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Abstract

The chapter is devoted to study the oscillation of all solutions to second-order nonlinear
neutral damped differential equations with delay argument. New oscillation criteria are
obtained by employing a refinement of the generalized Riccati transformations and
integral averaging techniques.
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1. Introduction

In the chapter, we are mainly concerned with the oscillatory behavior of solutions to second-
order nonlinear neutral damped differential equations with delay argument of the form

(0 (E®)") +p0 (D) + g0 (xee)) =0, ez, (1)
where a>1 is a quotient of positive odd integers and
z(t) = x(t) +a(t)x(z(t)). ()

Throughout, we suppose that the following hypotheses hold:
i. 1, p, geC(F, RT), where .7 = [ty, o) and R* = (0,00);
ii. aeC(f, R),0<a (t)<1;
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iii. 7eC(J, R), T(H)<t, 1(f) — 0 ast — oo;
iv. 0eCl(7, R), o(t)<t, 0'(£)20, o(t) — o as t — oo

v. feC(R, R), such that xf(x) > 0 and f(x)/xf>k > 0 for x /= 0, where k is a constant and f is
the ratio of odd positive integers.

By a solution of Eq. (1), we mean a nontrivial real-valued function x(¢), which has the property
z(H)eCH([Ty, =), #(t) (i(t))aeCl([Tx, )), Tx2ty, and satisfies Eq. (1) on [Ty, ). In the sequel,

we will restrict our attention to those solutions x(t) of Eq. (1) that satisfy the condition

sup {|x(t)] : T<t < oo} >0 for T=>T,. (3)

We make the standing hypothesis that Eq. (1) admits such a solution. As is customary, a
solution of Eq. (1) is said to be oscillatory if it is neither eventually positive nor eventually
negative on [Ty, =) and otherwise, it is termed nonoscillatory. The equation itself is called
oscillatory if all its solutions are oscillatory.

Remark 1. All the functional inequalities considered in the sequel are assumed to hold even-
tually, that is, they are satisfied for all f large enough.

Oscillation theory was created in 1836 with a paper of Jacques Charles Frangois Sturm
published in Journal des Mathematiqués Pures et Appliqueés. His long and detailed memoir [1]
was one of the first contributions in Liouville's newly founded journal and initiated a whole
new research into the qualitative analysis of differential equations. Heretofore, the theory of
differential equations was primarily about finding solutions of a given equation and so was
very limited. Contrarily, the main idea of Sturm was to obtain geometric properties of solutions
(such as sign changes, zeros, boundaries, and oscillation) directly from the differential equa-
tion, without benefit of solutions themselves.

Henceforth, the oscillation theory for ordinary differential equations has undergone a signifi-
cant development. Nowadays, it is considered as coherent, self-contained domain in the
qualitative theory of differential equations that is turning mainly toward the study of solution
properties of functional differential equations (FDEs).

The problem of obtaining sufficient conditions for asymptotic and oscillatory properties of
different classes of FDEs has experienced long-term interest of many researchers. This is
caused by the fact that differential equations, especially those with deviating argument, are
deemed to be adequate in modeling of the countless processes in all areas of science. For a
summary of the most significant efforts and recent findings in the oscillation theory of FDEs
and vast bibliography therein, we refer the reader to the excellent monographs [2-6].

In a neutral delay differential equation the highest-order derivative of the unknown function
appears both with and without delay. The study of qualitative properties of solutions of such
equations has, besides its theoretical interest, significant practical importance. This is due to the
fact that neutral differential equations arise in various phenomena including problems
concerning electric networks containing lossless transmission lines (as in high-speed computers
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where such lines are used to interconnect switching circuits), in the study of vibrating masses
attached to an elastic bar or in the solution of variational problems with time delays. We refer the
reader to the monograph [7] for further applications in science and technology.

