
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Computational Intelligence in Software Cost
Estimation: Evolving Conditional Sets of

Effort Value Ranges

Efi Papatheocharous and Andreas S. Andreou
Department of Computer Science, University of Cyprus,

 Cyprus

1. Introduction

In the area of software engineering a critical task is to accurately estimate the overall project
costs for the completion of a new software project and efficiently allocate the resources
throughout the project schedule. The numerous software cost estimation approaches
proposed are closely related to cost modeling and recognize the increasing need for
successful project management, planning and accurate cost prediction. Cost estimators are
continually faced with problems stemming from the dynamic nature of the project
development process itself. Software development is considered an intractable procedure
and inevitably depends highly on several complex factors (e.g., specification of the system,
technology shifting, communication, etc.). Normally, software cost estimates increase
proportionally to development complexity rising, whereas it is especially hard to predict
and manage the actual related costs. Even for well-structured and planned approaches to
software development, cost estimates are still difficult to make and will probably concern
project managers long before the problem is adequately solved.
During a system’s life-cycle, one of the most important tasks is to effectively describe the
necessary development activities and estimate the corresponding costs. This estimation,
once successful, allows software engineers to optimize the development process, improve
administration and control over the project resources, reduce the risks caused by
contingencies and minimize project failures (Lederer & Prasad, 1992). Subsequently, a
commonly investigated approach is to accurately estimate some of the fundamental
characteristics related to cost, such as effort and schedule, and identify their inter-
associations. Software cost estimation is affected by multiple parameters related to
technologies, scheduling, manager and team member skills and experiences, mentality and
culture, team cohesion, productivity, project size, complexity, reliability, quality and many
more. These parameters drive software development costs either positively or negatively
and are considerably very hard to measure and manage, especially at an early project
development phase. Hence, software cost estimation involves the overall assessment of
these parameters, even though for the majority of the projects, the most dominant and
popular metric is the effort cost, typically measured in person-months.
Recent attempts have investigated the potential of employing Artificial Intelligence-oriented
methods to forecast software development effort, usually utilising publicly available

www.intechopen.com

 Tools in Artificial Intelligence

2

datasets (e.g., Dolado, 2001; Idri et al., 2002; Jun & Lee, 2001; Khoshgoftaar et al., 1998; Xu &
Khoshgoftaar, 2004) that contain a wide variety of cost drivers. However, these cost drivers
are often ambiguous because they present high variations in both their measure and values.
As a result, cost assessments based on these drivers are somewhat unreliable. Therefore, by
detecting those project cost attributes that decisively influence the course of software costs
and similarly define their possible values may constitute the basis for yielding better cost
estimates. Specifically, the complicated problem of software cost estimation may be reduced
or decomposed into devising and evolving bounds of value ranges for the attributes
involved in cost estimation using the theory of conditional sets (Packard, 1990). These
ranges may then be used to attain adequate predictions in relation to the effort located in the
actual project data. The motivation behind this work is the utilization of rich empirical data
series of software project cost attributes (despite suffering from limited quality and
homogeneity) to produce robust effort estimations. Previous work on the topic has
suggested high sensitivity to the type of attributes used as inputs in a certain Neural
Network model (MacDonell & Shepperd, 2003). These inputs are usually discrete values
from well-known and publicly available datasets. The data series indicate high variations in
the attributes or factors considered when estimating effort (Dolado, 2001). The hypothesis is
that if we manage to reduce the sensitivity of the technique by considering indistinct values
in terms of ranges, instead of crisp discrete values, and if we employ an evolutionary
technique, like Genetic Algorithms, we may be able to address the effect of attribute variations
and thus provide a near-to-optimum solution to the problem. Consequently, the technique
proposed in this chapter may provide some insight regarding which cost drivers are the most
important. In addition, it may lead to identifying the most favorable attribute value ranges for
a given dataset that can yield a ‘secure’ and more flexible effort estimate, again having the
same reasoning in terms of ranges. Once satisfactory and robust value ranges are detected and
some confidence regarding the most influential attributes is achieved, then cost estimation
accuracy may be improved and more reliable estimations may be produced.
The remainder of this work is structured as follows: Section 2 presents a brief overview of
the related software cost estimation literature and mainly summarizes Artificial Intelligence
techniques, such as Genetic Algorithms (GA) exploited in software cost estimation. Section 3
encompasses the description of the proposed methodology, along with the GA variance
constituting the method suggested, a description of the data used and the detailed
framework of our approach. Consequently, Section 4 describes the experimental procedure
and the results obtained after training and validating the genetic evolution of value ranges
for the problem of software cost estimation. Finally, Section 5 concludes the chapter with a
discussion on the difficulties and trade-offs presented by the methodology in addition to
suggestions for improvements in future research steps.

2. Related work

Traditional model-based approaches to cost estimation, such as COCOMO, Function Point
Analysis (FPA) and SLIM, assume that if we use some independent variables (i.e., project
characteristics) as inputs and a dependent variable as the output (namely development
effort), the resulted complex I/O relationships may be captured by a formula (Pendharkar et
al., 2005). In reality, this is never the case. In COCOMO (Boehm, 1981), one of the most
popular models for software cost estimation, the development effort is calculated using the
estimated delivered source instructions and an effort adjustment factor, applied to three

