample. This chapter provides a review of the back
and the front PPE configurations to determine the thermal diffusivity and effusivity of
nanofluids, sample preparation techniques using high-amplitude ultrasonic dispersion
and data analysis for metal oxide-based nanofluid materials.

Keywords: nanofluids, thermal properties, photopyroelectric technique, thermal diffu-
sivity, thermal effusivity

1. Introduction

Water, ethylene glycol (EG) and oil are universally used for transfer heating, but unfortunately

these fluids have extremely poor thermal conductivity; thus, smaller and lighter heat

exchanges could be reduced leading to reduced power and the size of the required heat

transfer. As can be seen in Figure 1, the thermal conductivity of copper is about 700 times

more than the water and about 3000 times more than the engine oil.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The study of heat transport in solid-liquid dispersions (colloids) began as early as in the 1970s.

The first thermal conductivity enhancement of nanoparticles (NPs) was reported by Masuda

et al. [2]. Due to the size of the NPs, they are well suited for use in microsystems. It was

observed that the thermal conductivity of an ultrafine suspension of metal oxides in water

increased up to 30% for an NP volume fraction of 4.3%. The term ‘nanofluid’ was first coined

by Choi and Eastman [3] when he reported a class of engineered fluids containing nanosized

particles dispersed in ethylene glycol that had a thermal conductivity with almost a factor of 2

greater than the base fluid. Nanofluids have widespread usage in industry, including medicine

applications, engineering applications, in cooling/heating systems and in micromechanical

systems, due to their enhanced thermal management. Nanofluids are able to improve heat

transfer and, thus, allow for smaller pumping, heaters and other elements. Nanofluids

containing metals and metal oxides have been considered as the next generation of the heat

transfer fluids, as they have shown an increase in their effective thermal conductivity com-

pared to their base fluid [4]. Metal oxide nanofluids have potential applications in the main

processing industries, such as the materials, chemistry, biomedicine, food and drink, oil and

gas industries as they are able to enhance thermal transfer [4, 5].

The preparation of nanofluids is an important parameter in the investigation of the thermal

properties of nanofluids. Nanofluids can be prepared by directly dispersed nanopowders in

Figure 1. Thermal conductivity of the materials (solids and liquids) at room temperature [1].
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the base fluid, but this method could result in a large degree of NP agglomeration. Therefore, a

clear understanding of the effect of concentration, dispersion/aggregation state and particle

size on the thermal properties of prepared nanofluid is an essential assay step for particle

validation. Data has shown that the thermal conductivity of nanofluids could significantly be

increased with an increase in the volume fraction of NPs [6–8]. It is clear that four thermal

parameters can be connected by two relationships, α = k/rC and (e = k/√α), where C, α, k and e

are the volume specific heat, thermal diffusivity, conductivity and effusivity, respectively.

Although the thermophysical properties of nanofluids are intensely researched at present,

most of the studies have been focused on measuring the thermal conductivity of the

nanofluids.

There are only a few reports on the thermal diffusivity measurements using thermal lens

spectrometry and the transient double-hot-wire method [9]. However, these methods often

require high temperatures to obtain reasonable signal-to-noise (SNR) ratios, which in turn,

could increase the sample temperature and thus increase the measurement error. These

techniques are also disadvantageous because they require high-volume samples, long mea-

surement times without according the effect of aggregation time and are expensive. Nowa-

days, highly sensitive photopyroelectric (PPE) techniques have been designed to measure

the thermal properties of samples and are actually one of the several available photothermal

techniques [10–12]. The thermal parameters directly resulting from the PPE experiment are

usually the ‘fundamental’ ones: the thermal diffusivity and also the thermal effusivity. The

unique features of the back and front PPE techniques to measure the thermal diffusivity and

the thermal effusivity of nanofluids in high resolution are that they are not possible with

other existing techniques [13]. The advantages of this method include its relatively low cost,

and only a small volume of the sample is required with a short measurement time, where the

concentration of the nanofluid remains constant in the measurement process, thus making

this technique suitable for nanofluids. In the principle by using both the back PPE and front

PPE configurations, source of information (amplitude and phase of pyroelectric signal),

cavity scanning or frequency scanning, it is possible to obtain both the thermal diffusivity

and thermal effusivity. Recently, a new simplified front PPE configuration was designed

using a metalized polyvinylidene fluoride (PVDF) sensor in a thermally thick condition

instead of using the very thick ceramic sensors of typically 300 μm [14] or 500 μm in size

[15] (usually LiTaO3) that have to be coated with gold with a very low chopping frequency

facility.

The present chapter provides a review on the thermal properties of nanofluids measured by

the PPE technique by using frequency scans of the signals employing PVDF as a pyroelectric

(PE) sensor in thermally thick conditions, due to its low cost, light weight, flexibility and

sensitivity. The back and front PPE configurations in ‘thermally thick’ conditions have been

implemented to measure the thermal diffusivity and the thermal effusivity of nanofluids

(containing Al2O3 and CuO NPs) as a function of the base fluid’s particle size. To reduce

agglomeration of the NPs, an ultrasonic dispersion technique was utilized for in low concen-

tration of the NPs to produce stable nanofluids, and the effects of sonication type on the

stability and thermal properties were investigated.
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2. Thermal properties of the nanofluids

2.1. Synthesis and stability of nanofluids

The preparation of nanofluids is an important parameter in the investigation of the thermal

properties of nanofluids. The preparation of nanofluid is not merely a simple mixing of liquid

and nanopowder, and thus a good dispersion method of dispersing NPs in liquids or a direct

production of stable nanofluids is crucial. A good dispersion of NP materials into liquids such

as deionized water (DW), ethylene glycol (EG) or oil is needed for producing a stable

nanofluid. There are primarily two methods for the synthesis of nanofluids, including the

two-step process and the single-step process for the direct synthesis of nanofluids.