So far, most of the results obtained in the literature has centered around the special undamped
form of Eq. (1), i.e., when p(t) = 0 (for example, see Refs. [8-18]). For instance, in one of the
pioneering works on the subject, Grammatikopoulos et al. [8] studied the second-order neutral
differential equation with constant delay of the form

(x(t) + a(H)x(t-1) " + q(t)x(t-1) = 0 (4)
and proved that Eq. (4) is oscillatory if

fq(s) (1—a(s—1))ds = oo, (5)

Later on, Grace and Lalli [9] extended the results from [8] to the more general equation
() + a()x(t-7)) +q(e)f (x(t-1)) =0, (6)

with
" ds

@zk, k>0 and Jr(s)

. = ()
and showed that Eq. (6) is oscillatory if there exists a continuously differentiable function p(t)
such that

(P9)) s

T e (8)

j p(s)4(s) (1-a(s—1))-

In Ref. [10], Dong has involved to study the oscillation problem for a half-linear case of Eq. (1)
and by defining a sequence of continuous functions has obtained various kinds of better
results. Afterward, his approach has been further developed by several authors, see, e.g., [11-
14]. However, it appears that very little is known regarding the oscillation of Eq. (1) with p(#)#0
and a#p. Motivated by the results of Ref. [10], this chapter presents some new oscillation
criteria, which are applicable on Eq. (1).

On the other hand, Eq. (1) can be considered as a natural generalization of the second-order
delay differential equation of the form

() (¥ ®)") +p) (x (1) +a(e)f (x(o(t))) =0. ©)

Very recently, the authors of [19] studied the oscillation problem of Eq. (9) with p(t) = 0 and
a = . Their ideas, which are based on careful investigation of classical techniques covering
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Riccati transformations and integral averages, will be extended to the more general equa-
tion (1).

2. Main results

For the simplicity and without further mention, we use the following notations:

A(t) = exp (—L %ds), Q(t) = kq(t) (1—a(a(t))>ﬁ : (10)

oo T _ B
R = [ (2 s @ = a0 (1-ato) S50 1
py =SB = +PUE0 [ Fas (12)

where ¢(t)eC' (7, R) is a given function and will be specified later.

The organization of this chapter is as follows. Before stating our main results, we present two
lemmas that ensure that any solution x(f) of Eq. (1) satisfies the condition

25> 0, (5 >0, (r() (z’(t))“)' <0, (13)

for t sufficiently large. Next, we get our main oscillation results for Eq. (1) by employing the
generalized Riccati transformations and integral averaging techniques. We base our arguments
on the assumption that the function P(t) is positive or negative.

[~

holds and Eq. (1) has a positive solution x(t) on .#. Then there exists a T€.7, sufficiently large,
such that

Lemma 1. Assume that

>0, Z0>0. (n(z0)") <0, (15)

on [T, o).

Proof. Since, x(t) is a positive solution of Eq. (1) on .7, then, by the assumptions (iii) and (iv),
there exists a tj€.7 such that x(7(¢)) > 0 and x(c(¢)) > 0 on [#;, *). Define the function z(t) as in
Eq. (2). Then it is easy to see that z(#)>x(t) > 0, for £>;, and at the same time, from Eq. (1), we
get
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(0(z®)") +p0(z®)" =4y (xto) <o0. (16)
We assert that % (z(t)) ’ is decreasing. Clearly, by writing the left-hand side of Eq. (16) in the
form
(r<t)(z(t))”)'-Fé%f%r(t)(zxt))“ <0, (17)
we get
(59 (z0)") =1 oty <o (18)

and so the assertion is proved.

Now, we claim that z'(t) > 0 on [t;, ). If not, then there exists t,€[t;, =) such that z'(t,) < 0.

, o
Using the fact that % (z (t)) is decreasing, we obtain, for t>t,,

T(t) ' a L T(tz) ’ a
HB@@D <a—A@%%@» <0. (19)
Integrating the above inequality from t, to f, we find that
L (AG)\®
z(t) < z(f) + CHL (ﬁ) ds (20)

for tt,. By condition (14), z(t) approaches to —e as t — o, which contradicts the fact that z(¢) is
eventually positive. Therefore, z'(t) > 0 and from Eq. (1), we have that <r(t) (z(t)) a)/ < 0. The
proof is complete.

