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Abstract

Tissue hypoxia plays a critical role in the pathobiology of congenital heart diseases, 
especially with regard to cyanotic patients. Here, we describe the cellular and molecu-
lar mechanisms induced by hypoxia in the diseased heart, with particular attention to 
the metabolic and functional changes that underlie the hypoxia-induced right ventricle 
remodelling. The role of reactive oxygen species in transcriptomic changes, DNA dam-
age, contractile dysfunction and extracellular matrix remodelling will be addressed. 
Furthermore, the reoxygenation injury, which occurs when oxygen is reintroduced upon 
initiation of cardiopulmonary bypass, will be discussed. This allows a better understand-
ing of the risks associated with the reoxygenation injury in children undergoing open-
heart surgery and helps to improve strategies of intervention for myocardial protection.

Keywords: hypoxia, congenital heart disease, cyanosis, reoxygenation injury, 
cardiovascular disease

1. Hypoxia in cardiovascular disease and congenital heart disease

The term hypoxia refers to a condition where the tissues are not adequately oxygenated, 

usually due to interrupted coronary blood flow or a reduction in arterial blood oxygen 
partial pressure [1]. With the heart being a highly oxidative organ, relying on high oxy-

gen consumption for the work of its contractile machinery, it appears obvious that cardiac 

cells are very sensitive to oxygen deprivation [2]. Heart hypoxia, which originates as a 
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result of disproportion between the amount of oxygen supplied to the cardiac cell and the 

amount required by the cell, plays a critical role in the pathobiology of several cardiovascu-

lar diseases [3]. These include myocardial infarction, coronary artery diseases, heart failure 

secondary to pulmonary disease and congenital heart diseases [1, 4, 5]. In patients with 

coronary artery diseases and myocardial infarction, hypoxia is usually due to the formation 

of an atherosclerotic plaque in the wall of coronary arteries, which reduces the perfusion 

of myocardial tissue [6]. In addition, a rupture of the plaque might result in complete arte-

rial occlusion, leading to the death of the ischemic tissue [6]. The increased O
2
 consump-

tion caused by pressure overload and reduced O
2 
delivery, due to impaired coronary blood 

flow, are the main causes of hypoxia in patients suffering from heart failure secondary to 
pulmonary hypertension [7].

The scenario looks different when shifting the focus to myocardial hypoxia in paediatric 
patients with congenital heart diseases (CHDs). Diseases affecting the heart, in fact, have usu-

ally a different pathophysiology in children compared to adult population [8]. Furthermore, 

as a result of the different pathophysiological function of the defective heart, the paediatric 
and adult patients are differently susceptible to stress insults, although there is still disagree-

ment on whether the vulnerability of immature heart is less or more than for adult heart 

[9–12].

Congenital heart diseases include a wide spectrum of anomalies of the cardiac architecture, 

and they are usually classified based on the anatomical and pathophysiological nature of the 
defect. The main anomalies involve atrioventricular junctions and valves [i.e. atrial septal 

defect (ASD), ventricular septal defect (VSD), atrioventricular septal defect (AVSD)], the ven-

tricular outflow tracts [like in tetralogy of Fallot (TOF)] or can consist of univentricular hearts 
[like single ventricle (SV)] [13].

More often, congenital heart defects are simply classified as cyanotic and acyanotic, depend-

ing on whether or not the defect affects the amount of oxygen in the body. In cyanotic heart 
defects, as consequence of a mixture between oxygenated and de-oxygenated blood, less 

oxygen-rich blood reaches the different tissues of the body, resulting in a bluish skin, lips 
and nail bed colour. This category includes defects such as TOF, transposition of the great 

vessels or truncus arteriosus. On the other hand, non-cyanotic CHD patients do not experi-

ence a lack in blood oxygen supply; therefore, they rarely develop the bluish colour, except 

for few occasion, when the baby needs more oxygen, such as when crying and feeding. 