The two-step method is achieved by firstly synthesizing dry NPs with the preferred size and

shape. In the second step, these particles are carefully mixed into the required base fluid in the

desired volume fraction, typically with some additives to enhance the stability of the nanofluids.

Thus, the small volume fraction of NPs and proper dispersion techniques are important for the

preparation of stabile nanofluids in this technique. Many researchers have reported successful

fabrication and testing of nanofluids using the two-step preparation method [16, 17]. Due to the

high surface area of the NPs, they have the tendency to aggregate. A large degree of agglomer-

ation in NPs may occur as a result of using this method. Thus, proper dispersion techniques,

such as the ultrasonic dispersion technique [18] or the fragmentation process of NPs using laser

irradiation, in low concentrations of NPs, are important for the production stability of

nanofluids. Another technique to enhance the stability of NPs in fluids is the use of surfactants.

To summarize, the optimization of thermal characteristics of nanofluids requires stabile

nanofluids, which can be achieved by synthesis and dispersion processes.

2.2. Experimental investigation methods

2.2.1. Thermal diffusivity measurement techniques

Highly sensitive photothermal methods using a laser as an optical source have been widely

used in the thermal diffusivity measurements of nanofluids [19–28]. The photothermal effect in

a material is a consequence of the deposition of heat in the sample following absorption of a

laser beam and subsequent thermal de-excitations, which results in the indirect heating of the

sample. Photoacoustics, photothermal deflection, thermal lens, photothermal radiometry and

photopyroelectric methods are some of the techniques commonly used powerful for thermal

and optical characterization of materials using lasers. The conventional techniques such as the

‘hot-wire’, ‘laser flash’, ‘3ω-wire method’ and ‘optical (forced Rayleigh light scattering)’ tech-

niques have also been utilized by some researchers [29–33], as seen in Table 1.

2.2.2. Thermal effusivity measurement techniques

Very few studies have been reported on the determination of the thermal effusivity of liquids.

During the last two decades, the front PPE configuration and photoacoustic techniques have

been used for determining the thermal effusivity [13–15]. For the front detection configuration,
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References Particle type Base fluid Particle fraction Enhancement Method

Dadarlat

et al. [19]

Fe3O4 Transformer

oil

0–623 mg/ml (9.06–9.84) 10−8 m2/s Thermal-wave

resonator cavity

Nisha and

Philip [20]

TiO2/PVA 5–100 nm Water (1–5)vol% Increases at high concentrations

and high particle size

Thermal-wave

interference

Philip and

Nisha [21]

TiO2/PVA Water (0.005–0.039)

vol%

Normalized thermal diffusivity

from 1 to 0.96

Thermal-wave

resonator cavity

López-

Muñoz et al.

[22]

Urchin-like

colloidal gold

Water (0.2–1)wt% 1.02–1.05 Photopyroelectric

EG (0.2–1)wt% 1.06–1.11

Ethanol (0.2–1)wt% 1.09–1.14

Dadarlat

et al. [23]

Fe3O4 Water (8.2–81.7) mg/

cm3

High-accuracy results (within

±0.5%). Thermal diffusivity was

sensitive to changes in type and

NP concentration

Photopyroelectric

CoFe2O4 Water (6.1–24.5) mg/

cm3

Agresti et al.

[24]

Al2O3 20–70
�C Water, EG 1 and 2 wt% For both water and glycol from

1.04 to 1.12

Photoacoustic

López-

Muñoz et al.

[22]

Gold Water (0.2–1)wt% 1.01–1.04 Photoacoustic

Sánchez-

Ramírez

et al. [25]

Au/Pd Water Au/Pd = 12/1, 5/

1, 1/1, 1/5

The maximum diffusivity was

achieved for the nanoparticles

with highest Au/Pd molar ratio

Thermal lens

technique

Kumar et al.

[26]

Gold 30–50 nm Water 1% wt The value decreases with decrease

in particle size

Thermal lens

technique

Jiménez

Pérez et al.

[27]

Gold Water,

ethanol and

EG

0.1 g/L Enhanced Thermal lens

technique

Gutierrez

Fuentes

et al. [28]

Au/Ag

nanoparticles

Water Au/Ag = 3/1, 1/

1, 1/3, 1/6

A lineal increment of the thermal

diffusivity when the

Ag shell thickness is increased

Thermal lens

technique

Filippo et al.

[29]

Ag Deionized

water

4 vol% 12% Laser flash

Wang et al.