Lemma 2. Assume that

1

“[Au) (" Q(S)Rﬁ(d(s)) a
LJ (r(u) Jto A(s) ds) du = =, (21)

holds and Eq. (1) has a positive solution x(f) on .#. Then there exists Te€.7, sufficiently large,
such that

2 >0, Z(t)>0, Qﬁxﬂwf)<o, 22)

on [T, o).

35
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Proof. Similarly to the proof of Lemma 1, we assume that there exists ,€.7 such that z'(t) < 0
on [ty, o). Taking Eq. (18) into account, we have

z (s)< (%%) Zz'(t), (23)

for s>t>t,. Integrating the above inequality from ¢ to t, t >£>t;, we get

z(£)<z(t) + (%) %z'(t)Jj (%) T]lds. (24)
Letting t — o, we have
z(£)2-R(¢t) <%> %z'(t), (25)
which yields

and hence we see that % is nondecreasing. By Eq. (2) and (iii), we have

x(t) = z2(t)-a(Hx(x()
2(t)-a(t)2(x(1)) o
)

(l—a(t) %)z(t),

which together with Eq. (1) and the assumption (v) yields

[V

\Y

(r0(=0)") +pw (=) skt (1-ato(6) o) (o0

(28)
— kQ()F (0 (1)).
On the other hand, from Eq. (23), we have
() (z’(t))“ r(t2) (2 (1)) ’
AD ST A )
that is,
r() (O r(E) (NG s
(t)<—z(t)) 2200 (<®) : =» (30)

for some positive constant y. Setting Eq. (30) into Eq. (25), we obtain
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z(t)2yR(t) (31)
and so, Eq. (28) becomes
(0F®)") +p0(Z0) s700R @) (32)
where 7 : = kyP. Now, if we define the function
u) = () (—z’(t))“ >0, (33)
then
042D s OR
u'() +EE U= QR o (0), (34)
or, equally
Y, QR (a(1))
()7 2 ()

Integrating the above inequality from f, to t, we get

U(t)>~A(t)L: Q(S)jfs()“ ) 4 (36)
or
r(b) (—z’(t))“zyA(t)Ez %ds. 37)
It follows from this last inequality that
0< z(t)gz(tz)—yﬁz (f((;‘)) L Q(S)jfs()" (5)) ds)idu (38)

for t>t,. As t — oo, then by condition Eq. (21), z(t) approaches to —e, which contradicts the
fact that z(t) is eventually positive. Therefore, z(t) >0 and from Eq. (1), we have

(r(t) (z(t))a> < 0. The proof is complete.

Lemma 3. Assume that

= (A@w) [* OGs) )"
Jto (”(”) Jto %ds> du ===, (39)

holds and Eq. (1) has a positive solution x(t) on .#. Then there exists T€.7, sufficiently large,
such that either
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25 >0, Z(5>0, (r(t) (z’(t))“)' <0, (40)

on [T, o) or lim x(f) = 0.

t—o0

Proof. As in the proof of Lemma 1, we assume that there exists t,€.% such that z'(t) < 0 on
[f2, ). So, z(t) is decreasing and

lim z(f) =: b>0 (41)

f—o0

exists. Therefore, there exists t3€|t,, °°) such that
z(o(t)) > z(t)2b > 0. (42)

As in the proof of Lemma 2, we obtain Eq. (27), i.e.,

(o) 2(1-alo() S )a(att)

(43)
R(z(a(t)))
>b <1—a(a(t)) W) , for tts.
Thus,
a a ‘B
(0 (0)") +p(zw)" a0 (1-ato) o)
=-bQ(1), (44)
where b := kbP.
Define the function U(t) as in Eq. (103). Then Eq. (44) becomes
u\ .- Q)
GHES (45)
Integrating the above inequality twice from f3 to t, one gets
0 < z(t)Sz(t3)—l}L (f;‘((;)) L %Q du, (46)

for t2t3. As t — oo, then by condition (39), z(t) approaches to —, which contradicts the fact that
z(t) is eventually positive. Thus, b =0 and from 0<x(t)<z(t), we see that ltim x(t) = 0. The

proof is complete.
Using results of Lemmas 1 and 2, we can obtain the following oscillation criteria for Eq. (1).

