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Abstract

The chapter is devoted to study the oscillation of all solutions to second-order nonlinear
neutral damped differential equations with delay argument. New oscillation criteria are
obtained by employing a refinement of the generalized Riccati transformations and
integral averaging techniques.
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1. Introduction

In the chapter, we are mainly concerned with the oscillatory behavior of solutions to second-

order nonlinear neutral damped differential equations with delay argument of the form

�

rðtÞ
�

z′ðtÞ
�

α
�′

þ pðtÞ
�

z′ðtÞ
�

α

þ qðtÞf
�

xðσðtÞÞ
�

¼ 0, t ≥ t0, (1)

where α≥1 is a quotient of positive odd integers and

zðtÞ ¼ xðtÞ þ aðtÞxðτðtÞÞ: (2)

Throughout, we suppose that the following hypotheses hold:

i. r, p, q∈Cðℐ, ℝþÞ, where ℐ ¼ ½t0, ∞Þ and ℝ
þ ¼ ð0;∞Þ;

ii. a∈Cðℐ, ℝÞ, 0 ≤ a ðtÞ ≤ 1;
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iii. τ∈Cðℐ, ℝÞ, τðtÞ≤t, τðtÞ ! ∞ as t ! ∞;

iv. σ∈C1ðℐ, ℝÞ, σðtÞ≤t, σ′ðtÞ≥0, σðtÞ ! ∞ as t ! ∞;

v. f∈Cðℝ, ℝÞ, such that xf ðxÞ > 0 and f ðxÞ=xβ≥k > 0 for x=¼ 0, where k is a constant and β is

the ratio of odd positive integers.

By a solution of Eq. (1), we mean a nontrivial real-valued function xðtÞ, which has the property

zðtÞ∈C1ð½Tx, ∞ÞÞ, rðtÞ
�

z′ðtÞ
�α

∈C1ð½Tx, ∞ÞÞ, Tx≥t0, and satisfies Eq. (1) on ½Tx, ∞Þ. In the sequel,

we will restrict our attention to those solutions xðtÞ of Eq. (1) that satisfy the condition

sup {jxðtÞj : T≤t < ∞} > 0 for T≥Tx: (3)

We make the standing hypothesis that Eq. (1) admits such a solution. As is customary, a

solution of Eq. (1) is said to be oscillatory if it is neither eventually positive nor eventually

negative on ½Tx, ∞Þ and otherwise, it is termed nonoscillatory. The equation itself is called

oscillatory if all its solutions are oscillatory.

Remark 1. All the functional inequalities considered in the sequel are assumed to hold even-

tually, that is, they are satisfied for all t large enough.

Oscillation theory was created in 1836 with a paper of Jacques Charles François Sturm

published in Journal des Mathematiqués Pures et Appliqueés. His long and detailed memoir [1]

was one of the first contributions in Liouville's newly founded journal and initiated a whole

new research into the qualitative analysis of differential equations. Heretofore, the theory of

differential equations was primarily about finding solutions of a given equation and so was

very limited. Contrarily, the main idea of Sturm was to obtain geometric properties of solutions

(such as sign changes, zeros, boundaries, and oscillation) directly from the differential equa-

tion, without benefit of solutions themselves.

Henceforth, the oscillation theory for ordinary differential equations has undergone a signifi-

cant development. Nowadays, it is considered as coherent, self-contained domain in the

qualitative theory of differential equations that is turning mainly toward the study of solution

properties of functional differential equations (FDEs).

The problem of obtaining sufficient conditions for asymptotic and oscillatory properties of

different classes of FDEs has experienced long-term interest of many researchers. This is

caused by the fact that differential equations, especially those with deviating argument, are

deemed to be adequate in modeling of the countless processes in all areas of science. For a

summary of the most significant efforts and recent findings in the oscillation theory of FDEs

and vast bibliography therein, we refer the reader to the excellent monographs [2–6].

In a neutral delay differential equation the highest-order derivative of the unknown function

appears both with and without delay. The study of qualitative properties of solutions of such

equations has, besides its theoretical interest, significant practical importance. This is due to the

fact that neutral differential equations arise in various phenomena including problems

concerning electric networks containing lossless transmission lines (as in high-speed computers
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where such lines are used to interconnect switching circuits), in the study of vibrating masses

attached to an elastic bar or in the solution of variational problems with time delays. We refer the

reader to the monograph [7] for further applications in science and technology.

So far, most of the results obtained in the literature has centered around the special undamped

form of Eq. (1), i.e., when pðtÞ ¼ 0 (for example, see Refs. [8–18]). For instance, in one of the

pioneering works on the subject, Grammatikopoulos et al. [8] studied the second-order neutral

differential equation with constant delay of the form

ðxðtÞ þ aðtÞxðt−τÞ″ þ qðtÞxðt−τÞ ¼ 0 (4)

and proved that Eq. (4) is oscillatory if
ð

∞

t0

qðsÞ
�

1−aðs−τÞ
�

ds ¼ ∞: (5)

Later on, Grace and Lalli [9] extended the results from [8] to the more general equation

�

rðtÞðxðtÞ þ aðtÞxðt−τÞ′
�′

þ qðtÞf
�

xðt−τÞ
�

¼ 0, (6)

with

f ðxÞ

x
≥k, k > 0 and

ð

∞

t0

ds

rðsÞ
¼ ∞ (7)

and showed that Eq. (6) is oscillatory if there exists a continuously differentiable function ρðtÞ

such that

ð

∞

t0

ρðsÞqðsÞð1−aðs−τÞÞ−

�

ρ′ðsÞ
�2

rðs−τÞ

4kρðsÞ

0

B

@

1

C

A
ds ¼ ∞: (8)

In Ref. [10], Dong has involved to study the oscillation problem for a half-linear case of Eq. (1)

and by defining a sequence of continuous functions has obtained various kinds of better

results. Afterward, his approach has been further developed by several authors, see, e.g., [11–

14]. However, it appears that very little is known regarding the oscillation of Eq. (1) with pðtÞ≠0

and α≠β. Motivated by the results of Ref. [10], this chapter presents some new oscillation

criteria, which are applicable on Eq. (1).