[30]

TiO2 Water (1–4)vol%

20–70�C

Vary significantly with

temperature An enhancement of

up to 19.6% is observed at 4% and

65oc

3ω-Method

SiO2 Water,

ethanol and

EG

(1–4)vol%

20–70�C

Faris

Mohammed

and Yunus

[31]

Al Distilled

water,

ethanol and

EG

Five different

volume

fractions of

nanoparticle

Thermal diffusivity increased

linearly with increasing

concentration of nanoparticles in

the respective base fluids

Hot-wire

technique
Al2O3

Murshed

et al. [32]

TiO2 EG (1–5)wt% 1.1–1.3 Hot-wire

technique
Al2O3 EG (1–5)wt% 1.05–1.3

Rondino

et al. [33]

Pyrolytic titania Ethanol 0.6 vol% 0.6% Optical technique

Table 1. Summary of experimental studies of thermal diffusivity enhancement.
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two schemes were proposed, namely, the configuration with a thermally thin and the optically

opaque PVDF sensor [34] and the configuration with a thermally thick and optically semi-

transparent sensor using LiTaO3 [15]. Balderas-López et al. [35] applied the front PE configu-

ration to perform high precision measurements of thermal effusivity in transparent liquids in a

very thermally thick regime.

Esquef et al. [36], in 2006, developed a method consisting essentially of a photoacoustic cell

and a PE cell enclosed in a single compact gas analyzer for the measurement of thermal

diffusivity and thermal effusivity. Concerning the front configuration, a simplified method to

measure both the thermal diffusivity and thermal effusivity of sensor was proposed. For

example, Streza et al., in 2009, [37]applied two PE detection configurations, ‘back’ and ‘front’,

to the calorimetric studies of some liquids (liquid mixtures, magnetic material nanofluids,

liquid foodstuffs, etc.). They demonstrated that if the back configuration used the phase of PE

signal in the cavity scan method and the front configuration used the frequency scan, both

thermal diffusivity and thermal effusivity could be measured. Dadarlat et al.[23], in 2008,

measured the thermal diffusivity and thermal effusivity of Fe3O4 and CoFe2O4 nanofluids by

using two PPE detection configurations (back and front). Their thermal diffusivity and

effusivity measurements were obtained with high accuracy (within 0.5%), and the results were

sensitive to changes in the relevant parameters of the nanofluid as the base fluid, concentration

and type of NPs. Thus, the front PPE method [13–15, 35–39] was a suitable for accurate and

simultaneous measurements of thermal diffusivity and effusivity of nanofluids.

2.3. Theoretical background: photopyroelectric technique

The photothermal method has been widely used for determining the thermal parameters of

materials. This technique typically uses a modulation of laser beam for inducing a thermal-wave

(TW) field in the sample. The obtained TWdistribution is then detected by various photothermal

methods, such as photoacoustics [40], photothermal spectroscopy [41] or PPE techniques [11,

42]. Recently, many useful applications of the photopyroelectric (PPE) effect have been reported

with regard to the measurement of both thermal and optical absorption properties of a material

[43]. The PPE effect has provided a calorimetric method in which a thin-film PE sensor produces

a voltage proportional to its surface temperature change due to the propagation of TWs through

a sample in intimate contact with the PVDF sensor. In this technique, the light modulation

impinges on the front surface of a sample and the PE sensor, located in good thermal contact

with the sample’s backside so the PE signal can be measured by performing either a frequency or

a cavity length scan. The back and front PPE configurations in ‘thermally thick’ conditions have

been reported to measure the thermal diffusivity and thermal effusivity of a sample [39, 44]. A

front PPE technique is the modification of the classical configuration of the PPE technique. In

this technique, the TW is introduced to the rear of the PE detection [45]. In the back PPE

technique, a very thin metal film is illuminated by a modulated laser beam, and the PE cell

consisted of these two parallel walls, one the metallic foil as the TW generator and another the

PE film as a PE signal sensor which was placed parallel to the TW generator surface at a fixed

cavity length as a function of frequency in frequency scanning and at a given frequency as a

function of cavity length in cavity scanning, respectively [46]. This experimental device has

allowed the measurement of thermal properties of gas and liquid and liquid mixtures [47]. This

expression is typically based on the general theory of PE detection. The experimental results can

Nanofluid Heat and Mass Transfer in Engineering Problems70



then be obtained by using the PPE technique that is designed at different configurations in the

measurement of the thermal properties of the nanofluids. The following results and discussion

are divided into two parts: (i) the back and (ii) front PPE configurations to measure the thermal

diffusivity and thermal effusivity of the nanofluid samples.

2.3.1. Back photopyroelectric theory

In the back PPE technique, named the thermal-wave cavity (TWC) technique, a very thin metal

film was illuminated by a modulated laser beam, and the PE cell consisted of these two parallel

walls, one the metallic foil as a TW generator and another the PVDF film, as a PE signal sensor.

The sample(s) converts the modulated laser beam into TWs.

The induced TWs then transmit through the intracavity medium (l) by TW transmission, and

the reflection mechanism is detected by the PE sensor (p), as shown in Figure 2. TW’s arrival at

PVDF film gives rise to the surface temperature at the film (x = 0) [48]:

θ0 ¼
θlsTsle

−σlll

1−RlsRlpe
−2σlll

(1)

The transmitted terms of TWs, of the solid-liquid interface at (x = − l), are given by

θ
ls
¼

Q0Tgse
−σsls

1−RsgRsle
−2σsls

(2)

Hence, the surface temperature of the PVDF can be continued as

θ0 ¼
Q0TgsTsle

− σslsþσlllð Þ

1−RsgRsle−2σsls
� �

1−RlsRlpe−2σl ll
� � (3)

where Qo is the TW source intensity, σj is the complex TWdiffusion coefficient σj = (1 + i)/μj and