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

3

distinct levels (basic, intermediate and advanced) and two constant parameters. COCOMO
was revised in newer editions (Boehm et al., 1995; Boehm et al., 2000), using software size as
the primary factor and 17 secondary cost factors. The revised model is regression-based and
involves a mixture of three cost models, each corresponding to a stage in the software life-
cycle namely: Applications Composition, Early Design and Post Architecture. The
Application Composition stage involves prototyping efforts; the Early Design stage includes
only a small number of cost drivers as there is not enough information available at this point
to support fine-grained cost estimation; the Post Architecture stage is typically applied after
the software architecture has been defined and provides estimates for the entire
development life-cycle using effort multipliers and exponential scale factors to adjust for
project, platform, personnel, and product characteristics.
Models based on Function Points Analysis (FPA) (Albrecht & Gaffney, 1983) mainly involve
identifying and classifying the major system components such as external inputs, external
outputs, logical internal files, external interface files and external inquiries. The classification
is based on their characterization as ‘simple’, ‘average’ or ‘complex’, depending on the
number of interacting data elements and other factors. Then, the unadjusted function points
are calculated using a weighting schema and adjusting the estimations utilizing a
complexity adjustment factor. This is influenced by several project characteristics, namely
data communications, distributed processing, performance objective, configuration load,
transaction rate, on-line data entry, end-user efficiency, on-line update, complex processing,
reusability, installation ease, operational ease, multiple sites and change facilitation.
In SLIM (Fairley, 1992) two equations are used: the software productivity level and the
manpower equation, utilising the Rayleigh distribution (Putnam & Myers, 1992) to estimate
project effort schedule and defect rate. The model uses a stepwise approach and in order to
be applicable the necessary parameters must be known upfront, such as the system size -
measured in KDSI (thousand delivered source instructions), the manpower acceleration and
the technology factor, for which different values are represented by varying factors such as
hardware constraints, personnel experience and programming experience. Despite being the
forerunner of many research activities, the traditional models mentioned above, did not
produce the best possible results. Even though many existing software cost estimation
models rely on the suggestion that predictions of a dependent variable can be formulated if
several (in)dependent project characteristics are known, they are neither a silver bullet nor
the best-suited approaches for software cost estimation (Shukla, 2000).
Over the last years, computational intelligence methods have been used attaining promising
results in software cost estimation, including Neural Networks (NN) (Jun & Lee, 2001;
Papatheocharous & Andreou, 2007; Tadayon, 2005), Fuzzy Logic (Idri et al., 2002; Xu &
Khoshgoftaar , 2004), Case Based Reasoning (CBR) (Finnie et al., 1997; Shepperd et al., 1996),
Rule Induction (RI) (Mair et al., 2000) and Evolutionary Algorithms.
A variety of methods, usually evolved into hybrid models, have been used mainly to predict
software development effort and analyze various aspects of the problem. Genetic
Programming (GP) is reported in literature to provide promising approximations to the
problem. In (Burgess & Leftley, 2001) a comparative evaluation of several techniques is
performed to test the hypothesis of whether GP can improve software effort estimates. In
terms of accuracy, GP was found more accurate than other techniques, but does not
converge to a good solution as consistently as NN. This suggests that more work is needed
towards defining which measures, or combination of measures, is more appropriate for the

www.intechopen.com

 Tools in Artificial Intelligence

4

particular problem. In (Dolado, 2001) GP evolving tree structures, which represent software
cost estimation equations, is investigated in relation to other classical equations, like the
linear, power, quadratic, etc. Different datasets were used in that study yielding diverse
results, classified as ‘acceptable’, ‘moderately good’, ‘moderate’ and ‘bad’ results. Due to the
reason that the datasets examined varied extremely in terms of complexity, size,
homogeneity, or values’ granularity consistent results were hard to obtain. In (Lefley, &
Shepperd 2003) the use of GP and other techniques was attempted to model and estimate
software project effort. The problem was modeled as a symbolic regression problem to offer
a solution to the problem of software cost estimation and improve effort predictions. The so-
called “Finnish data set” collected by the software project management consultancy
organization SSTF was used in the context of within and beyond a specific company and
obtained estimations that indicated that with the approaches of Least-Square Regression,
NN and GP better predictions could be obtained. The results from the top five percent
estimators yielded satisfactory performance in terms of Mean Relative Error (MRE) with the
GP appearing to be a stronger estimator achieving better predictions, closer to the actual
values more often than the rest of the techniques. In the work of (Huang & Chiu, 2006) a GA
was adopted to determine the appropriate weighted similarity measures of effort drivers in
analogy-based software effort estimation models. These models identify and compare the
software project developed with similar historical projects and produce an effort estimate.
The ISBSG and the IBM DP services databases were used in the experiments and the results
obtained showed that among the applied methods, the GA produced better estimates and
the method could provide objective weights for software effort drivers rather than the
subjective weights assigned by experts.
In summary, software cost estimation is a complicated activity since there are numerous cost
drivers, displaying more than a few value discrepancies between them, and highly affecting
development cost assessment. Software development metrics for a project reflect both
qualitative measures, such as, team experiences and skills, development environment,
group dynamics, culture, and quantitative measures, for example, project size, product
characteristics and available resources. However, for every project characteristic the data is
vague, dissimilar and ambiguous, while at the same time formal guidelines on how to
determine the actual effort required to complete a project based on specific characteristics or
attributes do not exist. Previous attempts to identify possible methods to accurately estimate
development effort were not as successful as desired, mainly because calculations were
based on certain project attributes of publicly available datasets (Jun & Lee, 2001).
Nevertheless, the proportion of evaluation methods employing historical data is around
55% from a total of 304 research papers investigated by Jorgensen & Shepperd in 2004
(Jorgensen & Shepperd, 2007). According to the same study, evaluation of estimation
methods requires that the datasets be as representative as possible to the current or future
projects under evaluation. Thus, if we wish to evaluate a set of projects, we might consider
going a step back, and re-define a more useful dataset in terms of conditional value ranges.
These ranges may thus lead to identifying representative bounds for the available values of
cost drivers that constitute the basis for estimating average cost values.

3. The proposed cost estimation framework

The framework proposed in this chapter encompasses the application of the theory of
conditional sets in combination with Genetic Algorithms (GAs). The idea is inspired by the

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

5

work presented by Packard et al. (Meyer & Packard, 1992; Packard, 1990) utilising GAs to
evolve conditional sets. The term conditional set refers to a set of boundary conditions. The
main concept is to evaluate the evolved value ranges (or conditional sets) and extract
underlying determinant relationships among attributes and effort in a given dataseries. This
entails exploring a vast space of solutions, expressed in ranges, utilising additional
manufactured data than those located into a well-known database regularly exploited for
software effort estimation.
What we actually propose is a method for investigating the prospect of identifying the exact
value ranges for the attributes of software projects and determining the factors that may
influence development effort. The approach proposed implies that the attributes’ value
ranges and corresponding effort value ranges are automatically generated, evaluated and
evolved through selection and survival of the fittest in a way similar to natural evolution
(Koza, 1992). The goal is to provide complementing weights (representing the notion of
ranked importance to the associated attributes) together with effort predictions, which could
possibly result in a solution more efficient and practical than the ones created by other
models and software cost estimation approaches.