On the other hand, Eq. (1) can be considered as a natural generalization of the second-order

delay differential equation of the form

�

rðtÞ
�

x′ðtÞ
�α�

þ pðtÞ
�

x′ðtÞ
�α

þ qðtÞf
�

xðσðtÞÞ
�

¼ 0: (9)

Very recently, the authors of [19] studied the oscillation problem of Eq. (9) with pðtÞ ¼ 0 and

α ¼ β. Their ideas, which are based on careful investigation of classical techniques covering
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Riccati transformations and integral averages, will be extended to the more general equa-

tion (1).

2. Main results

For the simplicity and without further mention, we use the following notations:

AðtÞ ¼ exp −

ðt

t0

pðsÞ

rðsÞ
ds

� �

, QðtÞ ¼ kqðtÞ
�

1−aðσðtÞÞ
�β

, (10)

RðtÞ ¼

ð

∞

t

AðsÞ

rðsÞ

� �1
α

ds, ~QðtÞ ¼ qðtÞ 1−aðσðtÞÞ
RðτðσðtÞÞÞ

RðσðtÞÞ

� �β

, (11)

PðtÞ ¼
φ′ðtÞ

φðtÞ
−
pðtÞ

rðtÞ
, ~qðtÞ ¼ QðtÞ þ

pðtÞAðtÞ

rðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds, (12)

where φðtÞ∈C1ðℐ, ℝÞ is a given function and will be specified later.

The organization of this chapter is as follows. Before stating our main results, we present two

lemmas that ensure that any solution xðtÞ of Eq. (1) satisfies the condition

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; (13)

for t sufficiently large. Next, we get our main oscillation results for Eq. (1) by employing the

generalized Riccati transformations and integral averaging techniques. We base our arguments

on the assumption that the function PðtÞ is positive or negative.

Lemma 1. Assume that

ð

∞

t0

AðsÞ

rðsÞ

� �1
α

ds ¼ ∞ (14)

holds and Eq. (1) has a positive solution xðtÞ on ℐ. Then there exists a T∈ℐ, sufficiently large,

such that

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; (15)

on ½T, ∞Þ.

Proof. Since, xðtÞ is a positive solution of Eq. (1) on ℐ, then, by the assumptions ðiiiÞ and ðivÞ,

there exists a t1∈ℐ such that xðτðtÞÞ > 0 and xðσðtÞÞ > 0 on ½t1, ∞Þ. Define the function zðtÞ as in

Eq. (2). Then it is easy to see that zðtÞ≥xðtÞ > 0, for t≥t1, and at the same time, from Eq. (1), we

get
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�

rðtÞ
�

z′ðtÞ
�α�′

þ pðtÞ
�

z′ðtÞ
�α

¼ −qðtÞf
�

xðσðtÞÞ
�

< 0: (16)

We assert that rðtÞ
AðtÞ

�

z′ðtÞ
�α

is decreasing. Clearly, by writing the left-hand side of Eq. (16) in the

form

�

rðtÞ
�

z′ðtÞ
�α�′

þ
pðtÞ

rðtÞ
rðtÞ
�

z′ðtÞ
�α

< 0; (17)

we get

rðtÞ

AðtÞ

�

z′ðtÞ
�α

� �′

¼ −
qðtÞ

AðtÞ
f ðxðσðtÞÞÞ < 0 (18)

and so the assertion is proved.

Now, we claim that z′ðtÞ > 0 on ½t1, ∞Þ. If not, then there exists t2∈½t1, ∞Þ such that z′ðt2Þ < 0.

Using the fact that rðtÞ
AðtÞ

�

z′ðtÞ
�α

is decreasing, we obtain, for t≥t2,

rðtÞ

AðtÞ

�

z′ðtÞ
�α

< c :¼
rðt2Þ

Aðt2Þ

�

z′ðt2Þ
�α

< 0: (19)

Integrating the above inequality from t2 to t, we find that

zðtÞ < zðt2Þ þ c
1
α

ðt

t2

AðsÞ

rðsÞ

� �1
α

ds (20)

for t≥t2: By condition (14), zðtÞ approaches to −∞ as t ! ∞, which contradicts the fact that zðtÞ is

eventually positive. Therefore, z′ðtÞ > 0 and from Eq. (1), we have that
�

rðtÞ
�

z′ðtÞ
�α�′

< 0. The

proof is complete.