Atrial and/or ventricular septal defects or coarctation of the aorta are examples of acyanotic 

CHDs [14, 15].

Several studies have shown that, among CHDs, cyanotic patients are much more prone to 

develop a severe chronic hypoxia state, compared to the acyanotic ones, as the lack of oxygen 

exposes the cardiac tissue to an increase in free oxygen radicals [16, 17]. Therefore, when 

considering the treatment of these patients, the oxidative stress problem has to be taken into 

account, in addition to the other anomalies that characterize these defects. Nevertheless, care 

must be taken also for the treatment of acyanotic patients, to prevent the hypoxia that might 

develop in a later stage.
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2. Mechanism underlying the hypoxia response in Congenital  

Heart Disease

2.1. Depletion of antioxidant defences

The exposure of a defective heart to chronic hypoxia induces molecular and cellular changes 

that affect the myocardial function and metabolism. One of the most typical sign of a heart-
developing chronic hypoxia is the unbalance between the level of reactive oxygen species 

(ROS) and the antioxidant defence system. ROS are physiologically produced during cell 

metabolic and energetic reactions [18]. Nevertheless, the body is endowed with antioxidant 

enzymes such as catalase, glutathione peroxidase, and superoxide dismutase and vitamins 

(retinoic acid, alpha-tocopherol, ascorbic acid) that can counteract this physiological pro-

duction [19]. Even in case of excessive free radical production, the body responds to restore 

harmony balance [20]. However, under chronic hypoxia, a downregulation of antioxidant 

defences occurs, making the cells vulnerable to oxidant damage. Two different studies ana-

lysing the oxidant status of paediatric patients with CHDs revealed that the oxidative stress 

index, given by the ratio between pro-oxidants and antioxidants factors, was higher in the 

plasma of cyanotic children compared to the controls [16, 17]. No difference was found 
between acyanotic and control groups, thus confirming that the anatomical defect dictates the 
hypoxic level and the oxidative status [16, 17].

2.2. Hypoxia-induced metabolic and functional changes: the basis of right 

ventricle remodelling

Metabolic markers of oxidative stress, such as 8-isoprostane, were shown to be high in cyanotic 

patients’ heart as revealed by our study evaluating the transcriptomic analysis of patients with 

tetralogy of Fallot (TOF) [21]. In a different study, we performed a genome-wide investigation 
to determine the global gene expression profiles associated with chronic hypoxia in the heart 
of patients with TOF, undergoing corrective cardiac surgery. The data revealed that 795 genes 

were differently expressed in cyanotic versus acyanotic hearts. In particular, genes associ-
ated with the contractility machinery function and MAPK signalling, involved in cell survival 

and antioxidant defence, were downregulated, whereas growth, remodelling and apoptosis-

related genes were upregulated in the cyanotic group compared to the acyanotic one [22].

The altered gene expression triggered by the rise in reactive oxygen species is mostly 

responsible for the cellular and molecular changes that affect the myocardial function and 
metabolism, thus predisposing the heart to hypertrophy and failure. The hypoxia-induced 

downregulation of the sodium-calcium (Na+–Ca2+) exchanger (NCX1) in cyanotic patients 

decreases myocyte calcium handling capacity, leading to mechanical dysfunction [22]. In 

addition, ROS can induce oxidative modification of the sarcoplasmic membrane channels: 
the ryanodine receptor2 (RyR2) becomes abnormally activated while sarcoplasmic reticulum 

Ca2+-ATPase (SERCA) is inhibited, causing an abnormal Ca2+ transient between cytosol and 

sarcoplasmic reticulum that contributes to the cardiomyocytes contractile dysfunction [23, 

24]. ROS accumulation has also a detrimental effect on mitochondrial function by sustaining 
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mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane 

depolarization. As a result, mitochondrial respiration is inhibited with less ATP production. 

The insufficient energy production also arises from the switch from an aerobic metabolism 
to a high glycolytic metabolic profile. Protein kinase D (PDK), which inhibits pyruvate dehy-

drogenase during glucose oxidation, is a key factor in the deficient energy supply [25, 26]. 