Theorem 1. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exists a positive continuously differentiable function ¢ (¢) such that, for all
sufficiently large, T, T1>T,
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P(t)20 (47)
on [T, ) and
| - 0(s) : o 0o (Pe) "
lim HA(E) | =7=ds  + Q(s)- - | ds p = oo,
noup 2 0040 | F5as [ 06906 o) |-
(48)
where
c1, c1 is some positive constant if f > «
1, ifp=a
v =4 5 (49)
) <J r‘olv(s)ds) ) , Cpis some positive constant if f < a.
T

Then, Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

x(t) >0, x(t(t)) >0, x(o(t))>0 (50)
on [T, ). In particular, we have
2(0>0, Z(t)>0, (r(t) (z'(t))a) <0, for eT. (51)
By Eq. (2) and the assumption (iii), we get
x(t) = z(t)-a(t)x(t(t))

>2(#)-a(t)z(1(t)) (52)
>(1-a(t))z(t),

which together with Eq. (1) implies
(ro(z0)") +22 (20)" <ka(t) (1-ato)) P (0 (0)

r(t) (53)
=-Q(H(a(t))
We consider the generalized Riccati substitution
(0 ()
w(t) = ¢(t) o) >0, for £T. (54)

As in the proof of Lemma 1, we get Eq. (18), which in view of the assumption (v) yields
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(% (Z’(t)y) !S‘%Zﬁ (a(t). (55)

Integrating Eq. (55) from f to = and using the fact that z(t) is increasing, we have

1) 2] e

()
Zzﬁ(a(t))Jt %ds.

So it follows from Eq. (56) and the definition (54) of w(t) that

((2(0) -
w(t) = qb(t)%zwm(ojt e (57)

(56)

By Eq. (53) we can easily prove that

d) = (r0(z0)") 320+ (G20 v (- 0)’
o)

ord) (Z,(t)>a (Z 0 _qb(t) (zﬁ(a(t)))) 58)

TONEORY
=0 2(r(a(t))) 9)

B0 1) (Zjég) 22 (o(t). (€0

Now, we consider the following three cases:

Casel: g > a.
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In this case, since z (t) > 0 for t>T, then there exists T;>T such that z(c(t))>c for £>T;. This

implies that

Casell: g = a.

In this case, we see that Zﬁ%(G(i’)) =1

CaseIII: B < a.

Since r(t) (z’(t))a is decreasing, there exists a constant 4 such that
r(b) (z'(t))“sd

for t>T. Integrating the above inequality from T to t, we have

z(£)<z(T) + rT (r(ds.)> ids.

Hence, there exists T1>T and a constant d; depending on d such that

t
z(t)sdlj r‘ﬁ(s)ds, for T,
T

and thus

»—lg‘

ﬁadﬂp;a“?ﬁ@wﬁjlz®<£fﬂ@®>7

for some positive constant d5.

Using these three cases and the definition of (), we get

W (-9 (HQE) + Pttty

for £2T12T. Setting

and using the inequality

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

41
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+a a Aa+l
Au-Buv's— 5T (69)
(a+1)*" B

we obtain

ot o) (P)"

H<-p(H)Q(t Z 70
R T (b0 (90 .
Integrating the above inequality from T to t, we have
(©)r(o) (Pe)""
t a r\o
wtza(ry)-| (oo T, @
n @+ (o' (5)y(s))
Taking Eq. (57) into account, we get
w(Ty) Zq)(t)A(t)Jj%ds
a+1 (72)
: g PE)0)(PO))
- Z ds.
+JT1 Ple)Qle) (a+1)*" (ﬁa'(s)IP(S)) S

Taking the lim sup on both sides of the above inequality as t — o, we obtain a contradiction to
the condition (48). This completes the proof.

Remark 2. Note that the presence of the term qb(t)A(t)J % ds in Eq. (57) improves a number
t

of related results in, e.g., [9, 13-18, 20].

Setting ¢(t) = t in Eq. (57), then the following corollary becomes immediate.