3.1 Conditional sets theory and software cost

In this section we present some definitions and notations of conditional sets theory in
relation to software cost based on paradigms described in (Adamopoulos et al., 1998;
Packard, 1990).
Consider a set of n cost attributes {A1, A2,…, An}, where each Ai has a corresponding discrete
value xi. A software project may be described by a vector of the form:

 { }1 2
, ,...,

n
L x x x= (1)

Let us consider a condition Ci of the form:

 : ()
i i i i
C lb x ub< < , 1...i n= (2a)

where lbi and ubi are the lower and upper bounds of Ci respectively for which:

 :
i i i
C lb ub ε∀ − < (2b)

that is, lbi and ubi have minimal difference in their value, under a specific threshold ε.
Consider also a conditional set S; we say that S is of length l (≤n) if it entails l conditions of
the form described by equations (2a) and (2b), which are coupled via the logical operators of
AND and OR as follows:

1 2

...
AND l
S C C C= ∧ ∧ ∧ (3)

1 2

...
OR l
S C C C= ∨ ∨ ∨ (4)

We consider each conditional set S as an individual in the population of our GA, which will
be thoroughly explained in the next section as part of the proposed methodology. We use
equations (3) and (4) to describe conditional sets representing cost attributes, or to be more
precise, cost metrics. What we are interested in is the definition of a set of software projects,

www.intechopen.com

 Tools in Artificial Intelligence

6

M, the elements of which are vectors as in equation (1) that hold the values of the specific
cost attributes used in relation with a conditional set. More specifically, the set M can be
defined as follows:

 { }1 2
, ,...,

m
M L L L= (5)

 { },1 ,2 ,
, ,...,

i i i i l
L x x x= , 1...i m= (6)

where l denotes the number of cost attributes of interest.
A conditional set S is related to M according to the conditions in equations (3) or (4) that are
satisfied as follows:

 :
i
L∀

,i k k
x satisfies C , 1... , 1... (AND)i m k l= = (7)

,1 1 ,2 2

,

,...

..., , 1... , (OR)

i i

i l l

x satisfies C OR x satisfies C

OR x satisfies C i m=
 (8)

3.2 Methodology

Before proceeding to describe the methodology proposed we provide a short description of
the dataset used. The dataset was obtained from the International Software Benchmarking
Standards Group (ISBSG, Repository Data Release 9 - ISBSG/R9, 2005) and contains an
analysis of software project costs for a group of projects. The projects come from a broad
cross section of industry and range in size, effort, platform, language and development
technique data. The release of the dataset used contains 92 variables for each of the projects
and hosts multi-organizational, multi-application domain and multi-environment data that
may be considered fairly heterogeneous (International Software Benchmarking Standards
Group, http://www.isbsg.org/). The dataset was recorded following data collection
standards ensuring broad acceptance. Nevertheless, it contains more than 4,000 data from
more than 20 countries and hence it is considered highly heterogeneous. Therefore, data
acquisition, investigation and employment of the factors that impact planning, management
and benchmarking of software development projects should be performed very cautiously.
The proposed methodology is divided into three steps, namely the data pre-processing step,
the application of the GA and the evaluation of the results. Figure 1 summarizes the
methodology proposed and the steps followed for evolving conditional sets and providing
effort range predictions. Several filtered sub-sets of the ISBSG/R9 dataset were utilized for
the evolution of conditional sets, initially setting up the required conditional sets. The
conditional sets are coupled with two logical operators (AND and OR) and the investigation
lies with extracting the ranges of project features or characteristics that describe the
associated project effort. Furthermore, the algorithm creates a random set or initial
population of conditions (individuals). The individuals are then evolved through specific
genetic operators and evaluated internally using the fitness functions. The evolution of
individuals continues while the termination criteria are not satisfied, among these a
maximum number of iterations (called generations or epochs) or no improvement in the
maximum fitness value occurs for a specific number of generations. The top 5% individuals
resulting in the higher fitness evaluations are accumulated into the optimum range

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

7

population, which then are advanced to the next algorithm generation (repetition). At the
end, the final population produced that satisfies the criteria is used to estimate the mean
effort, whereas at the evaluation step, the methodology is assessed through various
performance metrics. The most successful conditional sets evolved by the GA that have
small assembled effort ranges with relatively small deviation from the mean effort, may
then be used to predict effort of new, unknown projects.

Fig. 1. Methodology followed for evolving conditional sets

3.2.1 Data pre-processing
In this step the most valuable set of attributes, in terms of contribution to effort estimation,
are assembled from the original ISBSG/R9 dataset. After careful consideration of guidelines
provided by the ISBSG and other research organizations, we decided to the formation of a
reduced ISBSG dataset including the following main attributes: the project id (ID), the
adjusted function points of the product (AFP), the project’s elapsed time (PET), the project’s
inactive time (PIT), the project’s delivery rate (productivity) in functional size units (PDRU),
the average team size working on the project (ATS), the development type (DT), the
application type (AT), the development platform (DP), the language type (LT), the primary
programming language (PPL) and the resource level (RL) and the work effort expensed
during the full development life-cycle (EFF) which will be used as a sort of output by the
corresponding evolutionary algorithm. The attributes selected from the original, wider pool
of ISBSG, were further filtered to remove those attributes with categorical-type data and
other attributes that could not be included in the experimentation. Also, some attributes
underwent value transformations, for example instead of PET and PIT we used their
subtraction, normalized values for AFP and specific percentiles defining acceptance
thresholds for filtering the data.
The first experiments following our approach indicated that further processing of the
attributes should be performed, as the approach was quite strict and not applicable for
heterogeneous datasets containing many project attributes with high deviations in their

www.intechopen.com

 Tools in Artificial Intelligence

8

values and measurement. Therefore, this led us to examine smaller, more compact,
homogeneous and free from outlier subsets. In fact, we managed to extract three final
datasets which we used in our final series of experiments. The first dataset (DS-1) contained
the main attributes suggested by Function Point Analysis (FPA) to provide measurement of
project software size, and included: Adjusted Function Points (AFP), Enquiry Count (EC),
File Count (FC), Added Count (AC) and Changed Count (CC). These attributes were
selected based on previous findings that considered them to be more successful in
describing development effort after applying sensitivity analysis on the inputs with Neural
Networks (Papatheocharous & Andreou, 2007). The second dataset (DS-2) is a variation of
the previous dataset based on the preliminary results of DS-1, after performing
normalization and removing the outliers according to the lower and upper thresholds
defined by the effort box-plots. This resulted to the selection of the attributes: Normalized
PDR-AFP (NAFP), Enquiry Count (EC), File Count (FC) and Added Count (AC). Finally, the
third dataset (DS-3) created included the project attributes that can be measured early in the
software life-cycle consisting of: Adjusted Function Points (AFP), Project’s Delivery Rate
(PDRU), Project’s Elapsed Time (PET), Resource Level (RL) and Average Team Size (ATS)
attributes in which also box-plots and percentile thresholds were used to remove outliers.