Another aspect of redox imbalance is the extracellular matrix (ECM) modification deriving 
from the matrix metalloproteinases (MMP) activation, which leads to heart remodelling and 

fibrosis [27].

Within the complex architecture of the heart, the right ventricle (RV) seems to be the most sus-

ceptible structure to be affected by the above-mentioned hypoxia-induced changes. The dif-
ferent morphology and metabolism between the left and the right ventricle can in part explain 

the different susceptibility [28]. Furthermore, the anatomy of most of the CHD exposes the 

right ventricle to higher stresses, making it more prone to fail than the left counterpart [24]. 

One of the main insults to which the RV is subjected is the pressure overload that can derive 

from pulmonary artery hypertension (PAH) or RV outflow obstruction, with both events 
leading to right ventricular hypertrophy (RVH) and eventually to right ventricular failure.

2.3. HIF-1alpha mediated angiogenic response

One of the key features of chronic hypoxia is the activation of the HIF-1alpha (HIF-1α) sig-

nalling, an essential regulator of the angiogenic response. The mechanisms by which HIF-1α 
is triggered are relatively well-understood: under hypoxia, HIF1-alpha degradation is pre-

vented by the hydroxylation of specific protein residues, and therefore, its translocation to 
the nucleus promotes the transcriptions of pro-angiogenic genes like vascular endothelial 

growth factor (VEGF), platelet-derived endothelial cell growth factor/thymidine phosphory-

lase (PD-ECGF/TP) and erythropoietin (EPO) [29–31].

The role of HIF-1α in adult ischemic heart disease and pressure overload heart failure has 
been widely demonstrated by different research groups [6, 30, 32]. However, only few studies 

have investigated its involvement in the pathogenesis of congenital heart disease [6, 33, 34].

An important increase in HIF-1α and related pro-angiogenic genes and proteins have been 
reported in ventricular biopsies from children with cyanotic congenital heart disease, com-

pared with acyanotic or control groups [22, 35]. In addition, mRNA level of HIF-1α as well as 
that of two of its representative target genes, VEGF and EPO, were found to be upregulated in 

blood samples of newborns with cyanosis and persistent pulmonary hypertension, therefore 

representing early markers of generalized hypoxia [36]. If the HIF-1α/VEGF-induced collat-
eral vessel formation in hypoxemic myocardium is essential to compensate the lack of oxygen 

supply in cyanotic hearts, especially in cases of coarctation of aorta, an abnormal vessel for-

mation can become a source of morbidity, due to arteriovenous malformations [34]. However, 

a correlation between VEGF increase and abnormal vessel formation has not yet been found 

[37]. Nevertheless, increased activation of HIF-1α/VEGF signalling might be detrimental in 
newborn with persistent pulmonary hypertension, as these patients normally present an 

overexpression of VEGF receptor 1 (VEGFR1), which accounts for the vasoconstrictor effect 
of VEGF [38].
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Further mechanisms, independent from HIF-1α might account for the hypoxia-induced 
VEGF production in CHDs. As hypoxia is often associated with tissue damage and apoptosis, 

cytokines or other mediators (IL-10, TNF-α, TGF-β, etc.) might as well initiate the cascade that 
leads to VEGF production [31].

2.4. Hypoxia-induced DNA damage

The induction of p53 pathway, as a result of the ROS accumulation triggered by hypoxia, is 

one of the primary event that initiates the apoptotic cascade that occurs in hypoxic states. The 

activation of p53 leads to an altered expression of the pro-apoptotic gene Bcl-2, which, in turn, 

causes the DNA damage [39]. It has been shown that the extent of DNA damage depends on 

the anatomical anomaly and to the grade of cyanosis, with persistent cyanotic patients being 

more prone to DNA damage. In particular, children with TOF and with septal defects associ-

ated with great vessel anomaly displayed a significantly increased DNA damage compared 
to the ones with isolated septal defects [39, 40]. These data support the evidence that DNA 

damage can represent a marker of oxidative stress in CHDs as well as the common biochemi-

cal modifications and the oxidant status index.