Tjk and Rjk are TW transmission coefficient and TW reflection coefficient, respectively, at (j−k)

Figure 2. 1D configuration of TWC showed that the thermal waves are partially reflected and transmitted upon striking

the boundaries (g, s, l, p and b) which stand for gas, solid, liquid sample, PVDF film and backing, respectively.
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interface, defined as Tjk ¼ 2
1þbjk

; Rjk ¼ 1−bjk
1þbjk

; bjk ¼ kk
kj

� �

αj

αk

� �1=2
. The following param-

eters were also defined: αj, the thermal diffusivity of j (= g, s, l, p, b); μj (= (αj/πf)
1/2), the thermal

diffusion length of j at modulation frequency f ; and lj, the thickness of j. The temperature

distribution in PVDF film from two parts, the PVDF film-liquid interface and the PVDF film-

backing interface, can be written as

θp f ; xð Þ ¼ θ0

Tlp e−σpx þ Rpbe
−2σp lpþσpxð Þ

� �

1−RpbRple
−2σp lp

� � (4)

The average PE voltage is given by

V f ; l1ð Þ ¼ p

εεo
< θp >¼ QoTslTlppe

−σsls 1−e−σp lp
� �

1þ Rpbe
−σplp

� �

εεoσp 1−RsgRsle−2σsls
� �

1−RpbRple
−2σp lp

� �

e−σl ll

1−RlsRlpe−2σl ll
� � (5)

If P is the PE coefficient, lp is the thickness of the PVDF sensor, ε is the dielectric constant of the

pyroelectric sensor, ε0 is the permittivity constant of vacuum, ω is the angular frequency of

modulated light and Rjk is the interfacial thermal coefficients. Considering that for thermally

thick condition e−2σll
�

�

�

� << 1, Equation (5) can be written more simply as [49]

V f ; Lð Þ ¼ Constant fð Þe−σL (6)

V f ; Lð Þj j ¼ Constant fð Þe−L=μ (6a)

φ f ; Lð Þ ¼ Constant fð Þ−L=μ (6b)

The thermal diffusivity of sample can be obtained by the slope liner fitting from the plot ln

(amplitude) and phase versus both cavity length (from the cavity scan) and frequency square

(from the frequency scan). In frequency scanning method, the cavity was at a fixed thickness L.

By plotting the phase and ln(amplitude) as a function of frequency scan, the thermal diffusivity

can be determined: α ¼ πL2=
φ
ffiffi

f
p

� �2

, α ¼ πL2= ln Vj jð Þ
ffiffi

f
p

� �2

2.3.2. Front photopyroelectric theory

Usually, the front PPE configuration can be obtained as shown in Figure 3, the sensor directly

is irradiated and the sample in contact with its rear surface. Then, the cell structure, gas, PE

sensor and sample, (g/p/s) becomes another variant of PPE technique.

Under this assumption, for a cell structure (g/p/s), the average PE voltage simplifies to [35]

V f ; lð Þ ¼ Vs

1−e−σp lp
� �

1−Rpse
−σp lp

� �

1−RpsRpge
−2σplp

� � (7)

where Vs(f) = P/εεo〈θs〉 with thermally thick sensor and sample, the signal defined by
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V fð Þ ¼ Vs 1− 1þ Rsp

� �

e
−σpLp

� �

(8)

Rsp ¼ es−ep
� �

= es þ ep
� �

(9)

where es and ep are the thermal effusivity of sample and PE sensor, respectively. The normaliz-

ing signal is determined (by using air), and the normalized signal becomes

Vn fð Þ ¼ 1− 1þ Rsp

� �

e
−σpLp (10)

The normalized phase and amplitude of the signal are defined by

θ ¼ arctan
Ae

−Lp=μp sin Lp=μp

� �

1−Ae
−Lp=μp cos Lp=μp

� �

2

4

3

5 (10a)

Vn fð Þj j ¼ Asin Lp=μp

� �

e
−Lp=μp

h i2
þ 1−Acos Lp=μp

� �

e
−Lp=μp

h i2
� �1=2

(10b)

Figure 3. 1D geometry of the front PPE configuration, for a cell structure (g/p/s).
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where A = 1 + Rsp, A the constant can be obtained by optimizing the fit performed on the

experimental data with the normalized signal phase by using Equation (10b). It can be shown

that from the phase of the normalized signal, one can obtain the thermal effusivity of the liquid

sample.

3. Experimental method

3.1. Preparation of metal oxide nanofluids

Nanofluids were prepared by dispersing pre-synthesized NPs into fluids, and if necessary, in

the presence of the stabilizer polyvinylpyrrolidone (PVP) to keep the NPs stable in the fluids.

Nanopowders into base fluids were dispersed by stirring, and the suspensions were

ultrasonicated by using probe-type or bath-type sonicator. Nanofluids were prepared using

Al2O3 (Nanostructured & Amorphous Materials, Inc.), and copper oxide (Sigma-Aldrich)

particles were dispersed in various base fluids, DW and EG. To make the desired volume

concentration percentage of NPs in the nanofluids, the weights of the base fluid and NPs were

measured using an electric balance (Ohaus Adventurer Balances). For example, 3.97g of Al2O3

NPs, which is 1 ml based on the density provided by the vendor, were added to 99g (99 ml) of

DW to make 1 % volume concentration of the Al2O3/DW nanofluid. All nanofluids are

processed by the same ultrasound power.