Fig. 2. Example of box-plots for the ISBSG project attributes (original full dataset)

It is noteworthy that each dataset also contained the values of the development work effort
(EFF), the output attribute that we wanted to predict. As we already mentioned, the last data
pre-processing step of the three datasets constructed included the cleaning of null and
outlying values. The theory of box-plots was used to locate the outlying figures from the
datasets and project cleaning was performed for each project variable separately. Figure 2
above shows an example of the box-plots created for each variable on the original full dataset.
We decided to disregard the extreme outliers (marked as asterisks) occurring in each of the
selected attributes and also exclude those projects considered as mild outliers (marked as
circles), thus imposing more strict filtering associated with the output variable effort (EFF).

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

9

3.2.2 Genetic algorithm application

Genetic Algorithms (GAs) are evolutionary computational approaches that are domain-

independent, and aim to find approximated solutions in complex optimization and search

problems (Holland, 1992). They achieve this by pruning a population of individuals based

on the Darwinian principle of reproduction and ‘survival of the fittest’ (Koza, 1992). The

fitness of each individual is based on the quality of the simulated individual in the

environment of the problem investigated. The process is characterized by the fact that the

solution is achieved by means of a cycle of generations of candidate solutions that are

pruned by using a set of biologically inspired operators. According to evolutionary theories,

only the most suited solutions in a population are likely to survive and generate offspring,

and transmit their biological heredity to the new generations. Thus, GAs are much superior

to conventional search and optimization techniques in high-dimensional problem spaces

due to their inherent parallelism and directed stochastic search implemented by

recombination operators. The basic process of our GA operates through a simple cycle of

three stages, as these were initially described by (Michalewicz, 1994):

Stage 1: Randomly create an initial population of individuals P, which represent solutions to
the given problem (in our case, ranges of values in the form of equations (3) or (4)).

Stage 2: Perform the following steps for each generation:
2.1. Evaluate the fitness of each individual in the population using equations (9) or (10)

below, and isolate the best individual(s) of all preceding populations.
2.2. Create a new population by applying the following genetic operators:

2.2.1. Selection; based on the fitness select a subset of the current population for
reproduction by applying the roulette wheel method. This method of
reproduction allocates offspring values using a roulette wheel with slots sized
according to the fitness of the evaluated individuals. It is a way of selecting
members from a population of individuals in a natural way, proportional to
the probability set by the fitness of the parents. The higher the fitness of the
individual is, the greater the chance it will be selected, however it is not
guaranteed that the fittest member goes to the next generation. So,
additionally, elitism is applied, where the top best performing individuals are
copied in the next generation and thus, rapidly increase the performance of the
algorithm.

2.2.2. Crossover; two or more individuals are randomly chosen from the population
and parts of their genetic information are recombined to produce new
individuals. Crossover with two individuals takes place either by exchanging
their ranges at the crossover point (inter-crossover) or by swapping the upper
or lower bound of a specific range (intra-crossover). The crossover takes place
on one (or more) randomly chosen crossover point(s) along the structures of
the two individuals.

2.2.3. Mutation; randomly selected individuals are altered randomly and inserted
into the new population. The alteration takes place at the upper or lower
bound of a randomly selected range by adding or subtracting a small random
number. Mutation intends to preserve the diversity of the population by
expanding the search space into regions that may contain better solutions.

2.3. Replace the current population with the newly formed population.

www.intechopen.com

 Tools in Artificial Intelligence

10

Stage 3: Repeat from stage 2 unless a termination condition is satisfied. Output the
individual with the best fitness as the near to optimum solution.

Each loop of the steps is called a generation. The entire set of iterations from population
initialization to termination is called a run. At the termination of the process the algorithm
promotes the “best-of-run” individual.

3.2.3 Evaluation

The individuals evolved by the GA are evaluated according to the newly devised fitness
functions of AND or OR, specified as:

1

1 1

()*
AND l

i i i
i

F k

ub lb w
σ

=

= + +
⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

 (9)

1

1 1l

i i
OR i

i i i

F k w
ub lbσ=

⎛ ⎞
= + + ∗⎜ ⎟−⎝ ⎠
∑ (10)

where k represents the number of projects satisfying the conditional set, ki the number of
projects satisfying only condition Ci, and σ, σi are the standard deviations of the effort of the
k and ki projects, respectively.
By using the standard deviation in the fitness evaluation we promote the evolved
individuals that have their effort values close to the mean effort value of either the k projects
satisfying S (AND case) or either the ki projects satisfying Ci (OR case). Additionally, the
evaluation rewards individuals whose difference among the lower and upper range is
minimal. Finally, wi in equations (9) and (10) is a weighting factor corresponding to the
significance given by the estimator to a certain cost attribute.
The purpose of the fitness functions is to define the appropriateness of the value ranges

produced within each individual according to the ISBSG dataset. More specifically, when an

individual is evaluated the dataset is used to define how many records of data (a record

corresponds to a project with specific values for its cost attributes and effort) lay within the

ranges of values of the individual according to the conditions used and the logical operator

connecting these conditions. It should be noted at this point that in the OR case the

conditional set is satisfied if at least one of its conditions is satisfied, while in the AND case

all conditions in S must be satisfied. Hence, k (and σ) is unique for all ranges in the AND

case, while in the OR case k may have a different value for each range i. That is why the

fitness functions of the two logical operators are different. The total fitness of the population

in each generation is calculated as the sum of the fitness values of the individuals in P.

