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Abstract

With the fast progression of renewable energy markets, the importance of combining 
different sources of power into a hybrid renewable energy system (HRES) has gained 
more attraction. These hybrid systems can overcome limitations of the individual gener-
ating technologies in terms of their fuel efficiency, economics, reliability and flexibility. 
One of the main concerns is the stochastic nature of photovoltaic (PV) and wind energy 
resources. Wind is often not correlated with load patterns and may be discarded some-
times when abundantly available. Also, solar energy is only available during the day 
time. A hybrid energy system consisting of energy storage, renewable and nonrenew-
able generation can alleviate the issues associated with renewable uncertainties and fluc-
tuations. Large number of random variables and parameters in a hybrid energy system 
requires an optimization that most efficiently sizes the hybrid system components to real-
ize the economic, technical and designing objectives. This chapter provides an overview 
of optimal sizing and optimization algorithms for hybrid renewable energy systems as 
well as different objective functions considered for designing such systems.

Keywords: hybrid energy system, objectives, optimization, renewable energy, sizing

1. Introduction

Use of solar and wind power has become more and more significant, attractive and less 
expensive, since the oil crises in the early 1970s. Even though there is a need to use renew-

able energy sources, the main problem with it is the dependency on environmental condi-
tions like solar irradiance and wind speed. The individual energy sources cannot provide 
continuous power supply to the load because of the uncertainty and on-and-off nature of the 
environmental  conditions [1]. Combining intermittent renewable energy sources with other 
dispatchable sources of energy such as biogas and fuel cells as well as energy storage  systems 
provides a solution to address this challenge. Hybrid renewable energy system (HRES) is 
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a term to describe the combination of two or more renewable and nonrenewable energy 

sources. Basic components of such systems are power sources (wind turbine, diesel engine 
generator and solar arrays), the battery and the power management center, which regulates 
power production from each of the sources [1]. As an example of such systems, microgrid is 
an integrated energy system that includes energy resources, loads and storages. Microgrids 
found popularity over the years due to the needs for distributed generation and with the 
integration of HRESs including photovoltaic (PV) and wind generators as well as the battery 
storage devices. The microgrids have many benefits for both utility grids and customers, such 
as higher power quality, reduction in carbon emission, energy efficiency and reduced costs. 
Another capability of microgrids is islanding which allows the microgrid to be disconnected 
from the utility grid in the case of upstream disturbances or voltage fluctuations [2].

Operating an HRES requires optimizing its performance while satisfying its physical and 
technical constraints. Therefore, optimization tools, techniques and applications have found 
popularity to achieve these goals [3].

This chapter provides an overview of the optimization techniques, optimization objectives and 
component sizing for hybrid renewable energy systems. Section 2 summarizes optimal sizing 
results of hybrid renewable energy systems in different studies. Section 3 describes the three 
commonly used algorithms to optimize the operation and modelling of hybrid energy systems: 
classical algorithms, metaheuristic algorithms and hybrid algorithms. Section 4 reviews differ-

ent objective functions, constraints and indexes in use for the hybrid system optimization.

2. Optimal sizing for hybrid renewable energy systems

HRESs require an optimal design for their component sizing to economically, efficiently and 
reliably meet the objectives outlined in Section 4. Table 1 provides examples of studies related 

References Components of the hybrid system Load specifications Sizing results

[4] Wind turbine (WT), photovoltaic (PV) 
and battery

225 kW peak, 25 kW base 195 kW WT, 85 kW PV, 230 kW 
microturbine, 2.14 kAh battery

[5] WT, PV, microturbine and battery 1.5 kW constant 6 kW WT, 12.8 kW PV, 6 kAh 
battery

[6] WT, PV, diesel and battery 26 kW peak, 5 kW base 15 kW WT, 24 kW PV50 kW 
diesel, 151 kWh battery

[7] WT, PV and battery 1500 W 78 × 100 W PV, 2 × 6 kW WT, 5000 
Ah (24 V) battery

[8] PV, diesel and battery 3.5 kW peak, 0.25 kW base 2.8 kW DG, 4.2 m2 PV, 2.75 kWh 
battery

[9] Wind, PV and energy storage 1 MW peak, 0.4 MW base 2.096 MW wind, 0 MW PV, 6.576 
MWh energy storage

[10] Wind, PV and energy storage 2.42 MW wind, 0 MW PV, 6.7878 
MWh energy storage

Table 1. Optimal sizing of HRESs.
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to HRES optimal sizing along with details regarding the hybrid system components, their 
load characteristics and sizing results.