2.5. miRNA involvement in myocardial adaptation to chronic hypoxia

Among the tissue and circulating biomarkers, microRNAs (miRNAs) have emerged as impor-

tant tools to assess the hypoxic status of a variety of organs. Briefly, miRNAs are small (19–24 
nucleotides) non-coding single-stranded RNAs that form complementary pair with specific 
target mRNAs to negatively regulate these mRNAs’ expression via translational repression 

or degradation [41]. It has been documented that a hypoxic environment can alter the miRNA 

profile and their regulation of related pathways, especially with regard to apoptosis/prolifera-

tion functions [42]. Furthermore, intensive studies in cardiovascular field have shown how the 
heart pathophysiology is tightly regulated by miRNAs expression and function [43]. Several 

miRNAs (i.e. miR-208a, miR21, mi-R29) are involved in myocardial development, and their 

dysregulation has been linked to cardiac remodelling and hypertrophy; miR-145 upregula-

tion was found in smooth muscle cells of vessels from both a murine model and patients with 

pulmonary arterial hypertension, whereas plasma upregulation of a huge number of miRNAs 

(miR-1, miR-133a, miT-499, miR-208) has been reported in patients with acute ischemia and, 

therefore, hypoxic myocardium [44–48]. Experimental studies performed on cardiac cells fur-

ther validate the finding that miRNAs expression is modulated with hypoxic stimuli: 145 
microRNAs were found to be differently expressed in a study conducted on the human car-

diac cell cultured under hypoxia compared the normoxia [49]. Among these, miR-146b was 

shown to play an important role in the adaptation of cardiomyocytes to chronic hypoxia and 

its inhibition augmented hypoxia-induced cardiomyocyte apoptosis [50].

A wide array of miRNAs have been reported to be dysregulated in children with CHDs, most 

of which are crucial in RV development and are specifically linked to a particular defect [24]. 

In addition, the hypoxic state of some CHDs further affects the miRNA profile of the heart. 
A recent study by Huang and colleagues shed a light on miRNA-184 as a possible player 

involved in the mechanism leading to cyanotic CHDs [51]. miRNA-184 expression was, in 

Hypoxia-Induced Molecular and Cellular Changes in the Congenitally Diseased Heart: Mechanisms...
http://dx.doi.org/10.5772/66038

149



fact, markedly decreased in myocardial samples from cyanotic CHDs patients, compared to 

controls and its suppression in vitro was also associated with decreased proliferation and 

induction of apoptosis, through a mechanism that likely involves the activation of Caspase-3 

and -9 by the oxidised miRNA-184 [51]. In another study aimed to evaluate the involvement 

of miRNAs in the hypoxic response of cardiomyocytes, the expression of miR-138 in myo-

cardial samples of cyanotic patients with TOF was almost twofold miR-138 expression in 

acyanotic group (VSD) patients [52]. This finding suggests that miR-138 might be used to dis-

criminate TOF from other subtypes of CHDs and further supports the evidence that miRNAs 

can shed a light on the knowledge of the aetiology of different CHDs and be predictive of the 
clinical outcome/management of these diseases.

3. Reoxygenation and reperfusion injuries

After a hypoxic event or status of the heart, it is crucial to intervene to re-establish a normal 

oxygen level. In most cases, the intervention involves heart surgery with cardiopulmonary 

bypass (CPB) and cardioplegic arrest (CA). During such heart surgery, the standard protocol 

involves the administration of high level of oxygen upon initiation of CPB and before CA. 

This causes what is commonly referred to as reoxygenation injury [53]. Following the estab-

lishment of CPB, the heart is stopped (ischemic period) to carry out the corrective surgery. 

When the ischemic heart is reperfused at the end of intervention, a reperfusion injury occurs. 