Lemma 2. Assume that

ð

∞

t0

AðuÞ

rðuÞ

ðu

t0

~QðsÞRβðσðsÞÞ

AðsÞ
ds

 !1
α

du ¼ ∞, (21)

holds and Eq. (1) has a positive solution xðtÞ on ℐ. Then there exists T∈ℐ, sufficiently large,

such that

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; (22)

on ½T, ∞Þ.
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Proof. Similarly to the proof of Lemma 1, we assume that there exists t2∈ℐ such that z′ðtÞ < 0

on ½t2, ∞Þ. Taking Eq. (18) into account, we have

z′ðsÞ≤
rðtÞ

AðtÞ

AðsÞ

rðsÞ

� �1
α

z′ðtÞ, (23)

for s≥t≥t2. Integrating the above inequality from t to t′, t′
≥t≥t2, we get

zðt′Þ≤zðtÞ þ
rðtÞ

AðtÞ

� �1
α

z′ðtÞ

ðt′

t

rðsÞ

AðsÞ

� �

−
1
α

ds: (24)

Letting t′ ! ∞, we have

zðtÞ≥−RðtÞ
rðtÞ

AðtÞ

� �1
α

z′ðtÞ, (25)

which yields

zðtÞ

RðtÞ

� �

≥0 (26)

and hence we see that zðtÞ
RðtÞ is nondecreasing. By Eq. (2) and ðiiiÞ, we have

xðtÞ ¼ zðtÞ−aðtÞxðτðtÞÞ

≥zðtÞ−aðtÞzðτðtÞÞ

≥ 1−aðtÞ
RðτðtÞÞ

RðtÞ

� �

zðtÞ,

(27)

which together with Eq. (1) and the assumption ðvÞ yields

�

rðtÞ
�

z′ðtÞ
�α�′

þ pðtÞ
�

z′ðtÞ
�α

≤−kqðtÞ 1−aðσðtÞÞ RðτðσðtÞÞÞRðσðtÞÞ

� �β

zβðσðtÞÞ

¼ −k~QðtÞzβðσðtÞÞ:

(28)

On the other hand, from Eq. (23), we have

rðtÞ
�

z′ðtÞ
�α

AðtÞ
≤

rðt2Þ
�

z′ðt2Þ
�α

Aðt2Þ
, (29)

that is,

rðtÞ

AðtÞ

�

−z′ðtÞ
�α

≥
rðt2Þ

Aðt2Þ

�

−z′ðt2Þ
�α

: ¼ γα (30)

for some positive constant γ. Setting Eq. (30) into Eq. (25), we obtain
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zðtÞ≥γRðtÞ (31)

and so, Eq. (28) becomes

�

rðtÞ
�

z′ðtÞ
�α�′

þ pðtÞ
�

z′ðtÞ
�α

≤−~γ ~QðtÞRβðσðtÞÞ, (32)

where ~γ : ¼ kγβ. Now, if we define the function

UðtÞ ¼ rðtÞ
�

−z′ðtÞ
�α

> 0; (33)

then

U′ðtÞ þ
pðtÞ

rðtÞ
UðtÞ≥~γ ~QðtÞRβðσðtÞÞ, (34)

or, equally

UðtÞ

AðtÞ

� �′

≥~γ
~QðtÞRβðσðtÞÞ

AðtÞ
: (35)

Integrating the above inequality from t2 to t, we get

UðtÞ≥~γAðtÞ

ðt

t2

~QðsÞRβðσðsÞÞ

AðsÞ
ds (36)

or

rðtÞ
�

−z′ðtÞ
�α

≥~γAðtÞ

ðt

t2

~QðsÞRβðσðsÞÞ

AðsÞ
ds: (37)

It follows from this last inequality that

0 < zðtÞ≤zðt2Þ−~γ

ðt

t2

AðuÞ

rðuÞ

ðu

t2

~QðsÞRβðσðsÞÞ

AðsÞ
ds

 !1
α

du (38)

for t≥t2: As t ! ∞, then by condition Eq. (21), zðtÞ approaches to −∞, which contradicts the

fact that zðtÞ is eventually positive. Therefore, z′ðtÞ > 0 and from Eq. (1), we have
�

rðtÞ
�

z′ðtÞ
�α�′

< 0. The proof is complete.

Lemma 3. Assume that

ð

∞

t0

AðuÞ

rðuÞ

ðu

t0

~QðsÞ

AðsÞ
ds

 !1
α

du ¼ ∞, (39)

holds and Eq. (1) has a positive solution xðtÞ on ℐ. Then there exists T∈ℐ, sufficiently large,

such that either
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zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; (40)

on ½T, ∞Þ or lim
t!∞

xðtÞ ¼ 0.

Proof. As in the proof of Lemma 1, we assume that there exists t2∈ℐ such that z′ðtÞ < 0 on

½t2, ∞Þ. So, zðtÞ is decreasing and

lim
t!∞

zðtÞ ¼: b≥0 (41)

exists. Therefore, there exists t3∈½t2, ∞Þ such that

zðσðtÞÞ > zðtÞ≥b > 0: (42)

As in the proof of Lemma 2, we obtain Eq. (27), i.e.,

xðσðtÞÞ ≥ 1−aðσðtÞÞ
RðτðσðtÞÞÞ

RðσðtÞÞ

� �

zðσðtÞÞ

≥b 1−aðσðtÞÞ
RðτðσðtÞÞÞ

RðσðtÞÞ

� �

, for t≥t3:
(43)

Thus,

�

rðtÞ
�

z′ðtÞ
�α�′

þ pðtÞ
�

z′ðtÞ
�α

≤−~b qðtÞ 1−aðσðtÞÞ
RðτðσðtÞÞÞ

RðσðtÞÞ

� �β

¼ −~b ~QðtÞ, (44)

where ~b :¼ kbβ.