Corollary 1. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Assume that, for
all sufficiently large, T, T1>T,

tp(t)<r(t) (73)

on [T, ) and

f—o0

. oo % t ) a® sr(a(s)) (
1 sup{tA(t)Jt A(s)ds —i—L] sQ(s) @t1) (ﬁc’(s)z,b(s)

N——
S

where (t) is as in Theorem 1. Then Eq. (1) is oscillatory.
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Corollary 2. Assume that the conditions (39) and (74) hold. Then Eq. (1) is oscillatory or
lim x(t) = 0.

f—o0

Next, we present some complementary oscillation results for Eq. (1) by using an integral
averaging technique due to Philos. We need the class of functions F. Let

Do ={(t,s): t>s2tg} and D= {(ts):t>s2ly} (75)
The function H(t, s)eC(D, R) is said to belong to a class F if
(@ H(t, t) =0 for 2T, H(t, s) > 0 for (¢, s)€Dy

(b) H(t, s) has a continuous and nonpositive partial derivative on Dy with respect to the
second variable such that

aas (H(t s)qb(s))—H(t, s)qb(:gf)(s) — —h(t, s) (H(t, s)qb(s))ﬁ (76)

for all (¢, s)€Dy.

Theorem 2. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exist functions H(t, s), h(t, s)EF such that, for all sufficiently large, T, for
T:12T,

: 1 '
im sup s | (H s)(q><s>ci<l POOERE) .
a h (t, s)r a(sa)) .
) (5 s))

where ¢(t) and p(t) are continuously differentiable functions and () is as in Theorem 1. Then
Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.7 large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

x(t) >0, x(t(t) >0, x(o(t)) >0 (78)

on [T, o). In particular, we have

2 >0, 2(t) >0, (r(t)(z’(t))“)ko, for &T. (79)

Define the function w(t) as
oo [E ).
w(t) = (01t | St + PlO) | 26(6r(Dp(e) (50)

where p(t)eC'(.#, R). Similarly to the proof of Theorem 1, we obtain the inequality

43
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K (81)
)"

Multiplying Eq. (81) by H(t, s), integrating with respect to s from T; to t for £>T1>T, and using
(a) and (b), we find that

[ 69005 (@91 (r9p10)) )

S—LH(t, s)w (s)ds + J H(t, s) (‘P (5) —(S)) w(s)ds
) J BH(t, 5)0'(5)(5)
" (9o
— it s + (5
J CCRLOTIO
" (9ls)r(ats
= H(t. Taw(Th) + | = (HE s)9(s)
) J BH(E, 5)0(5) (s :
" (96)ro))’

H(t, s) + H(t, s) <¢<S> —@> > w(s)ds (82)

Setting

_BH(t 5)0 (5)4(5) )

and

C := ¢(s)r(s)p(s) (34)

and using the inequality

lta a® AT
Au-B(u—C) « <AC + Gr 1 B (85)
we obtain
J, HO. 9060 (Q(S)t—<r<S>P(S)) )ds
<H(t, T1)w(Ty) + L —h(t, s)r(s)p(s)[H(t s)q‘)(s)]ﬁds (86)

r a® BT, s)r(o(s)) ds
n (@) g (s
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Thus,

H(t, T1)a(Ty) zj H(t, 9)6() (QE)-(r(9)p(s)) )ds
+ | s s)o( s &)

Jf T ey (o) 4.
T, (cH—l)”‘Jrl ( (8)y (S))a

That is,
H(t, Tl)ZU(T1)
2| H5)0(6) (Qs)-(rs)p)
T

+ [ o0 (3 (e 906

T

_r a®  ENE s)r(o(s ds
m (@+ 1) g (¢ 6)06) ’

B JT H(t, s) (¢<s>Q(s> + p(S>¢(S>P<S))d5
1 ¢ a® ha+1 (t, S)r(G(S))

B Tyt
H(t, 5)p(s)r(s)p(s), Ll (@+1)* ga (a’(s)@b(s))a ¢

(88)

It follows that

[ 1 9(06)06) + po)0(6Ipts))ds

T

[ et o) %
Ll @+ D" g (o (5)ps))” S )
<H(t, T1) (w(T1)~6(T)r(T)p(T1)),

which is a contradiction to Eq. (77). The proof is complete.