3. Optimization algorithms for hybrid renewable energy systems

Optimization algorithms are ways of computing maximum or minimum of mathematical func-
tions. Different objectives can be considered when optimizing a system’s design. Maximizing 
the efficiency of the system and minimizing the cost of its production are examples of such 
objectives. Optimization methods and techniques can help to solve complex problems. When 
designing a HRES, we have to consider its components’ performances. The main goal is to 
have a better performance with reduced costs. These goals can be achieved through optimal 
modelling of the system [11]. The three commonly used modelling and optimization tech-
niques for hybrid systems are classical algorithms, metaheuristic methods and hybrid of two 
or more optimization techniques.

3.1. Classical techniques

Classical optimization algorithms use differential calculus to find optimum solutions for 
differentiable and continuous functions. The classical methods have limited capabilities for 
applications whose objective functions are not differentiable and/or continuous. Several con-
ventional optimization methods have been used for hybrid energy systems. Linear program-

ming model (LPM), dynamic programming (DP) and nonlinear programming (NLP) are 
examples of classical algorithms widely in use for optimizing HRESs.

Linear programming model (LPM) studies the cases in which the objective function is linear 
and the design variable space is specified using only linear equalities and inequalities.

This model has been used in several studies for HRES optimization [12–17]. These studies 
take advantage of the LPM capabilities to stochastically perform reliability and economic 
analysis. However, the energy delivery capability of the overall system is adversely affected 
by failure of any of the renewables to function properly [11].

Nonlinear programming (NLP) model studies the general cases in which the objective func-
tions or the constraints or both contain nonlinear parts. This model has been used in some 
studies [18, 19]. The model enables solving complex problems with simple operations. 
However, high number of iterations for numerical methods such as NLP increases the com-

putational burden of the problem [11].

Dynamic programming (DP) studies the cases in which the optimization strategy is based 
on splitting the problem into smaller subproblems. This method helps solving sequential or 
multistage problems in which the stages are related together. One advantage of DP is the 
ability of optimizing each stage. Therefore, it can address the complexity of larger systems. 
However, high number of recursive functions for DP makes the coding and implementation 
complex and confusing [11]. Ref. [20] provides an example of studies that uses DP for HRES 
optimization.
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3.2. Metaheuristic techniques

Metaheuristic search techniques have been extensively used for optimizing complex sys-
tems such as HRESs due to their capabilities to give efficient, accurate and optimal solu-
tions. These algorithms are nature-inspired as their developments are based on behaviour of 
nature. Examples of metaheuristic optimization in use for HRESs include genetic algorithm 
(GA), particle swarm optimization (PSO), simulated annealing (SA) and ant colony (AC) 
algorithm.

Genetic algorithm (GA) is an evolutionary population-based algorithm that includes sev-
eral operations such as initialization, mutation, crossover and selection to ensure finding an 
optimal solution to a given problem. Several studies used GA to optimize the design and 
operation of HRESs [21–28]. GA may result in local optima if it is not initialized or designed 
properly.

Particle swarm optimization (PSO) simulates the social behaviour of how a swarm moves to 
find food in a specific area. It is an iterative algorithm with the goal of finding a solution for a 
given objective function within a given space. Its application for optimizing HRESs has been 
investigated in several studies [29–34]. PSO is efficient in solving the scattering and optimiza-
tion problems. However, it requires several modifications due to its complex and conflicted 
nature [11].

Simulated annealing (SA) is based on the metal annealing processing. A metal gets melted at 
a very high temperature and then it gets cooled down and finally gets frozen into a crystal-
line state with the minimum amount of energy. As a result, the metal develops larger crystal 
sizes with a minimum amount of defects in its metallic structure. SA has been used for hybrid 
system sizing in several studies such as [35].

Ant colony (AC) algorithm is based on behaviour of ants to use a specific pheromone to 
mark the path for other ants. More pheromones are left on the path as more ants follow the 
same path. On the other hand, if a path is not used, then the smell of the last pheromone 
will disappear. Ants are more attracted to the paths with the most pheromone smells and it 
usually leads them to places with most foods. By following this method, ants mark the short-
est path towards food. AC simulates this behaviour to find the most optimal solution for a 
given objective function [36]. This algorithm has been used for size optimization for hybrid 
systems [37]. AC algorithms have high convergence speed but require long-term memory 
space [11].