3.1.1. Ultrasonication dispersion process

Physical dispersion of powders in a liquid can be achieved by ultrasonic irradiation, either in a

bath or by direct irradiation using a probe sonication method. Probe sonication has been

studied to determine its effect on the particle characteristics such as the average agglomerate

size and the surface charges [50]. Probe sonication is expected to provide higher power to the

suspension than the ultrasonic bath as the probe is directly immersed in the suspension. The

bottles containing the nanofluid were placed in the ultrasonic bath which was filled with

water. The influence of the main parameter of ultrasonication such as the irradiation type

(probe and bath) to dispersion and reduced size was observed in the suspension of Al2O3 in

low concentration in water, as shown in Figure 4. Al2O3 NPs (99%, 11 nm) 0.5 wt% were

dissolved in DW and magnetically stirred vigorously until a clear solution was obtained in

about 1 h. The suspension was sonicated for 30 min using an ultrasonic probe (VCX 500, 25

kHz, 500 W) and labelled as sample P or using an ultrasonic bath (Powersonic, UB-405, 40

KHz, 350 W), which was labelled as sample B, respectively. As energy transferred into the

liquid, the liquid become heated, and a cooling system to control the temperatures between 35

and 40°C was required. This temperature range is favourable to produce a large cavity field

that greatly accelerates the integration of NPs in fluids. Unlike the bath sonication that was

performed at room temperature, the tip probe sonication had higher amplitudes and, thus, a

more effective creation of cavitation and heating. In the case of the ultrasonic probe, the

nanoparticle/DW mixture was placed in another larger container filled with ice cubes. This

was to prevent the evaporation of fluids caused by elevated temperatures. It was found the
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most appropriate power and conditions were obtained using the ultrasonic probe to achieve

the highest dispersion and long-term stability.

3.1.2. Sample characterization

Various techniques have been applied to analyze the chemical and physical properties of the

prepared nanofluids. The morphologies of the deposits were studied using an S-4700 field

emission scanning electron microscope (FESEM) (Hitachi, Tokyo, Japan), operating at 5.0 kV.

The size, distribution and morphology of the synthesized NPs were determined via TEM (H-

7100, Hitachi, Tokyo, Japan), and the particle size distributions were determined using the

UTHSCSA Image Tool software (version 3.00; UTHSCSA Dental Diagnostic Science, San

Antonio, TX). In the characterization of the prepared nanofluids, the particle size and size

distribution of spherical NPs in colloidal form were measured by the Nanophox particle size

analyzer (Sympatec GmbH System-Partikel-Technik). This equipment is based on the principle

of dynamic light scattering, which provides mean particle size as well as particle size distribu-

tion (PSD). The surface plasmon or absorption maximum in the colloidal solution spectrum

provides information on the average size of the particles, and a UV-Vis spectrophotometer

(Shimadzu-UV1650PC) was used to measure the absorption spectra at room temperature for

wavelength range 200–800 nm.

3.2. Experimental setup of the photopyroelectric methods

The systematic experiments were to investigate the accuracy of thermal diffusivity and

effusivity by the PE method using the back PPE and front PPE configurations as a special

Figure 4. Probe (VCX 500, 20 kHz, 500 W) (left) and bath (POWERSONIC, UB-405, 40 KHz, 350 W) (right) ultrasonic,

respectively.
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case of the different structures of the PE cell. The basic design of the analytical instrument

consisted of only a laser, a TW generator and a PVDF, PE sensor. The thermal diffusivity and

thermal effusivity of the nanofluids were obtained with both the back and front PPE config-

urations.

3.2.1. Back PPE configuration and experimental conditions

The schematic diagram of the experimental setup is shown in Figure 5. Here, a 52 μm PVDF

film PE sensor (MSI DT1-028K/L), which is an excellent choice for signal detection due to its

low cost, low weight, flexibility and sensitivity, was used in signal detection [51]. A 30 mWHe-

Ne laser (05-HR-991) was modulated by an optical chopper (SR540) before illumination on

copper foil of 50μm thickness and 0.8cm diameter. To maximize its optical to thermal conver-

sion efficiency, a very thin layer of carbon soot was coated on the surface of the foil. When the

laser was illuminated on the copper foil, TWs were generated in this foil.

In the cell, the initiated TWs propagated across the fluid and reached the PE sensor. Since the

PVDF film is very flexible and any film wrap can cause a change of signal, it was fixed with

silicon glue to a Perspex substrate. On its top side, a plastic ring of 1 cm diameter was glued to

it to act as the sample container. A small volume of the liquid sample, <0.1 cm3, was simply

filled in the inner side of the ring, with a sample depth or thickness of around 1 mm. The PE

signal generated by PVDF sensor was analyzed by using a lock-in amplifier (SR-530) to

produce the PE amplitude and phase. The electromagnetic noise was reduced by eliminating

all the ground loops via proper grounding.

The typical PE signal was measured with respect to time to investigate the steady state of the

signal. The sensitivity of the back PPE technique was tested by maintaining the cavity length at

about 100 μm, and the PE signal was recorded over 300 s. The experiment was carried out with

Figure 5. Schematic diagram of back PPE configuration [51].
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a single drop of DW. In Figure 6, it can be observed that the PE signal was quite stable around

1.49 ×10−3 V with a standard deviation of 5.12 ×10−5 V.