Define the function UðtÞ as in Eq. (103). Then Eq. (44) becomes

UðtÞ

AðtÞ

� �′

≥~b
~QðtÞ

AðtÞ
: (45)

Integrating the above inequality twice from t3 to t, one gets

0 < zðtÞ≤zðt3Þ−~b

ðt

t3

AðuÞ

rðuÞ

ðu

t3

~QðsÞ

AðsÞ
ds

 !1
α

du, (46)

for t≥t3: As t ! ∞, then by condition (39), zðtÞ approaches to −∞, which contradicts the fact that

zðtÞ is eventually positive. Thus, b ¼ 0 and from 0≤xðtÞ≤zðtÞ, we see that lim
t!∞

xðtÞ ¼ 0. The

proof is complete.

Using results of Lemmas 1 and 2, we can obtain the following oscillation criteria for Eq. (1).

Theorem 1. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Furthermore,

assume that there exists a positive continuously differentiable function φðtÞ such that, for all

sufficiently large, T, T1≥T,
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PðtÞ≥0 (47)

on ½T, ∞Þ and

lim sup
t!∞

φðtÞAðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds þ

ðt

T1

φðsÞQðsÞ−
αα

ðαþ 1Þαþ1

φðsÞrðσðsÞÞ
�

PðsÞ
�αþ1

�

βσ′ðsÞψðsÞ
�α

2

6

4

3

7

5
ds

8

>

<

>

:

9

>

=

>

;

¼ ∞,

(48)

where

ψðtÞ ¼

c1, c1 is some positive constant if β > α

1; if β ¼ α

c2

ðt

T

r−
1
αðsÞds

� �

β−α
α

, c2 is some positive constant if β < α:

8

>

>

>

>

<

>

>

>

>

:

(49)

Then, Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (50)

on ½T, ∞Þ. In particular, we have

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (51)

By Eq. (2) and the assumption ðiiiÞ, we get

xðtÞ ¼ zðtÞ−aðtÞxðτðtÞÞ

≥zðtÞ−aðtÞzðτðtÞÞ

≥ð1−aðtÞÞzðtÞ,

(52)

which together with Eq. (1) implies
�

rðtÞ
�

z′ðtÞ
�α�′

þ
pðtÞ

rðtÞ

�

z′ðtÞ
�α

≤−kqðtÞ
�

1−aðσðtÞÞ
�β

zβðσðtÞÞ

¼ −QðtÞzβðσðtÞÞ:

(53)

We consider the generalized Riccati substitution

wðtÞ ¼ φðtÞ
rðtÞ

�

z′ðtÞ
�α

zβðσðtÞÞ
> 0; for t≥T: (54)

As in the proof of Lemma 1, we get Eq. (18), which in view of the assumption ðvÞ yields
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rðtÞ

AðtÞ

�

z′ðtÞ
�α

� �′

≤−
QðtÞ

AðtÞ
zβðσðtÞÞ: (55)

Integrating Eq. (55) from t to ∞ and using the fact that zðtÞ is increasing, we have

rðtÞ

AðtÞ

�

z′ðtÞ
�α

≥

ð

∞

t

QðsÞ

AðsÞ
zβðσðsÞÞds

≥zβðσðtÞÞ

ð

∞

t

QðsÞ

AðsÞ
ds:

(56)

So it follows from Eq. (56) and the definition (54) of wðtÞ that

wðtÞ ¼ φðtÞ
rðtÞ

�

z′ðtÞ
�α

zβðσðtÞÞ
≥φðtÞAðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds: (57)

By Eq. (53) we can easily prove that

w′ðtÞ ¼
�

rðtÞ
�

z′ðtÞ
�α�′ φðtÞ

zβðσðtÞÞ
þ

φðtÞ

zβðσðtÞÞ

� �′

rðtÞ
�

z′ðtÞ
�α

≤−
φðtÞ

zβðσðtÞÞ

�

pðtÞ
�

z′ðtÞ
�β

þQðtÞzβðσðtÞÞ
�

þ rðtÞ
�

z′ðtÞ
�α φ′ðtÞ

zβðσðtÞÞ
−

φðtÞ
�

zβðσðtÞÞ
�

zβþ1ðσðtÞÞ

0

@

1

A

≤−φðtÞQðtÞ þ wðtÞ
φ′ðtÞ

φðtÞ
−
pðtÞ

rðtÞ

� �

−βφðtÞ
rðtÞðz′ðtÞβz′ðσðtÞσ′ðtÞ

zβþ1ðσðtÞÞ
:

(58)

On the other hand, since rðtÞ
�

z′ðtÞ
�α

is decreasing, we have

z′ðσðtÞÞ

z′ðtÞ
≥

rðtÞ

rðσðtÞÞ

� �1
α

(59)

and thus Eq. (58) becomes

w′ðtÞ≤ −φðtÞQðtÞ þ PðtÞwðtÞ

−
βφðtÞσ′ðtÞ

r
1
αðσðtÞÞ

wðtÞ

φðtÞ

� �αþ1
α

z
β−α
α ðσðtÞÞ:

(60)

Now, we consider the following three cases:

Case I: β > α.
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In this case, since z′ðtÞ > 0 for t≥T, then there exists T1≥T such that zðσðtÞÞ≥c for t≥T1. This

implies that

z
β−α
α ðσðtÞÞ≥c

β−α
α :¼ c1 (61)

Case II: β ¼ α.

In this case, we see that z
β−α
α ðσðtÞÞ ¼ 1:

Case III: β < α.