Once the GA terminates the best individual is used to perform effort estimation. More

specifically, in the AND case we distinguish the projects that satisfy the conditional set used

to train the GA, while in the OR case the projects that satisfy one or more conditions of the

set. Next we find the mean effort value (ē) and standard deviation (σ) of those projects. If we

have a new project for which we want to estimate the corresponding development effort, we

first check whether the values of its attributes lay within the ranges of the best individual

and that it satisfies the form of the conditional set (AND or OR). If this holds, then the effort

of the new project is estimated to be:

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

11

 σ±= eepred (11)

where epred is the mean value of the effort of the projects satisfying the conditional set S.

4. Experimental process

This section explains in detail the series of experiments conducted and also presents some
preliminary results of the methodology. The methodology was tested on the three different
datasets described in the previous section.

4.1 Design of the experiments

Each dataset was separated into two smaller sub-datasets, the first of which was used for
training and the second for validation. This enables the assessment of the generalization and
optimization ability of the algorithm, firstly under training conditions and secondly with
new, unknown to the algorithm, data. At first, a series of initial setup experiments was
performed to define and tune the parameters of the GA. These are summarized in Table 1.
The values for the GA parameters were set after experimenting with different generation
epochs, as well as mutation and crossover rates and various number of points of crossover.
A number of control parameters were modified for experimenting and testing the sensitivity
of the solution to their modification.

Category Value Details

Attributes set { SAND, SOR }

Solution
representation

L

Generation size 1000 epochs

Population size 100 individuals

Selection Roulette wheel based on fitness of each individual

Elitism Best individuals are forwarded (5%)

Mutation Ratio 0.01-0.05 Random mutation

Crossover Ratio 0.25-0.5 Random crossover (inter-, intra-)

Termination
criterion

Generations size is reached or
no improvements are noted for more than 100
generations

Table 1. Genetic Algorithm main parameters

We then proceeded to produce a population of 100 individuals representing conditional sets
S (or ranges of values coupled with OR or AND conditions), as opposed to the discrete
values of the attributes found in the ISBSG dataset. These quantities, as shown in equations
(2a) and (2b), were generated to cover a small range of values of the corresponding
attributes, but are closely related to (or within) the actual values found in the original data
series.
Throughout an iterative production of generations the individuals were evaluated using the
fitness functions specified in equations (9) or (10) with respect to the approach adopted. As
previously mentioned, this fitness was assessed based on the:

• Standard deviation

www.intechopen.com

 Tools in Artificial Intelligence

12

• Number of projects in L satisfying (7) and (8)

• Ranges produced for the attributes
Fitness is also affected by the weights given by the estimator to separate between more and
less important attributes. From the fitness equations we may deduce that the combination of
a high number of projects in L, a low standard deviation with respect to the mean effort and
a small range for the cost attributes (at least the most significant) produces high fitness
values. Thus, individuals satisfying these specific requirements are forwarded to the next
population until the algorithm terminates. Figure 3 depicts the total fitness value of a
sample population through generations, which, as expected, rises as the number of epochs
increases. A plateau is observed in the range 50-400 epochs which may be attributed to a
possible trapping of the GA to a local minimum. The algorithm seems to escape from this
minimum with its total fitness value constantly being improved along the segment of 400-
450 epochs and then stabilizing. Along the repetitions of the GA algorithm execution, the
total population fitness improves showing that the methodology performs consistently well.

500

525

550

575

600

625

650

675

700

725

0 100 200 300 400 500 600epochs

to
ta

l
fi

tn
e
s
s

Fig. 3. Total Fitness Evolution

4.2 Experimental results

The experimental evaluation procedure was based on both the AND and OR approaches.
We initially used the attributes of the datasets with equal weight values and then
subsequently with combinations of different weight values. Next, as the weight values were
modified it was clear that various assumptions about the importance of the given attributes
for software effort could be drawn. In the first dataset for example, the Adjusted Function
Point (AFP) attribute was found to have a minimal effect on development effort estimations
and therefore we decided to re-run the experiments without this attribute taking part. The
process was repeated for all attributes of the dataset by continuously updating the weight
values and reducing the number of attributes participating in the experiments, until no more
insignificant attributes remained in the dataset. The same process was followed for all the
three datasets respectively, while the results summarized in this section represent only a few
indicative results obtained throughout the total series of experiments.
Tables 2 and 3 present indicative best results obtained with the OR and AND approaches,
respectively, that is, the best individual of each run for a given set of weights (significance)

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

13

that yield the best performance with the first dataset (DS-1). Table 4 presents the best results
obtained with the AND and OR approach with the second dataset (DS-2) and Table 5 lists
the best obtained results with the third attribute dataset (DS-3).

Attribute Weights / Ranges Evaluation Metrics

FC AC CC EC ē σ HR

0.1 0.4 0.1 0.4

[11, 240] [1, 1391] [206, 1739] [14, 169]
3014.2 1835.1 81/179

0.3 0.1 0.4 0.2

[11, 242] [1, 1363] [60, 1498] [1, 350]
3125.5 1871.5 81/184

0.3 0.4 0.1 0.2

[11, 242] [1, 1391] [1616, 2025] [14, 268]
3204.5 1879.2 81/187

0.2 0.4 0.1 0.3

[19, 298] [1, 1377] [1590, 3245] [14, 268]
3160.3 1880.7 81/178

0.2 0.2 0.4 0.2

[11, 240] [1, 1377] [46, 573] [1, 350]
3075.1 1857.2 79/183

0.2 0.4 0.2 0.2

[3, 427] [1, 1377] [46, 579] [1, 347]
3254.5 1857 83/191

Table 2. Indicative Results of conditional sets using the OR approach and DS-1

Evaluation metrics were used to assess the success of the experiments, based on (i) the total

mean effort, (ii) the standard deviation and, (iii) the hit ratio. The hit ratio (given in equation

(12)) provides a complementary piece of information about the results. It basically assesses

the success of the best individual evolved by the GA on the testing set. Recall that the GA

results in conditional set of value ranges which are used to compute the mean effort and

standard deviation of the projects satisfying the conditional set. Next, the number of projects

n in the testing set that satisfy the conditional set is calculated. Of those n projects we

compute the number of projects b that have additionally a predicted effort value satisfying

equation (11). The latter may be called the “hit-projects”. Thus, equation (12) essentially

calculates the ratio of hit-projects in the testing set:

 ()
b

hit ratio HR
n

= (12)

The results are expressed in a form satisfying equations (3)-(8). A numerical example could
be a set of range values produced to satisfy equations (2a) and (2b) coupled with the logical
operator of AND as follows:

 [1700, 2000] [16, 205] ... [180 200]
AND
S = ∧ ∧ ∧ (13)

The projects that satisfy equation (7) are then accumulated in set L (numbers represent
project IDs):

 L={1827, 1986, 1987,…,1806} (14)

www.intechopen.com

 Tools in Artificial Intelligence

14

Using L the ē, σ and HR figures may be calculated. The success of the experiments is a
combination of the aforementioned metrics. Finally, we characterize an experiment as
successful if its calculated standard deviation is adequately lower than the associated mean
effort and achieves a hit ratio above 60%.
Indicative results of the OR conditional sets are provided in Table 2. We observe that the OR
approach may be used mostly for comparative analysis of the cost attributes by evaluating
their significance in the estimation process, rather the estimation itself, as results indicate
low performance. Even though the acceptance level of the hit ratio is better than average, the
high value of the standard deviation compared to the mean effort (measured in person
days) indicates that the results attained are dispersed and not of high practical value. The
total mean effort of the best 100 experiments was found equal to 2929 and the total standard
deviation equal to 518. From these measures the total standard error was estimated at 4.93,
which is not satisfactory, but at the same time it cannot be considered bad. However, in
terms of suggesting ranges of values for specific cost attributes on which one may base an
estimation, the results do not converge to a clear picture. It appears that when evaluating
different groups of data in the dataset we attain large dissimilarities, suggesting that
clustered groups of data may be present in the series. Nevertheless, various assumptions
can be drawn from the methodology as regards to which of the attributes seem more
significant and to what extent. The selected attributes, namely Added Count (AC), File
Count (FC), Changed Count (CC) and Enquiry Count (EC) seem to have a descriptive role
over effort as they provide results that may be considered promising for estimating effort.
Additionally, the best results of Table 2 (in bold) indicate that the leading factor is Added
Count (AC), with its significance being ranked very close to that of the File Count (FC).

Attribute Weights / Ranges Evaluation Metrics

FC AC CC ē σ HR

0.1 0.2 0.7

[22, 223] [187, 504] [9, 195]
3503 1963.6 3/4

0.5 0.3 0.2

[22, 223] [114, 420] [9, 197]
3329.4 2014.2 3/4

0.2 0.4 0.4

[14, 156] [181, 489] [9, 197]
3778.8 2061.4 3/4

0.4 0.4 0.2

[22, 223] [167, 390] [9, 195]
3850.3 2014.3 3/4

0.2 0.8 0

[14, 154] [35, 140] 0
2331.2 1859.4 12/16

0.7 0.3 0

[14, 152] [35, 141] 0
2331.2 1859.4 12/16

Table 3. Indicative Results of conditional sets using the AND approach with DS-1

On the other hand, the AND approach (Table 3) provides more solid results since it is based

on a more strict method (i.e. satisfy all ranges simultaneously). The results indicate again

some ranking of importance for the selected attributes. To be specific, Added Count (AC)

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

15

and File Count (FC) are again the dominant cost attributes, a finding which is consistent

with the OR approach. We should also note that the attribute Enquiry Count (EC) proved

rather insignificant in this approach, thus it was omitted from Table 3. Also, the fact that the

results produced converge in terms of producing similar range bounds shows that the

methodology may provide empirical indications regarding possible real attribute ranges. A

high hit ratio of 75% was achieved for nearly all experiments in the AND case for the

specified dataset, nevertheless this improvement is obtained with fewer projects, as

expected, satisfying the strict conditional set compared to the more loose OR case. This led

us to conclude that the specific attributes can provide possible ranges solving the problem

and providing relatively consistent results.

The second dataset (DS-2) used for experimentation included the Normalized AFP (NAFP)

and some of the previously investigated attributes for comparison purposes. The dataset

was again tested using both the AND and OR approaches. The first four rows of the results

shown in Table 4 individuals were obtained with the AND approach and the last two results

with the OR approach. The figures listed in Table 4 show that the method ‘approves’ more

individuals (satisfying the equations) because the ranges obtained are wider. Conclusively,

the values used for effort estimation result to increase of the total standard error. The best

individuals (in bold) were obtained after applying box-plots in relation to the first result

shown, while the rest two results did not use this type of filtering. It is clear from the

lowering of the value of the standard deviation that after box-plot filtering on the attributes

some improvement was indeed achieved. Nevertheless, the HR stays quite low, thus we

cannot argue that the ranges of values produced are robust to provide new effort estimates.

Attribute Weights / Ranges Evaluation Metrics

NAFP AC FC EC ē σ HR

0.25 0.25 0.25 0.25

[2, 134] [215, 1071] [513, 3678] [4, 846]
11386.7 9005.4 9/58

0.25 0.25 0.25 0.25

[7, 80] [34, 830] [88, 1028] [37, 581]
2861.7 2515.9 7/66

0.25 0.25 0.25 0.25

[1,152] [22, 859] [58, 3192] [20, 563]
3188.6 2470.9 3/221

0.25 0.25 0.25 0.25

[1, 156] [34, 443] [122, 2084] [37, 469]
3151.6 2377.9 4/139

0.25 0.25 0.25 0.25

[1, 36] [449, 837] [23, 1014] [7, 209]
4988.5 8521.2 10/458

0.25 0.25 0.25 0.25

[1, 159] [169, 983] [78, 928] [189, 567]
4988.5 8521.2 10/458

Table 4. Indicative Results of conditional sets using the AND and OR approaches with DS-2

The purpose of the final dataset (DS-3) used in the experiments is to test whether a selected

subset of attributes that can be measured early in the development life-cycle can provide

adequately good predictions. Results showed that the attributes of Adjusted Function Points

www.intechopen.com

 Tools in Artificial Intelligence

16

(AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level (RL) and

Average Team Size (ATS) may provide improvements for selecting ranges with more

accurate effort estimation abilities. For these experiments only the AND approach is

presented as the results obtained were regarded to be more substantial. In the experiments

conducted with this dataset (DS-3) we tried to impose even stricter ranges, after the box-

plots and outlier’s removal in the initial dataset, by applying an additional threshold to

retain the values falling within the 90% (percentile). This was performed for the first result

listed in Table 5, whereas the threshold within the 70% percentile was also applied for the

second result listed on the same table. We noticed that this led to a significant optimization

of the results. Even though very few individuals are approved, satisfying the equations, the

HR is almost always equal to 100%. The obtained ranges are more clearly specified and in

addition, sound predictions can be made regarding effort since the best obtained standard

deviation of effort falls to 74.9 which also constitutes one of the best predictions yielded by

the methodology. This leads us to conclude that when careful removal of outliers is

performed the proposed methodology may be regarded as achieving consistently successful

predictions, yielding optimum ranges that are adequately small and suggesting effort

estimations that lay within reasonable mean values and perfectly acceptable deviation from

the mean.