A frequency scan was carried out as it was important to choose the optimal value of frequency

for thermophysical measurements of nanofluids. Figure 7 displays the frequency behaviour of

the signal amplitude obtained from the distilled water as a reference sample with known

thermal properties. It can be observed that at frequencies above 7 Hz, the effect of thermally

thick regime become obvious. The amplitude of the PE signal of the sample decreased expo-

nentially to zero with increasing modulation of the frequency in the thermally thick regime.

Therefore, the frequency range between 7 and 30 Hz was used for the frequency scan, which is

shown in Figure 5. The noise level in the present setup was about 75 μV. The ln(amplitude) of

the PE signal as a function of f1/2 in this useful frequency range was linear. The thermal

diffusivity was calculated from the slope of the linear part of the logarithmic amplitude of the

signal curves by using Equation (6b).

3.2.2. Front photopyroelectric configuration

In the new section design, a simplified front PPE configuration was setup using the similar PE

sensor. The metalized PVDF sensor was used as an optically opaque sensor and in a thermally

thick regime for both the sensor and sample, instead of a very thick sensor (usually LiTaO3) in

Figure 6. PVDF signals recorded versus time for distilled water; the baseline is a steady-state signal in various

times.
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the conventional front PPE configuration [53, 57]. The radiation from the similar He-Ne laser

was modulated by the mechanical chopper, and the signal from the PVDF sensor was

processed with the lock-in amplifier. The liquid sample was simply filled into a plastic ring

and glued on the rear side of the sensor, and the overall thickness was about 1 mm. As the

sample thickness decreased, the contribution from the reflected TW power increased. A sche-

matic view of the experimental setup of the front PPE is presented in Figure 8. The scan was

performed in thermally thick conditions in a frequency range of 7 to 30Hz with 1Hz steps. The

S/N ratio of the experiment was more than 750. The LabVIEW software was used to capture

the amplitude and phase data, and the data were analyzed using Microcal Origin 8. The

following procedure describes the steps from the recorded experimental data up to obtaining

thermal effusivity of the nanofluid by fitting the normalized phase of the PE signal versus

frequency scan to obtain thermal effusivity (ep or es).

Figure 9 (a–b) displays the frequency behaviour of the normalized amplitude and phase of

signal obtained from DW as a reference sample of known thermal effusivity, 1600Ws1/2m−2K−1

[53], to determine the thermal effusivity of the PVDF sensor. In Figure 9 (a–b), the frequency

range between 7 and 30 Hz was the best choice for fitting to find the parameters. However,

here, the phase was used instead of the amplitude because it produced more accurate results as

it did not change with source intensity fluctuations.

Figure 7. Frequency behaviour of the amplitude of signal obtained from the distilled water [52].
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Figure 8. Schematic view of experimental setup of front PPE configuration [54].

Figure 9. Frequency behaviour of the normalized (a) amplitude and (b) phase measured for the PVDF sensor with water

as substrate. Solid lines are the best fit of amplitude to Equation (10b) and phase to Equation (10a), respectively [54].
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4. Results and discussion

4.1. Effect of ultrasonication on the thermal diffusivity of Al2O3 nanofluids

4.1.1. Sample preparation and characterization

In the study, the influence of ultrasonication on the thermal diffusivity of low concentration of

Al2O3 nanofluids in two sizes of NPs, size A (11 nm) and size B (30 nm) in water were

investigated. Each nanofluid sample 0.125%, 0.25% and 0.5 wt% was dissolved in DW and

magnetically stirred vigorously until a clear solution was observed after about 1 h. Two

different ultrasonic systems were chosen to disperse the NPs in DW for 30 min using the bath

sonicator, called sample B, or the probe sonicator, called sample P, respectively. The total

Figure 10. Particle size distributions determined using the Nanophox analyzer of Al2O3 particles in the nanofluids after

three measurements at 15 min intervals, for NPs of size A (a,b) and B (c,d) prepared using the bath (a,c) and probe (b,d)

sonicators. PDS just after sonication (□), after 15 min (○) and after 30 min (Δ) [51].
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amount of energy delivered to the sample was constant for both sonicators. After each

ultrasonication, the mean particle size was measured using the Nanophox particle size ana-

lyzer (Sympatec GmbH, D-38678), and an average was taken from at least three measure-

ments. The morphology of the alumina clusters was characterized by TEM.

Figure 10 shows the particle size distribution (PSD) and the hydrodynamic diameters of the

Al2O3 NPs in the nanofluids. It can be seen that the NP agglomerates were only slightly broken

up by the bath sonicator (Figure 10 a, c); however, the large agglomerates were completely

broken down by the probe sonicator (Figure 10 b, d). The smallest mean PSD was recorded for

samples with small particle size, A, prepared using probe sonication. There was no significant

change in the mean particle size for the three measurements (Figure 10 b). However, in all

cases, the NPs agglomerated in water were not completely broken up using sonication,

whether by using the bath or probe sonicators.

The UV-Vis absorption spectra of the Al2O3 NPs prepared in DW, using bath- and probe-type

ultrasonicator for the dispersion of the particles, are shown in Figure 11. The increase of

absorption behaviour of the sample prepared using the ultrasonic probe could be attributed

Figure 11. UV-Vis absorption spectra of the Al2O3 nanofluids, in the treatment by bath (sample B) and probe (sample P)

sonication, respectively.
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to the increase in quantity of Al2O3 NPs assembled within the fluid, as proven by the

Nanophox results. This indicated that for the sample prepared using the ultrasonic probe, the

absorption of nanofluids was at a maximum; therefore, the stability of the nanofluid was high,

and the agglomeration between particles was reduced [50].