The severity of this reperfusion injury depends on the severity of the ischemic period and may 

be linked to delayed post-operative recovery [54].

It has been widely reported that free oxygen radical formation plays an important role in 

the development of ischemia-reperfusion injury in the heart as well as in various organs. 

In the reperfused heart, this oxidant formation derives form a series of interacting path-

ways in cardiac myocytes and endothelial cells, which involve also leukocyte chemotaxis 

and inflammation. The white blood cells are, in fact, another great source of ROS: when 
activated by the binding to the hypoxic endothelium, they produce chemotactic substances 

and oxygen radicals, which are the main responsible for cellular damage [55]. In addition, 

nitric oxide (NO) production is greatly increased in post-ischemic hearts, thus impairing 

vascular reactivity [56].

It has been demonstrated that the damage resulting from the reperfusion event is more 

severe in hypoxic (low oxygen supply), compared to ischemic (low coronary flow) hearts 
[57]. When comparing the effects of reperfusion, respectively, in ischemic and hypoxic 
hearts, Samaja et al. found that the myocardial depression, the energy demand, and the 

associated O
2
 free radicals were higher in the hypoxic rat hearts than the ischemic ones. 

Furthermore, the hearts subjected to chronic hypoxia are even more prone to the reoxygen-

ation injury than the hearts that have experienced acute hypoxic events. The compensatory 

changes that occur in chronic lack of oxygen may account for the higher predisposition 

to generate larger amounts of oxygen radicals with the reintroduction of high levels of 

oxygen [58].
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With many CHDs being characterized by a chronic hypoxic status, the subset of cyanotic 

children is obviously at a higher risk than the acyanotic CHDs population [59]. Clinical 

studies have shown that, despite similar cross-clamp times during open heart surgery, 

cyanotic children have worse clinical outcome and more reoxygenation injury, measured 

by troponin I release, compared with acyanotic children [11]. The major problem arises 

from the oxygen reintroduction during the cardiopulmonary bypass (CPB), which is a 

necessary procedure for the surgical management of CHDs [55]. As the chronic hypoxia 

produces long-term changes in the myocardial metabolism and function, the sudden oxy-

gen reintroduction further exacerbates these effects. The impaired contractility due to 
hypoxia-induced calcium overload and the loss of high energy phosphates are examples 

of the pathological events amplified by the reoxygenation [59, 60]. In addition, the deple-

tion of endogenous antioxidants that characterize chronic cyanosis cannot counteract the 

oxygen radical-mediated injury when oxygen is reintroduced [61]. On the contrary, mini-

mal changes in the antioxidant reserve capacity were reported before and after the CPB in 

acyanotic infants, suggesting that, in the absence of hypoxia, a small amount of oxygen free 

radicals are produced [62].

The effect of reoxygenation injury due to CPB in corrective heart surgery in cyanotic children 
has further been proven by a significant change in the myocardial gene expression profile 
[21]. In particular, a wide genome expression array study found 32 significantly downregu-

lated and three upregulated genes in cyanotic heart biopsies taken before and after hyperoxic 

CPB. Among the upregulated genes after reoxygenation, MOSC1, a factor involved in super-

oxide generation [63], showed a great increase at a mRNA level, thus suggesting its possible 

involvement in the increase in CPB-induced oxidative stress. On the other hand, the down-

regulation of the taurine transporter (TAUT) and the consequent depletion of the documented 

cardioprotective taurine [64] may in part explain some aspects of the myocardial injury, such 

as the mitochondrial and myofibers dysfunction. In addition, 8-isoprostane, a reliable marker 
of oxidative stress, was increased after CPB, and this correlated with the downregulation of 

keys genetic pathways related to myocardial function and to the reduction in antioxidant 

defenses [21]. It, therefore, appears obvious that the maintenance of endogenous antioxidants 

during hypoxia is a crucial determinant of tissue recovery on reoxygenation.