Since rðtÞ
�

z′ðtÞ
�α

is decreasing, there exists a constant d such that

rðtÞ
�

z′ðtÞ
�α

≤d (62)

for t≥T. Integrating the above inequality from T to t, we have

zðtÞ≤zðTÞ þ

ðt

T

d

rðsÞ

� �1
α

ds: (63)

Hence, there exists T1≥T and a constant d1 depending on d such that

zðtÞ≤d1

ðt

T

r−
1
αðsÞds, for t≥T1 (64)

and thus

z
β−α
α ðσðtÞÞ≥d

β−α
α

1

ðt

T

r−
1
αðsÞds

� �

β−α
α

¼ d2

ðt

T

r−
1
αðsÞds

� �

β−α
α

(65)

for some positive constant d2.

Using these three cases and the definition of ψðtÞ, we get

w′ðtÞ≤−φðtÞQðtÞ þ PðtÞwðtÞ−
βσ′ðtÞψðtÞ

�

φðtÞrðσðtÞÞ
�1

α

w
1þα
α ðtÞ (66)

for t≥T1≥T. Setting

A :¼ PðtÞ, (67)

B :¼
βσ′ðtÞψðtÞ

�

φðtÞrðσðtÞÞ
�1

α

, (68)

and using the inequality
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Au−Bu
1þα
α ≤

αα

ðαþ 1Þαþ1

Aαþ1

Bα , (69)

we obtain

w′ðtÞ≤−φðtÞQðtÞ þ
αα

ðαþ 1Þαþ1

φðtÞrðσðtÞÞ
�

PðtÞ
�αþ1

�

βσ′ðtÞψðtÞ
�α : (70)

Integrating the above inequality from T1 to t, we have

wðtÞ≤wðT1Þ−

ðt

T1

φðsÞQðsÞ−
αα

ðαþ 1Þαþ1

φðsÞrðσðsÞÞ
�

PðsÞ
�αþ1

�

βσ′ðsÞψðsÞ
�α

0

B

@

1

C

A
ds: (71)

Taking Eq. (57) into account, we get

wðT1Þ ≥φðtÞAðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds

þ

ðt

T1

φðsÞQðsÞ−
αα

ðαþ 1Þαþ1

φðsÞrðσðsÞÞ
�

PðsÞ
�αþ1

�

βσ′ðsÞψðsÞ
�α

0

B

@

1

C

A
ds:

(72)

Taking the lim sup on both sides of the above inequality as t ! ∞, we obtain a contradiction to

the condition (48). This completes the proof.

Remark 2. Note that the presence of the term φðtÞAðtÞ

ð

∞

t

QðsÞ
AðsÞ ds in Eq. (57) improves a number

of related results in, e.g., [9, 13–18, 20].

Setting φðtÞ ¼ t in Eq. (57), then the following corollary becomes immediate.

Corollary 1. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Assume that, for

all sufficiently large, T, T1≥T,

tpðtÞ≤rðtÞ (73)

on ½T, ∞Þ and

lim sup
t!∞

(

tAðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds þ

ðt

T1

sQðsÞ−
αα

ðαþ 1Þαþ1

srðσðsÞÞ 1
s −

pðsÞ
rðsÞ

� �αþ1

�

βσ′ðsÞψðsÞ
�α

2

6

4

3

7

5
ds

)

¼ ∞, (74)

where ψðtÞ is as in Theorem 1. Then Eq. (1) is oscillatory.
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Corollary 2. Assume that the conditions (39) and (74) hold. Then Eq. (1) is oscillatory or

lim
t!∞

xðtÞ ¼ 0.

Next, we present some complementary oscillation results for Eq. (1) by using an integral

averaging technique due to Philos. We need the class of functions F. Let

D0 ¼ fðt, sÞ : t > s≥t0g and D ¼ fðt, sÞ : t > s≥t0g (75)

The function Hðt, sÞ∈CðD, ℝÞ is said to belong to a class F if

(a) Hðt, tÞ ¼ 0 for t≥T, Hðt, sÞ > 0 for ðt, sÞ∈D0

(b) Hðt, sÞ has a continuous and nonpositive partial derivative on D0 with respect to the

second variable such that

∂

∂s

�

Hðt, sÞφðsÞ
�

−Hðt, sÞ
φðsÞpðsÞ

rðsÞ
¼ −hðt, sÞ

�

Hðt, sÞφðsÞ
� α

αþ1

(76)

for all ðt, sÞ∈D0.

Theorem 2. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Furthermore,

assume that there exist functions Hðt, sÞ, hðt, sÞ∈F such that, for all sufficiently large, T, for

T1≥T,

lim sup
t!∞

1

Hðt, T1Þ

ðt

T1

�

Hðt, sÞ
�

φðsÞQðsÞ þ ρðsÞφðsÞpðsÞ
�

−
αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α Þds ¼ ∞

(77)

where φðtÞ and ρðtÞ are continuously differentiable functions and ψðtÞ is as in Theorem 1. Then

Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (78)

on ½T, ∞Þ. In particular, we have

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (79)

Define the function wðtÞ as

wðtÞ ¼ φðtÞrðtÞ

�

z′ðtÞ
�α

zβðσðtÞÞ
þ ρðtÞ

0

@

1

A≥φðtÞrðtÞρðtÞ, (80)

where ρðtÞ∈C1ðℐ, ℝÞ. Similarly to the proof of Theorem 1, we obtain the inequality
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w′ðtÞ≤ −φðtÞQðtÞ þ φðtÞ
�

rðtÞρðtÞ
�′

þ
φ′ðtÞ

φðtÞ
−
pðtÞ

rðtÞ

� �

wðtÞ

−
βσ′ðtÞψðtÞ

�

φðtÞrðσðtÞÞ
�1

α

�

wðtÞ−φðtÞrðtÞρðtÞ
�

1þα
α

:

(81)

Multiplying Eq. (81) by Hðt, sÞ, integrating with respect to s from T1 to t for t≥T1≥T, and using

ðaÞ and ðbÞ, we find that

ðt

T1

Hðt, sÞφðsÞ
�

QðsÞ−
�

rðsÞρðsÞ
��′

ds

≤−

ðt

T

Hðt, sÞw′ðsÞdsþ

ðt

T1

Hðt, sÞ
φ′ðsÞ

φðsÞ
−
pðsÞ

rðsÞ

� �

wðsÞds

−

ðt

T1

βHðt, sÞσ′ðsÞψðsÞ
�

φðsÞrðσðsÞÞ
�1

α

�

wðsÞ−φðsÞrðsÞρðsÞ
�

1þα
α

ds

¼ Hðt, sÞwðsÞT1t
j þ

ðt

T1

∂

∂s
Hðt, sÞ þHðt, sÞ

φ′ðsÞ

φðsÞ
−
pðsÞ

rðsÞ

� �� �

wðsÞds

−

ðt

T1

βHðt, sÞσ′ðsÞψðsÞ
�

φðsÞrðσðsÞÞ
�1

α

�

wðsÞ−φðsÞrðsÞρðsÞ
�1þα

α

ds

¼ Hðt, T1ÞwðT1Þ þ

ðt

T1

−
hðt, sÞ

φðsÞ

�

Hðt, sÞφðsÞ
� α

αþ1

wðsÞds

−

ðt

T1

βHðt, sÞσ′ðsÞψðsÞ
�

φðsÞrðσðsÞÞ
�1

α

�

wðsÞ−φðsÞrðsÞρðsÞ
�

1þα
α

ds

(82)

Setting

A :¼ −
hðt, sÞ

φðsÞ
½Hðt, sÞφðsÞ�

α
αþ1, B :¼

βHðt, sÞσ′ðsÞψðsÞ
�

φðsÞrðσðsÞÞ
�1

α

(83)

and
C :¼ φðsÞrðsÞρðsÞ (84)

and using the inequality

Au−Bðu−CÞ
1þα
α ≤ACþ

αα

ðαþ 1Þαþ1

Aαþ1

Bα , (85)

we obtain
ðt

T1

Hðt, sÞφðsÞ
�

QðsÞ−
�

rðsÞρðsÞ
�′�

ds

≤Hðt, T1ÞwðT1Þ þ

ðt

T1

−hðt, sÞrðsÞρðsÞ½Hðt, sÞφðsÞ�
α

αþ1ds

þ

ðt

T1

αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α ds

(86)
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Thus,

Hðt, T1ÞwðT1Þ ≥

ðt

T1

Hðt, sÞφðsÞ
�

QðsÞ−
�

rðsÞρðsÞ
�′�

ds

þ

ðt

T1

hðt, sÞrðsÞρðsÞ½Hðt, sÞφðsÞ�
α

αþ1ds

−

ðt

T1

αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α ds:

(87)

That is,

Hðt, T1ÞwðT1Þ

≥

ðt

T1

Hðt, sÞφðsÞ
�

QðsÞ−
�

rðsÞρðsÞ
�′�

ds

þ

ðt

T1

−rðsÞρðsÞ
∂

∂s

�

Hðt, sÞφðsÞ
�

−Hðt, sÞ
φðsÞpðsÞ

rðsÞ

� �

ds

−

ðt

T1

αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α ds

¼

ðt

T1

Hðt, sÞ
�

φðsÞQðsÞ þ ρðsÞφðsÞpðsÞ
�

ds

−Hðt, sÞφðsÞrðsÞρðsÞT1t
j −

ðt

T1

αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α ds

(88)

It follows that

ðt

T1

Hðt, sÞ
�

φðsÞQðsÞ þ ρðsÞφðsÞpðsÞ
�

ds

−

ðt

T1

αα

ðαþ 1Þαþ1

hαþ1ðt, sÞrðσðsÞÞ

βα
�

σ′ðsÞψðsÞ
�α ds

≤Hðt, T1Þ
�

wðT1Þ−φðT1ÞrðT1ÞρðT1Þ
�

,

(89)

which is a contradiction to Eq. (77). The proof is complete.

Remark 3. Authors in [15, 20] studied a partial case of Eq. (1) by employing the generalized

Riccati substitution (80). Note that the function ρðtÞ used in the generalized Riccati substitution

(80) finally becomes unimportant. Thus, we can put ρðtÞ ¼ 0 and obtain similar results to those

from [15, 20].

In the next part, we provide several oscillation results for Eq. (1) under the assumption that the

function PðtÞ is nonpositive. These results generalize those from [10] for Eq. (1) in such sense

that α≠β and pðtÞ≠0.