3.3. Hybrid techniques

Combination of two or more optimization techniques can overcome limitations of the 
individual techniques mentioned above to provide more effective and reliable solu-
tions for HRESs. This combination is referred to as hybrid techniques. Examples of such 
 techniques are SA-Tabu search; Monte Carlo simulation (MCS)-PSO; hybrid iterative/GA; 
MODO (multiobjective design optimization)/GA; artificial neural fuzzy interface system 
(ANFIS); artificial neural network/GA/MCS; PSO/DE (differential evolution); evolutionary 
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 algorithms and simulation optimization-MCS which have been used in several studies for 
optimizing HRESs [38–47]. Although hybrid techniques enhance the overall performance 
of the optimization, they may suffer from some limitations. Examples of such limitations 
are the partial optimism of the hybrid MCS-PSO method in [40], suboptimal solutions 
of the hybrid  iterative/GA in [41], cost-sizing compromise of the hybrid methods in [42, 
43], design complexity of the hybrid ANN/GA/MCS method in [44], random adjusting 
of the inertia weight of the evolutionary algorithm in [46] and coding complexity of the 
 optimization-MCS in [47].

4. Optimization objectives for HRESs

Various criteria are considered for optimal design and component sizing of HRESs. These 
criteria can be broadly categorized as economic and technical. Economic criteria are used to 
minimize costs of HRESs. Technical criteria include reliability, efficiency and environmental 
objectives to supply the load demand of HRESs at desired reliability levels with maximum 
efficiency and minimum greenhouse gas emissions.

4.1. Cost optimization

HRESs often times include higher capital costs and lower operation and maintenance 
(O&M) costs which require an optimization to determine the compromise solution between 
the costs and benefits. Cost optimization of hybrid renewable energy systems includes 
minimizing energy cost, net present cost (NPC) and any other costs associated with such 
systems.

4.1.1. Energy cost minimization

Several studies have investigated minimizing levelized cost of energy (LCE) for HRESs. LCE 
is the ratio of total cost of the hybrid system to the annual energy supplied by the system. 
Table 2 summarizes the related research works, their objective functions, techniques in use 
for optimization and their main findings.

4.1.2. Net present cost minimization

Net present cost (NPC) of an HRES is defined as the total present value of the system that 
includes the initial cost of the system components as well as the replacement and mainte-
nance cost within the project lifetime. The objective here is to minimize the NPC of HRESs. 
Table 3 summarizes the related research works, their objective functions, techniques in use 
for  optimization and their main findings.

4.1.3. Other cost-related optimization

Other cost-related optimizations include minimizing life cycle cost (LCC), levelized unit 
 electricity cost (LUEC), annualized cost of the system (ACS), capital cost (CC) of the hybrid 
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References Objective function(s) Optimization 

technique

Findings
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Monthly and daily energy 
balances are evaluated for 
optimal configurations of 
hybrid PV/wind systems.
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system, total cost of the system (TCS) and average generation cost (AGC). Table 4 summa-

rizes the related research works, their objective functions, techniques in use for optimization 
and their main findings.

4.2. Technical optimization

Besides the cost optimization explained in Section 4.1, technical objectives can be also 
 optimized when designing an HRES. Technical objectives include, but are not limited to, 

Table 2. Optimization of HRESs for minimizing LCE.

References Objective function(s) Optimization 

technique

Findings
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 satisfying desired reliability levels based on loss of power supply probability (LPSP) or loss 
of load probability (LOL) [64–66], minimizing cost/efficiency ratio [67], minimizing carbon 
emissions [68] and maximizing power availability [69]. Table 5 summarizes the related 
research works, their objective functions, techniques in use for optimization and their main 
findings.

References Objective function Optimization 

technique

Findings
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diesel/battery power systems.

[59]
( ),

1

min  
N t

d N cap rep main s

N

NPC f C C C C
=

=

= + + −∑

t = the project life time
C

cap
, C

rep
, C

main
 and C

s
 = the nominal capital, 
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Two scenarios are modeled for 
stand-alone hybrid renewable 

systems with hydrogen production 
and storage. The hybrid wind/
PV model was found to provide 
the optimal configuration for the 
study area.

Table 3. Optimization of HRESs for minimizing NPC.
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load and water desalination 
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Table 4. Optimization of HRESs for minimizing other costs.
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per unit;
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 = the capital cost for the ith device;
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 = the rating in kW of the ith device.

An integrated renewable 
energy optimization model 
(IREOM) is developed to size 
renewable energy systems for 

desired reliability levels.
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