Attribute Weights / Ranges Evaluation Metrics

AFP PDRU PET RL ATS ē σ HR

0.2 0.2 0.2 0.2 0.2

[48, 1207] [1, 7] [3, 12] [1, 3] [2, 5]
2657.6 913.7 3/3

0.2 0.2 0.2 0.2 0.2

[57, 958] [2, 13] [5, 10] [2, 4] [1, 6]
2131.0 74.9 2/2

0.2 0.2 0.2 0.2 0.2

[133, 1409] [1, 25] [7, 21] [2, 4]
[2,
10]

2986.6 1220.0 5/5

0.2 0.2 0.2 0.2 0.2

[173, 1131] [1, 20] [2, 20] [2, 4] [1, 7]
2380.0 434.5 2/3

0.25 0.25 0 0.25 0.25

[189, 1301] [2, 26] 0 [1, 3]
[2,
11]

2477.8 838.2 5/5

0.25 0.25 0 0.25 0.25

[693, 1166] [2, 23] 0 [1, 3] [1, 4]
2478.0 565.6 2/2

Table 5. Indicative Results of conditional sets using the AND approach with DS-3

5. Conclusions

In this approach we aimed at addressing the problem of large variances found in available

historical data that are used in software cost estimation. Project data is expensive to collect,

manage and maintain. Therefore, if we wish to lower the dependence of the estimation to

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

17

the need of gathering accurate and homogenous data, we might consider simulating or

generating data ranges instead of real crisp values.

The theory of conditional sets was applied in the present work with Genetic Algorithms

(GAs) on empirical software cost estimation data. GAs are ideal for providing efficient and

effective solutions in complex problems; there are, however, several trade-offs. One of the

major difficulties in adopting such an approach is that it requires a thorough calibration of

the algorithm’s parameters. We have tried to investigate the relationship between software

attributes and effort, by evolving attribute value ranges and evaluating estimated efforts.

The algorithm promotes the best individuals in the reproduced generations through a

probabilistic manner. Our methodology attempted to reduce the variations in performance

of the model and achieve some stability in the results. To do so we approached the problem

from the perspective of minimizing the differences in the ranges and the actual and

estimated effort values to decisively determine which attributes are the most important in

software cost estimates.

We used the ISBSG repository containing a relatively large quantity of data; nevertheless,

this data suffers from heterogeneity thus presents low quality level from the perspective of

level of values. We formed three different subsets selecting specific cost attributes from the

ISBSG repository and filtering out outliers using box-plots on these attributes. Even though

the results are of average performance when using the first two datasets, they indicated

some importance ranking for the attributes investigated. According to this ranking, the

attributes Added Count (AC) and File Count (FC) were found to lay among the most

significant cost drivers for the ISBSG dataset. The third dataset included Adjusted Function

Points (AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level

(RL) and Average Team Size (ATS). These attributes may be measured early in the software

life-cycle, thus this dataset may be regarded more significant than the previous two from a

practical perspective. A careful and stricter filtering of this dataset provided prediction

improvements, with the yielded results suggesting small value ranges and fair estimates for

the mean effort of a new project and its deviation. There was also an indication that within

different areas of the data, significantly different results may be produced. This is highly

related to the scarcity of the dataset itself and supports the hypothesis that if we perform

some sort of clustering in the dataset we may further minimize the deviation differences in

the results and obtain better effort estimates.

Although the results of this work are at a preliminary stage it became evident that the

approach is promising. Therefore, future research steps will concentrate on ways to improve

performance, examples of which may be: (i) Pre-processing of the ISBSG dataset and

appropriate clustering into groups of projects that will share similar value characteristics. (ii)

Investigation of the possibility of reducing the attributes in the dataset by utilizing a

significance ranking mechanism that will promote only the dominant cost drivers. (iii)

Better tuning of the GA’s parameters and modification/enhancement of the fitness functions

to yield better convergence. (iv) Optimization of the trial and error weight factor assignment

used in the present work by utilizing a GA. (v) Experimentation with other datasets

containing selected attributes again proposed by a GA. Finally, we plan to perform a

comparative evaluation of the proposed approach with other well established algorithms,

like for example the COCOMO model.

www.intechopen.com

 Tools in Artificial Intelligence

18

6. References

Adamopoulos, A.V.; Likothanassis, S.D. & Georgopoulos, E.F. (1998). A Feature Extractor of

Seismic Data Using Genetic Algorithms, Signal Processing IX: Theories and

Applications, Proceedings of EUSIPCO-98, the 9th European Signal Processing Conference,

Vol. 2, pp. 2429-2432, Typorama, Greece.

Albrecht, A.J. & Gaffney J.R. (1983). Software Function Source Lines of Code, and

Development Effort Prediction: A Software Science Validation, IEEE Transactions on

Software Engineering. Vol. 9, No. 6, pp. 639-648.

Boehm, B.W. (1981). Software Engineering Economics, Prentice Hall, New Jersey.

Boehm, B.W.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R.J. & Selby R.W. (1995). Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0, Annals of Software

Engineering, Vol.1, pp. 57-94, Springer, Netherlands.

Boehm, B.W.; Abts, C. & Chulani, S. (2000). Software Development Cost Estimation

Approaches – A Survey, Annals of Software Engineering, Vol.10, No. 1, pp. 177-205,

Springer, Netherlands.