It has been suggested that HIF-α might as well stand as target for cardioprotection upon 
reoxygenation, by inhibiting mitochondrial oxidative metabolism and therefore reducing the 

generation of ROS under hypoxia-reoxygenation [6].

MicroRNA expression also appears to be affected by the reoxygenation event. In a study 
by Bolkier et al., the plasma levels of some cardiac-associated miRNA were dramatically 

increased after surgery of children undergoing open-heart surgery for CHDs. The increase 

in the selected miRNAs (microRNA-208a, -208b and -499) correlated with higher troponin 

levels and delayed hospital discharge [65]. This evidence further justifies the use of circulating 
miRNAs as biomarkers not only for the diagnosis but also for prognosis and prediction of sur-

gical clinical outcome. In addition, through two different approaches—overexpression and 
inhibition—miRNAs might represent a suitable target to therapeutically treat those defect 
characterized by an altered expression of their level.
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4. Strategies of surgical intervention

In order to reduce the risk associated with reoxygenation injury in children undergoing open-

heart surgery, different interventional strategies have been explored. One of the strategies 
proposed to avoid this injury is the “controlled reoxygenation”, achieved by using a partial 

pressure of oxygen in arterial blood (PaO
2
) similar to the patient’s preoperative oxygen satu-

ration when starting CPB [66].

Before its adoption in current clinical practices, several experimental studies on animal mod-

els have provided the evidence that the biochemical and the functional status of the cya-

notic heart are improved by delaying reoxygenation upon cardiopulmonary bypass. Morita 

and colleagues set up an in vivo experimental animal model where immature piglet hearts 

were subjected to hypoxemia followed by uncontrolled reoxygenation at high oxygen ten-

sion (400 mmHg) or controlled oxygenation at ambient tension (40 mmHg) followed by a 

raising in the tension to 100 mmHg first and 400 mmHg later. The authors found that lipid 
peroxidation was reduced while antioxidant reserve capacity preserved in the controlled-

reoxygenation group, with this outcome correlating with improved ventricular contractility 

and functional recovery [67]. In addition, using a modified cold blood cardioplegia, enriched 
with potassium, the calcium influx was limited and the impaired contractility restored upon 
reoxygenation [66]. Similar results were obtained in another animal study where controlled 

normoxic reoxygenation showed a better outcome than abrupt oxygen reintroduction at high 
pressure. Furthermore, the effect of leukodepletion was examined in this study, in order to 
verify whether the removal of an important source of ROS, the white blood cells, would mini-

mize the reoxygenation injury. The depletion of leukocytes from the blood-reduced oxygen 

free radical formation and preserved ventricular contractility at similar extent to the one 

achieved by controlled reoxygenation [55].

The beneficial effect of controlling the rate of re-introduction of molecular oxygen was also 
evident in adult patients. Lower lipid peroxidation and preserved antioxidant levels were 

observed in patients receiving normoxic reoxygenation, compared to the hyperoxic ones, 

although no significant difference between the two groups was found in the cardiac perfor-

mance after CBP, likely because this was measured at one low time point of the Starling frac-

tion curve [68]. The controlled-reoxygenation procedure has subsequently been adopted in 

the operations of cyanotic infants undergoing cardiac surgery, obtaining similar results to the 

ones seen in the acute experimental model [58].

Subsequent studies have further confirmed these findings and stressed the importance of 
controlled reoxygenation on starting CPB in cyanotic patients. In two randomized controlled 

trials including cyanotic children receiving CBP, we showed that the reduced myocardial 

injury in the controlled normoxic group was accompanied by a reduction in cerebral and 

hepatic injury, assessed by S100 and άGT measurement, which are markers of neuron and 
hepatocytes damage, respectively [69, 70]. In a different study, we have also analysed the 
effect of the two reoxygenation approaches on the myocardial gene expression profile of 
cyanotic paediatric patients undergoing corrective heart surgery. Results showed that the 

controlled reoxygenation reduced the transcriptomic alteration observed following hyper-

oxic CPB. The most differentially expressed genes, mainly downregulated, were related 
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to remodelling and metabolic processes, suggesting that the hearts subjected to hyperoxic 

reoxygenation had lower adaptation and remodelling capacity than the ones with controlled 

reoxygenation CBP [21].