Remark 3. Authors in [15, 20] studied a partial case of Eq. (1) by employing the generalized
Riccati substitution (80). Note that the function p(#) used in the generalized Riccati substitution
(80) finally becomes unimportant. Thus, we can put p(t) = 0 and obtain similar results to those
from [15, 20].

In the next part, we provide several oscillation results for Eq. (1) under the assumption that the
function P(t) is nonpositive. These results generalize those from [10] for Eq. (1) in such sense
that a#p and p(t)#0.

Theorem 3. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exists a continuously differentiable function ¢(t) such that, for all sufficiently
large, T, T12T,

45
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P(t)<0 (90)

on [T, ) and

liIIthmup {({)(t)A(t)[o % ds + J;qb(s) (Q(s)—z‘l(s)P(s)J:o ggz; du) ds] = oo, (91)

Then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists Te.7 large enough, so that x(¢) satisfies the
conclusions of Lemma 1 or 2 on [T, ) with

x(t) >0, x((t) >0, x(a(t)) >0 (92)

on [T, o). In particular, we have

2() >0, Z(t) >0, (r(t)(z'(t))a>,<0, for T, (93)

Proceeding as in the proof of Theorem 1, we obtain the inequality (66), i.e.,
BBV

W) ~6OQ) + P(bw(h-
(e(r(a))

(94)

2=

for £>T1>T. Using Eq. (90), and setting Eq. (57) in Eq. (94), we get

W) S60Q) + SOANPD]| Fds

GG R )
(e(r(e))
~Q0)

<HQU) + 9OADP()]| 3 ds

that is,

w () + qb(t)Q(t)—qb(t)A(t)P(t)f % ds<0. (96)

Integrating the above inequality from T to t, we have

w(Ty) 2w(t)+J <qb(s)Q(s)—qb(s)A(s)P(s)r%du)ds

T] S

qu(t)A(t)Jj % ds+ J <¢(5)Q(S)—¢(S)A(S)p(s)r gg;‘; du> ds

Tl S

(97)

Taking the lim sup on both sides of the above inequality as t — oo, we obtain a contradiction to
condition Eq. (91). This completes the proof.
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Setting ¢(t) = 1, we have the following consequence.
Corollary 3. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Assume that

lintlswup [A(t)[o % ds + J

t

7(6)ds] == 99)
Ty
for all sufficiently large T, for T1>T. Then Eq. (1) is oscillatory.

Define a sequence of functions (v, (t)/,_, as

yo(t) = fq(sms, 5T (99)

_ [T B (s)u(s) = _
y, (f) = L o) (yn_l (s)> ds+y,(H), £T, n=123,.., (100)

for T>t, sufficiently large.
By induction, we can see thaty, <y, ., n=1,2,3,....

Lemma 4. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Assume that x(¢) is
a positive solution of Eq. (1) on .#. Then there exists T€.7, sufficiently large, such that

w(t)2y,(t), (101)

where w(t) and y, (f) are defined as Eqs. (54) and (100), respectively. Furthermore, there exists a
positive function y(¢) on [Ty, o), T12T, such that

lim y, (5 = y(9) (102)
and
y(t) = [ PEEE) (469) syt (103)

Proof. Similarly to the proof of Theorem 3, we obtain Eq. (95). Setting ¢(t) = 1 in Eq. (95), we get

: P(A() [7QG) o, o (DY) 1
w () +Q(f) + D Jt A(s)ds+ A() w = (1)<0 (104)

for £>T1>T. Integrating Eq. (104) from ¢ to ¢, we get

w(t)-w(t) + r g(s)ds + r Mwl%ﬂ(s)dsso (105)
t t ra(o(s)
or
w(t)-w(t) + Jt Mw%(s)dsso. (106)
t ra(a(s))

We assert that
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r’ww%(s)ds < oo, (107)
¢ 1a(o(s))
If not, then
ewipr [ BIEYE) v
w(t)<w(?) Jt oy s (108)

as t — o, which contradicts to the positivity of w(t) and thus the assertion is proved. By
Eq. (104), we see that w(t) is decreasing that means

lim w(t) =k, k=0. (109)

t—o0

By virtue of Eq. (107), we have k = 0. Thus, letting t — < in Eq. (105), we get

¢ ra(o(s) (110)
=y, (H) + J Bo (S)9(5) e g
t 1a(o(s))
that is,
w2 7(s)ds =), (111)
Moreover, by induction, we have that
w(t)zy,(t), for =Ty, n=1,2,3,... (112)

Thus, since the sequence {y, (t)/;, _, is monotone increasing and bounded above, it converges
to y(f). Letting n — oo and using Lebesgue monotone convergence theorem in Eq. (100), we get
Eq. (103). The proof is complete.