The effect of ultrasonic irradiation on the synthesized Al2O3 nanofluids was analyzed by TEM.

Figure 12 shows the TEM images of Al2O3 NPs of two sizes A and B prepared in DW without

sonication (a,b) and prepared using the bath (c,d) and the probe (e,f) sonicators, for NPs of size

A (a,c,e) and B (b,d,f), respectively. It can be seen that most of the NPs were spherical and were

connected to each other to form a porous structure. The size of the NPs was well distributed in

both ultrasonic sonicators, as shown in Figure 12 (c,d). However, the probe sonicator was more

effective in reducing particle sizes to below 100 nm, as shown in Figure 12 (e,f). As previously

mentioned, in all nanofluids, the measured particle sizes were larger than the nominal particle

sizes claimed by the vendor. This indicated that the oxide NPs agglomerated in water and the

hard aggregates could not be broken down into individual NPs under these operating condi-

tions or even with very high-energy input [18].

4.1.2. Enhancement of thermal diffusivity

Before measuring thermal diffusivity of the nanofluids, the PPE setup was tested with DW as

the base fluid. The recorded α value was (1.431 ± 0.030)×10−3 cm2/s, which differed by less than

2% from the values reported in literature [49]. The thermal diffusivity of the Al2O3 nanofluids

prepared using different sonication techniques at different concentrations of NPs of sizes A

and B was obtained. Figure 13 shows the typical behaviour of the (a) amplitude of the PE

signal versus the frequency and (b) the plot of ln(amplitude) of PE signal versus square root of

frequency. The thermal diffusivity can be calculated from the fitting slope of the linear part of

the signal curves. The thermal diffusivity data are summarized in Tables 2 and 3. The data

indicated that the thermal diffusivity of the Al2O3 nanofluids was higher than that of water.

The data also proved that the thermal diffusivity enhancement was greater for the smaller-

sized NPs. This was because smaller particles have larger surface area (the heat transfer area),

thus increasing the thermal diffusivity [55]. Hence, smaller particles helped form a stable

nanofluid, and the probe sonicator had a substantial effect on the thermal diffusivity. At a

given particle concentration, the thermal diffusivity enhancement was greater for the probe

than the bath sonicator. This was because the NPs were more widely dispersed in water

through probe sonication, generating a larger NP surface area and thus increasing the thermal

diffusivity. The beneficial effect of using the probe sonicator on the thermal diffusivity of

Al2O3 nanofluids was more pronounced at high particle concentrations and small particle

sizes. For example, the greatest enhancement of thermal diffusivity of 6% was achieved for

the probe sonicator with NPs of size A at a concentration of 0.5 wt%. The smallest enhance-

ment was about ≈1% for NPs of size B at 0.125 wt% with the bath sonicator. These findings are

possibly attributable to the rapid particle clustering at a high concentration, which necessi-

tates using a more powerful sonication tool to break up large agglomerates into smaller-sized

particles.
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Figure 12. TEM images of Al2O3 NPs prepared in DW without (a,b) and with (c,d) the bath sonicator and (e,f) probe

sonicators, for NPs of size 11 nm (a,c,e) and 30 nm (b,d,f) [51].
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Figure 13. (a) Amplitude of the PE signal as a function of the chopping frequency f and (b) natural log of the amplitude of

the PE signal as a function of the square root of the chopping frequency and its fitting by using Equation (6b), for one of

the samples [51].

Concentration

wt%

Bath Probe

Thermal diffusivity

cm2=sð Þ ×10�3

Thermal diffusivity

enhancement %

Thermal diffusivity

cm2=sð Þ ×10�3

Thermal diffusivity

enhancement %

0.125 1.476 ± 0.002 3.1 1.482 ± 0.004 3.5

0.25 1.483 ± 0.003 3.5 1.494 ± 0.002 4.3

0.5 1.492 ± 0.004 4.2 1.515 ± 0.003 5.8

Table 2. Thermal diffusivity of Al2O3 nanofluids, NP type A (11 nm), prepared by using different sonication techniques at

different NP concentrations [51].

Concentration

wt%

Bath Probe

Thermal diffusivity

cm2=sð Þ ×10�3

Thermal diffusivity

enhancement %

Thermal diffusivity

cm2=sð Þ ×10�3

Thermal diffusivity

enhancement %

0.125 1.446 ± 0.003 0.9 1.448 ± 0.001 1.1

0.25 1.461 ± 0.002 2.1 1.473 ± 0.002 2.9

0.5 1.478 ± 0.004 3.2 1.498 ± 0.003 4.6

Table 3. Thermal diffusivity of Al2O3 nanofluids, NP type B (30 nm), prepared by using different sonication techniques at

different NP concentrations [51].
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4.2. Effect of base fluids on thermal effusivity of nanofluids

4.2.1. Sample preparation and characterization

The thermal effusivity of Al2O3 (11 nm) and CuO (50 nm) NPs dispersed in three different base

fluids, DW, EG and olive oil, in the presence of the stabilizer polyvinylpyrrolidone (PVP) was

investigated. In each nanofluid, sample 0.125 wt% was dissolved in each base fluid and

magnetically stirred vigorously until a clear solution were observed after about 1 h. The

solution was then sonicated by probe sonicator for 30 min to ensure a uniform dispersion of

NPs in the fluids. TEM was employed to obtain the morphology of the CuO and Al2O3

particles and to determine the average particle size.