Burgess, C.J. & Lefley, M. (2001). Can Genetic Programming Improve Software Effort

Estimation? A Comparative Evaluation, Information and Software Technology, Vol. 43,

No. 14, pp. 863-873, Elsevier, Amsterdam.

Dolado, J.J. (2000). A Validation of the Component-Based Method for Software Size

Estimation, IEEE Transactions on Software Engineering, Vol. 26, No. 10, pp. 1006-1021,

IEEE Computer Press, Washington D.C..

Dolado, J.J. (2001). On the Problem of the Software Cost Function, Information and Software

Technology, Vol. 43, No. 1, pp. 61-72, Elsevier, Amsterdam.

Fairley, R.E. (1992). Recent Advances in Software Estimation Techniques, Proceedings of the

14th International Conference on Software Engineering, pp. 382-391, ACM, Melbourne,

Australia.

Finnie, G.R.; Wittig, G.E. & Desharnais, J.-M. (1997). Estimating software development effort

with case-based reasoning, Proceedings of the 2nd International Conference on Case-Based

Reasoning Research and Development ICCBR, pp.13-22, Springer.

Holland, J.H. (1992). Genetic Algorithms, Scientific American, Vol. 267, No. 1, pp. 66–72, New

York.

Huang, S. & Chiu, N. (2006). Optimization of analogy weights by genetic algorithm for

software effort estimation, Information and Software Technology, Vol. 48, pp. 1034-

1045, Elsevier.

Idri, A.; Khoshgoftaar, T.M. & Abran, A. (2002). Can Neural Networks be Easily Interpreted

in Software Cost Estimation?, Proceedings of the 2002 IEEE World Congress on

Computational Intelligence, pp. 1162-1167 IEEE Computer Press, Washington D.C..

International Software Benchmarking Standards Group (ISBSG), Estimating, Benchmarking

& Research Suite Release 9, ISBSG, Victoria, 2005.

International Software Benchmarking Standards Group, http://www.isbsg.org/

Jorgensen, M. & Shepperd, M. (2007). A Systematic Review of Software Development Cost

Estimation Studies, IEEE Transactions on Software Engineering, Vol. 33, No. 1, pp. 33-

53, IEEE Computer Press, Washington D.C..

www.intechopen.com

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

19

Jun, E.S. & Lee, J.K. (2001). Quasi-optimal Case-selective Neural Network Model for

Software Effort Estimation, Expert Systems with Applications, Vol. 21, No. 1, pp. 1-14

Elsevier, New York.

Khoshgoftaar, T.M.; Evett, M.P.; Allen, E.B. & Chien, P. (1998). An Application of Genetic

Programming to Software Quality Prediction Computational Intelligence in Software

Engineering, Series on Advances in Fuzzy Systems – Applications and Theory, Vol. 16,

pp. 176-195, World Scientific, Singapore.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press, Massachusetts.

Lederer, A.L. & Prasad, J. (1992). Nine Management Guidelines for Better Cost Estimating,

Communications of the ACM, Vol. 35, No. 2, pp. 51-59, ACM, New York.

Lefley, M. & Shepperd, M.J. (2003). Using Genetic Programming to Improve Software Effort

Estimation Based on General Data Sets, Proceedings of GECCO, pp. 2477-2487.

MacDonell, S.G. & Shepperd, M.J. (2003). Combining Techniques to Optimize Effort

Predictions in Software Project Management, Journal of Systems and Software, Vol.

66, No. 2, pp. 91-98, Elsevier, Amsterdam.

Mair, C; Kadoda, G.; Lefley, M.; Phalp, K.; Schofield, C.; Shepperd, M. & Webster, S. (2000).

An investigation of machine learning based prediction systems, Journal of Systems

Software, Vol. 53, pp. 23–29, Elsevier.

Meyer, T.P. & Packard, N.H. (1992). Local Forecasting of High-dimensional Chaotic

Dynamics, Nonlinear Modeling and Forecasting, Addison-Wesley.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs, Springer,

Berlin.

Packard, N.H. (1990). A Genetic Learning Algorithm for the Analysis of Complex Data,

Complex Systems, Vol. 4, No. 5, pp. 543-572, Illinois.

Pendharkar, P.C.; Subramanian, G.H. & Rodger, J.A. (2005). A Probabilistic Model for

Predicting Software Development Effort, IEEE Transactions on Software Engineering,

IEEE Computer Press, Vol. 31, No. 7, pp. 615-624, Washington D.C..

Papatheocharous, E. & Andreou, A. (2007). Software Cost Estimation Using Artificial Neural

Networks with Inputs Selection, Proceedings of the 9th International Conference on

Enterprise Information Systems, pp. 398-407, Madeira, Portugal.

Putnam, L.H. & Myers, W. (1992). Measures for Excellence, Reliable Software on Time, Within

Budget, Yourdan Press, New Jersey.

Shepperd, M. & Kadoda, G. (2001). Comparing Software Prediction Techniques Using

Simulation, IEEE Transactions on Software Engineering, Vol. 27, No. 11, pp. 1014-1022,

IEEE Computer Press, Washington D.C..

Shepperd, M.J.; Schofield, C. & Kitchenham, B. A. (1996). Effort estimation using analogy,

Proceedings of the 18th International Conference on Software Engineering, pp. 170-178,

Berlin.

Shukla, K.K. (2000). Neuro-genetic Prediction of Software Development Effort, Information

and Software Technology, Vol. 42, No. 10, pp. 701-713, Elsevier, Amsterdam.

Tadayon, N. (2005). Neural Network Approach for Software Cost Estimation. Proceedings of

the International Conference on Information Technology: Coding and Computing, pp. 815-

818, IEEE Computer Press, Washington D.C..

www.intechopen.com

 Tools in Artificial Intelligence

20

Xu, Z. & Khoshgoftaar, T.M. (2004). Identification of Fuzzy Models of Software Cost

Estimation, Fuzzy Sets and Systems, Vol. 145, No. 1, pp. 141-163, Elsevier, New York.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Efi Papatheocharous and Andreas S. Andreou (2008). Computational Intelligence in Software Cost Estimation:

Evolving Conditional Sets of Effort Value Ranges, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN:

978-953-7619-03-9, InTech, Available from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/computational_intelligence_in_software_cost_

estimation__evolving_conditional_sets_of_effort_value_ra

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