Another approach of intervention, in the management of CPB, has involved the effect of 
whole body temperature during the paediatric cardiac surgery.

Although standard CPB procedures have always been conducted by cooling down the body 

temperature to 28° (hypothermic CPB), in order to reduce the metabolic rate and oxygen con-

sumption, and therefore to protect organs from ischemic injury, recent evidences have dem-

onstrated that normothermic (35°–37°) CPB is associated with lower inflammatory response 
and organ injury, both in adult and children [71–73].

In addition, we have shown that normothermic CPB in paediatric patients is also associated 

with reduced oxidative stress, assessed by troponin I and Isoprostane-8 release, compared with 

hypothermic CPB, while the inflammatory response has similar levels in the two groups [74].

Other researches have also investigated the effect of the temperature of cardioplegia dur-

ing paediatric CPB. Warm blood cardioplegia, for long time adopted only in adult heart sur-

gery, has proved to be safe and effective compared to standard cold CPB, with even better 
hydric balance and hemodynamic stability [75]. Once again, the pre-existent hypoxic status 

affects the biochemical and clinical outcome of the cardioplegic technique used. We have also 
shown that while for acyanotic patients the cardioplegic technique is not critical, for cyanotic 

patients, the use of cold blood cardioplegia with terminal warm blood cardioplegic reperfu-

sion (“hot shot”) improves the metabolic and functional recovery. The hot shot cardioplegia 

resulted in higher reperfusion ATP, ATP/ADP and glutamate levels than acyanotic patients, 

suggesting that this technique is advantageous only in stressed hearts [76]. Furthermore, the 

study shows that even if the blood cardioplegia is kept at cold temperature, this still offers a 
higher myocardial protection, compared to the crystalloid cardioplegia, confirming previous 
experimental and clinical results [77–79].

Besides CPB strategies, a pharmacological approach could be used as an interventional strat-

egy for perioperative cardioprotection of hypoxic hearts. Experimental studies have shown 

that the selective inhibition of the enzyme phosphodiesterase-5 (PDE-5) can offer myocardial 
protection in infant hearts by improving myocardial function and reducing infarct size dur-

ing reperfusion. However, no direct evidence between this protective effect and the hypoxia-
induced injury was shown [80].

As for its established role in hypoxia, HIF-1α has also been investigated as a target for 
hypoxia-induced myocardial injury in reperfusion. By stabilizing its active form, through the 

compound dimethyloxyglycine (DMOG), a novel HIF-1α stabilizer, Zhang et al. showed that 
the progression of hypoxia-induced right ventricle remodelling was significantly reduced in 
a murine model of chronic hypoxia, most likely as a result of the induction of genes related to 

adaptive processes [81].

Furthermore, as previously mentioned, miRNAs are being extensively investigated as poten-

tial therapeutic tools in the management of CHDs. However, despite the fact that the road 

ahead looks promising and appealing, some obstacles, like the stability, the off-target effects 
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and the immunogenicity of the delivery vehicles, still need to be overcome before getting 
miRNA-based therapeutics into clinical practice.

5. Conclusion

In conclusion, important steps ahead have been made in the knowledge of the mechanisms 

by which hypoxia takes part to the onset of congenital heart diseases, especially with regard 

to cyanotic patients. Likewise, significant advances have been made in the strategies of inter-

vention involving open-heart surgery of children with these defects; in order to reduce the 

injury induced by CPB reoxygenation. Hopefully, the further understanding of the signal-

ling pathways and the mechanism underlying the pathophysiology of hypoxia and hypoxia-

induced reoxygenation injury in each kind of defect will result in the development of even 

better therapeutic strategies and in the design of specific interventions, particularly for the 
high-risk population.
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