Theorem 3. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Furthermore,

assume that there exists a continuously differentiable function φðtÞ such that, for all sufficiently

large, T, T1≥T,

Oscillation Criteria for Second‐Order Neutral Damped Differential Equations with Delay Argument
http://dx.doi.org/10.5772/65909

45



PðtÞ≤0 (90)

on ½T, ∞Þ and

lim sup
t!∞

φðtÞAðtÞ

ð

∞

t

QðsÞ

AðsÞ
dsþ

ðt

T1

φðsÞ QðsÞ−AðsÞPðsÞ

ð

∞

s

QðuÞ

AðuÞ
du

� �

ds

� �

¼ ∞: (91)

Then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (92)

on ½T, ∞Þ. In particular, we have

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (93)

Proceeding as in the proof of Theorem 1, we obtain the inequality (66), i.e.,

w′ðtÞ≤ −φðtÞQðtÞ þ PðtÞwðtÞ−
βσ′ðtÞψðtÞ

�

φðtÞrðσðtÞÞ
�1

α

w
1þα
α ðtÞ (94)

for t≥T1≥T. Using Eq. (90), and setting Eq. (57) in Eq. (94), we get

w′ðtÞ ≤−φðtÞQðtÞ þ φðtÞAðtÞPðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds

−
βσ′ðtÞψðtÞ

�

φðtÞrðσðtÞÞ
�1

α

w
1þα
α ðtÞ

≤−φðtÞQðtÞ þ φðtÞAðtÞPðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds,

(95)

that is,

w′ðtÞ þ φðtÞQðtÞ−φðtÞAðtÞPðtÞ

ð

∞

t

QðsÞ

AðsÞ
ds≤0: (96)

Integrating the above inequality from T1 to t, we have

wðT1Þ ≥wðtÞ þ

ðt

T1

φðsÞQðsÞ−φðsÞAðsÞPðsÞ

ð

∞

s

QðuÞ

AðuÞ
du

� �

ds

≥φðtÞAðtÞ

ð

∞

t

QðsÞ

AðsÞ
dsþ

ðt

T1

φðsÞQðsÞ−φðsÞAðsÞPðsÞ

ð

∞

s

QðuÞ

AðuÞ
du

� �

ds

(97)

Taking the lim sup on both sides of the above inequality as t ! ∞, we obtain a contradiction to

condition Eq. (91). This completes the proof.
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Setting φðtÞ ¼ 1, we have the following consequence.

Corollary 3. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Assume that

lim sup
t!∞

AðtÞ

ð

∞

t

QðsÞ

AðsÞ
dsþ

ðt

T1

~qðsÞds

� �

¼ ∞, (98)

for all sufficiently large T, for T1≥T. Then Eq. (1) is oscillatory.

Define a sequence of functions {ynðtÞ}
∞

n¼0 as

y0ðtÞ ¼

ð

∞

t

~qðsÞds, t≥T (99)

ynðtÞ ¼

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

yn−1ðsÞ
�

1þα
α

dsþ y0ðtÞ, t≥T, n ¼ 1; 2; 3;…, (100)

for T≥t0 sufficiently large.

By induction, we can see that yn≤ynþ1, n ¼ 1; 2; 3;….

Lemma 4. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. Assume that xðtÞ is

a positive solution of Eq. (1) on ℐ. Then there exists T∈ℐ, sufficiently large, such that

wðtÞ≥ynðtÞ, (101)

where wðtÞ and ynðtÞ are defined as Eqs. (54) and (100), respectively. Furthermore, there exists a

positive function yðtÞ on ½T1, ∞Þ, T1≥T, such that

lim
n!∞

ynðtÞ ¼ yðtÞ (102)

and

yðtÞ ¼

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

yðsÞ
�

1þα
α

dsþ y0ðtÞ: (103)

Proof. Similarly to the proof of Theorem 3, we obtain Eq. (95). Setting φðtÞ ¼ 1 in Eq. (95), we get

w′ðtÞ þQðtÞ þ
pðtÞAðtÞ

rðtÞ

ð

∞

t

QðsÞ

AðsÞ
dsþ

βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

w
1þα
α ðtÞ≤0 (104)

for t≥T1≥T. Integrating Eq. (104) from t to t′, we get

wðt′Þ−wðtÞ þ

ðt′

t

~qðsÞdsþ

ðt′

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds≤0 (105)

or

wðt′Þ−wðtÞ þ

ðt′

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds≤0: (106)

We assert that
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ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds < ∞: (107)

If not, then

wðt′Þ≤wðtÞ−

ðt′

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds ! −∞ (108)

as t′ ! ∞, which contradicts to the positivity of wðtÞ and thus the assertion is proved. By

Eq. (104), we see that wðtÞ is decreasing that means

lim
t!∞

wðtÞ ¼ k, k≥0: (109)

By virtue of Eq. (107), we have k ¼ 0. Thus, letting t′ ! ∞ in Eq. (105), we get

wðtÞ ≥

ð

∞

t

~qðsÞdsþ

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds

¼ y0ðtÞ þ

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

w
1þα
α ðsÞds,

(110)

that is,

wðtÞ≥

ð

∞

t

~qðsÞds ¼ y0ðtÞ: (111)

Moreover, by induction, we have that

wðtÞ≥ynðtÞ, for t≥T1, n ¼ 1; 2; 3;…: (112)

Thus, since the sequence {ynðtÞ}
∞

n ¼ 0 is monotone increasing and bounded above, it converges

to yðtÞ. Letting n ! ∞ and using Lebesgue monotone convergence theorem in Eq. (100), we get

Eq. (103). The proof is complete.

Theorem 4. Let conditions ðiÞ–ðvÞ and one of the conditions (14) or (21) hold. If

lim inf
t!∞

1

y0ðtÞ

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

y0ðsÞ
�1þα

α

ds

 !