Theorem 4. Let conditions (i)-(v) and one of the conditions (14) or (21) hold. If

1 PR a
e f (yomjt Fotoy) ) d5>><a+1>lz“’ (1)

f—oo

where (t) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists Te.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

() >0, x(z(t) >0, x(o(t)) >0 (114)

on [T, ). In particular, we have
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2(H) >0, Z(t) >0, (r(t)(z’(t))“)ko, for £T. (115)

By Eq. (113), there exists a constant y > ( i‘)lﬁ such that
a+l) @

ELAOLL0 (yo(s)>%ds >y (116)

lim in J S
Mcf Yo Ji  r(a(s))
Proceeding as in the proof of Lemma 4, we obtain Eq. (110) and from that, we have

1+a

w(t) ;1 Jwﬁ“'(s)"”“) (%(S))%CU(S))Tds (117)

Yo(t) Yo Je ri(a(s)) Yo(s)
Let
. w(t)
A=inf—=. 118
tzt{ Yo(t) (118)
Then it is easy to see that A>1 and
A2l 4 Ay, (119)

which contradicts the admissible value of A and y, and thus completes the proof.

Theorem 5. Let conditions (i)—(v), one of the conditions (14) or (21) hold, and y, () be defined
as in Eq. (100). If there exists some y, () such that, for T sufficiently large,

olt) | “
hntljfp v, (1) (JT r‘ﬁ(s)ds> >ﬁ, (120)

where (t) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

x(t) >0, x(t(t)) >0, x(a(t)) >0 (121)
on [T, o). In particular, we have
2(H) >0, Z(t) >0, (r(t) (z’(t)>a>’ <0, for tT. (122)

Proceeding as in the proof of Theorem 3 and using defining w(t) as in Eq. (54), for T12T, we get

49



50 Dynamical Systems - Analytical and Computational Techniques

z(T1) + J r(s)ra(s)z (s)ds (123)

Thus,
a(t) @
o) | “ JT ra(s)ds
w(t ra(s)ds | < 124
”(L ) ) oo | 10 (129
ra(s)ds
T
And therefore,
I o[ o P (125)
im sup w(t ra(s)ds | <——,
t—>t>op T Ivb(t)

which contradicts Eq. (120). The proof is complete.

Theorem 6. Let conditions (i)—(v), one of the conditions (14) or (21) hold, and y, () be defined
as in Eq. (100). If there exists some y, () such that

- * Bo(9)y(s) 1 L
qu(t)exp (JH r%(a(s)) yn(s)ds)dt— (126)
or
" B OOy Oy ([ BIEYE) .
Jn Ao p(L (0(s)) y”(s)ds>dt_ ’ (127

for T sufficiently large and T1>T, where 1)(t) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(f) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.7 large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

x(t) >0, x(t(t)) >0, x(o(t) >0 (128)
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on [T, ). In particular, we have
z(t) >0, z(t) >0, <r(t) (z(t)>a> <0, for £T.

From Eq. (103), we have

Multiplying the above inequality by the integration factor

exp ( J BIEYE) 4 ds>,

r 1i(0(s)

one gets

This is a contradiction with Eq. (126).

Now denote

Taking the derivative of u(t), one gets

(129)

(130)

(131)

(132)

(133)

(134)

(135)
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W) = —ﬁf%g?(f)(;) 1(y<t>)l‘+‘“
S%yf(t)y(t) (136)
- ﬁgg(i)(f)()t) 0 (w0 + v 1)
Proceeding in a similar manner to that above, we conclude that
J: %ﬁ(ﬂy@@ exp (J; %y‘i(s)ds) dt < oo, (137)

which contradicts to Eq. (127). The proof is complete.
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