Figure 14 shows the TEM images and their corresponding size distributions of (a) CuO and (b)

Al2O3 nanofluids prepared in water. It can be seen that most of the NPs were well dispersed

and some agglomerates were present. The CuO and Al2O3 NP sizes were about 52.3 ± 4.2 nm

and 7.5 ± 2.5 nm, respectively. These commercial NPs determined from TEM images were

Figure 14. TEM images and their size distributions of (a) CuO particles and (b) Al2O3 nanofluids prepared in water [56].
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Figure 15. The experimental data and the best fit of the PE normalized phase versus modulation frequency in (a) Al2O3/

olive oil and (b) CuO/olive oil, obtained by using Equation (10a) [56].
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slightly different from those reported by the vendors. This indicated that some of particles in

each sample were aggregated with some uniform size distribution as reported by them.

4.2.2. Thermal effusivity measurements

Figure 15 shows the PE-normalized phase versus modulation frequency in (a) Al2O3/olive oil

and (b) CuO/olive oil. It was observed that from this fit the values of A from Equation (9) were

obtained at (1.112 ± 0.005) and (1.175 ± 0.006), corresponding to the values of thermal effusivity

of Al2O3/olive oil (0.614 ± 0.003) × 103 Ws1/2m−2K−1 and CuO/olive oil (0.697 ± 0.003) × 103 Ws1/

2m−2K−1, respectively, obtained by using Equation (10a). The values of thermal effusivity

measured for all nanofluids and their comparison with pure solvents are summarized in

Table 3 and Figure 16. The comparisons indicated that the thermal effusivity of the various

base fluids mixed with NPs in the presence of PVP were reduced as compared to pure fluids,

possibly due to the effect of the surfactant that inhibited the thermal effusivity of the

nanofluids [56]. The results also showed that the base fluids had more influence on effusivity

than the NPs. The relative standard deviation for measuring the thermal effusivity of

Figure 16. Thermal effusivity of Al2O3 and CuO nanofluids with (DW, EG and olive oil) and their pure solvents [56].
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nanofluids was below 2%, as shown in Table 4. Therefore, the front PPE technique is a

promising high-accuracy alternative for this measurement.

5. Conclusions

The PPE technique is a sensitive method to measure the thermal properties of nanofluids in

small volumes. Following this, the back PPE configuration was used to obtain the influence of

ultrasonic irradiation modes (either bath or probe sonication) such as the cluster size of Al2O3

nanofluids in low concentrations on the thermal diffusivity. The ultrasonic bath proved to be

almost ineffective in size reduction, as most of the Al2O3 particles were spherical and were

connected to each other to form a porous structure ranging in size from 1 μm to larger, and the

probe sonication effectively reduced the particle size to below 100 nm. This showed that the

oxide NPs in water were agglomerated and some hard aggregates could not be broken into

individual NPs under these operating conditions or even at very high-energy inputs. The

proposed front PPE technique, with a metalized PVDF sensor in a thermally thick regime,

was applied to measure thermal effusivity by utilizing the phase signal of nanofluids that

contained Al2O3 and CuO NPs dispersed in different solvents, water, ethylene glycol and olive

oil. As expected, the relative standard deviation of this measurement, 2%, confirmed that this

method was also suitable for measuring the thermal effusivity of nanofluid with a high degree

of accuracy.

Abbreviations and Nomenclature

Qo TW source intensity

ω Angular frequency of modulated light

f Modulation frequency

NPs

Base

fluid

Fitting

parameter(A)

Thermal effusivity × 103

(Ws1/2 m−2 K−1) measurement

Relative

error%

Thermal effusivity × 103 (Ws1/2 m−2

K−1) literature

Al2O3 Water 1.523 ± 0.014 1.566 ± 0.015 0.95 –

Al2O3 EG 1.223 ± 0.009 0.773 ± 0.006 0.77 –

Al2O3 Olive 1.112 ± 0.005 0.614 ± 0.003 0.48 –

CuO Water 1.519 ± 0.028 1.547 ± 0.029 1.87 –

CuO EG 1.202 ± 0.021 0.738 ± 0.012 1.75 –

CuO Olive 1.081 ± 0.018 0.577 ± 0.009 1.56 –

– Water 1.528 ± 0.011 1.586 ± 0.011 0.69 1.579 [10]

– EG 1.263 ± 0.008 0.839 ± 0.005 0.59 0.810 [11]

– Olive 1.175 ± 0.006 0.697 ± 0.003 0.43 0.621 [11]

Table 4. Experimental thermal effusivity of Al2O3 and CuO nanofluids and their pure solvents and their literature values

[56].
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ε0 Permittivity constant of vacuum

Tjk TW transmission coefficient

Rjk TW reflection coefficient

σ Complex TWdiffusion

μ Thermal diffusion length

k Thermal conductivity

α Thermal diffusivity

e Thermal effusivity

Ls Sample thickness

DW Deionized water

NPs Nanoparticles

PPE Photopyroelectric

PE Pyroelectric

PVDF Polyvinylidene fluoride

PSD Particle size distribution

SNR Signal-to-noise ratio

TW Thermal wave

TWC Thermal-wave cavity

EG Ethylene glycol
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