>
α

ðαþ 1Þ
1þα
α

, (113)

where ψðtÞ is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (114)

on ½T, ∞Þ. In particular, we have
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zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (115)

By Eq. (113), there exists a constant γ > α

ðαþ1Þ
1þα
α
such that

lim inf
t!∞

1

y0ðtÞ

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

y0ðsÞ
�

1þα
α

ds > γ: (116)

Proceeding as in the proof of Lemma 4, we obtain Eq. (110) and from that, we have

wðtÞ

y0ðtÞ
≥1þ

1

y0ðtÞ

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

y0ðsÞ
�

1þα
α wðsÞ

y0ðsÞ

� �1þα
α

ds (117)

Let

λ ¼ in f
t≥t1

wðtÞ

y0ðtÞ
: (118)

Then it is easy to see that λ≥1 and

λ≥1þ λ
1þα
α γ, (119)

which contradicts the admissible value of λ and γ, and thus completes the proof.

Theorem 5. Let conditions ðiÞ–ðvÞ, one of the conditions (14) or (21) hold, and ynðtÞ be defined

as in Eq. (100). If there exists some ynðtÞ such that, for T sufficiently large,

lim sup
t!∞

ynðtÞ

ðσðtÞ

T

r−
1
αðsÞds

 !α

>
1

ψðtÞ
, (120)

where ψðtÞ is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (121)

on ½T, ∞Þ. In particular, we have

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (122)

Proceeding as in the proof of Theorem 3 and using defining wðtÞ as in Eq. (54), for T1≥T, we get
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1

wðtÞ
¼

zβðσðtÞÞ

rðtÞ
�

z′ðtÞ
�α

≥
ψðtÞ

rðtÞ

zðσðtÞÞ

z′ðtÞ

� �α

¼
ψðtÞ

rðtÞ

zðT1Þ þ

ðσðtÞ

T1

r−
1
αðsÞr

1
αðsÞz′ðsÞds

z′ðtÞ

0

B

B

B

@

1

C

C

C

A

α

≥ψðtÞ

ðσðtÞ

T1

r−
1
αðsÞds

 !α

(123)

Thus,

wðtÞ

ðσðtÞ

T

r−
1
αðsÞds

 !α

≤
1

ψðtÞ

ðσðtÞ

T

r−
1
αðsÞds

ðσðtÞ

T1

r−
1
αðsÞds

0

B

B

B

@

1

C

C

C

A

α

(124)

And therefore,

lim sup
t!∞

wðtÞ

ðσðtÞ

T

r−
1
αðsÞds

 !α

≤
1

ψðtÞ
, (125)

which contradicts Eq. (120). The proof is complete.

Theorem 6. Let conditions ðiÞ–ðvÞ, one of the conditions (14) or (21) hold, and ynðtÞ be defined

as in Eq. (100). If there exists some ynðtÞ such that

ð

∞

T1

~qðtÞ exp

ðt

T1

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

y
1
α
nðsÞds

 !

dt ¼ ∞ (126)

or

ð

∞

T1

βσ′ðtÞψðtÞy
1
α
nðtÞy0ðtÞ

r
1
αðσðtÞÞ

exp

ðt

T1

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

y
1
α
nðsÞds

 !

dt ¼ ∞, (127)

for T sufficiently large and T1≥T, where ψðtÞ is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that xðtÞ is a nonoscillatory solution of Eq. (1). Then, without

loss of generality, we may assume that there exists T∈ℐ large enough, so that xðtÞ satisfies the

conclusions of Lemma 1 or 2 on ½T, ∞Þ with

xðtÞ > 0; xðτðtÞÞ > 0; xðσðtÞÞ > 0 (128)
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on ½T, ∞Þ. In particular, we have

zðtÞ > 0; z′ðtÞ > 0;
�

rðtÞ
�

z′ðtÞ
�α�′

< 0; for t≥T: (129)

From Eq. (103), we have

y′ðtÞ ¼ −
βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

�

yðtÞ
�

1þα
α

−~qðtÞ, (130)

for all t≥T1≥T. Since yðtÞ≥ynðtÞ, Eq. (130) yields

y′ðtÞ≤−
βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

y
1
α
nðtÞyðtÞ−~qðtÞ: (131)

Multiplying the above inequality by the integration factor

exp

ðt

T1

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

y
1
α
nðsÞds

 !

, (132)

one gets

yðtÞ≤ exp −

ðt

T1

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

y
1
α
nðsÞds

 !

yðt1Þ−

ðt

T1

~qðsÞ exp

ðs

T1

βσ′ðuÞψðuÞ

r
1
αðσðuÞÞ

y
1
α
nðuÞdu

 !

ds

 !

,

(133)

from which we have that

ðt

T1

~qðsÞ exp

ðs

T1

βσ′ðuÞψðuÞ

r
1
αðσðuÞÞ

y
1
α
nðuÞdu

 !

ds≤yðT1Þ < ∞: (134)

This is a contradiction with Eq. (126).

Now denote

uðtÞ ¼

ð

∞

t

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

�

yðsÞ
�

1þα
α

ds (135)

Taking the derivative of uðtÞ, one gets
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u′ðtÞ ¼ −
βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

�

yðtÞ
�

1þα
α

≤−
βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

y

1

α
n ðtÞyðtÞ

¼
βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

y

1

α
n ðtÞ

�

uðtÞ þ y0ðtÞ
�

(136)

Proceeding in a similar manner to that above, we conclude that

ð

∞

T1

βσ′ðtÞψðtÞ

r
1
αðσðtÞÞ

y
1
α
nðtÞy0ðtÞ exp

ðt

T1

βσ′ðsÞψðsÞ

r
1
αðσðsÞÞ

y
1
α
nðsÞds

 !

dt < ∞, (137)

which contradicts to Eq. (127). The proof is complete.
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