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Abstract

Ionic liquids (ILs) are molten salts with a melting point of 100°C or below and solely 
consist of cations and anions. As a kind of novel green solvent, ILs have been obtained 
broad and deep investigations, and enormous progresses in various fields have been 
made during the recent 20 years. Despite the fact that the application studies of ILs have 
been proposed in various fields, no processes have yet been developed to an industrial 
scale. However, the main interests are still focused on their industrial applications. In this 
chapter, two perspective applications of ILs in electrochemical fields including additives 
for metal electrodeposition and inhibitors for metal anti-corrosion were introduced.

Keywords: ionic liquids, additives, metal electrodeposition, corrosion inhibitors, 
adsorption

1. Introduction

Additives are widely used in electrodeposition of metals and alloys due to their special func-

tions in the deposition process. These additives are found to affect both the deposition and 
crystal-building processes through their adsorbates at the electrode surface [1]. Traditional 

colloidal and some organic additives have gained wide industrial use and achieved good 

additive effect, even though they can be decomposed easily and are not environmentally 
friendly due to their disadvantages, such as thermal stability, bad chemical and high toxicity. 

Consequently, there is a continuing search for better additives that combine good stability, 
high efficiency and environmentally friendliness. The effect of corrosion inhibitors is similar 
to that of electrodeposition additives to some extent, as their excellent corrosion resistance 

performance on metals is attributed to their adsorption on the metal surface, which protects 
the metal from attack by the acidic solutions [2]. However, most commercially available 
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 picking inhibitors are toxic compounds that should be replaced by new environmentally-

friendly ones. Research studies in the field of ‘green’ corrosion inhibitors have been aimed at 
using cheap, effective molecules with low or ‘zero’ environmental impact [3].

Ionic liquids (ILs) are organic salts that are liquids at ambient temperature and comprised 

entirely of organic cations and organic/inorganic anions. Due to the unique structure char-

acteristics, ILs have many attractive properties and attract a great deal of interest in various 
fields [4–17]. Some of the most important prosperities of ILs are their thermal stability and 
avirulence, which make them potential additives for metal electrodeposition and green inhib-

itors for metal anti-corrosion. In our previous studies, alkylimidazolium, alkylpyridinium 
and quaternary ammonium-based ionic liquids were observed to be an excellent levelling 

agent in zinc [18–22] and copper [23–25] electrodeposition and showed favourable corrosion 
resistant on metals such as aluminium [26], copper [27] and mild steel [2].

2. Why use ILs as electrodeposition additives and corrosion inhibitors?

As mentioned above, the effect mechanism of electrodeposition additives and corrosion 
inhibitors is quite similar. Both are dependent on their surface adsorbability to achieve the 

expected additive effect. The main difference from each other could be the use of additives 
is under electric field and their electrode surface adsorption behaviour will be influenced by 
the electric field distribution, while the corrosion inhibitors are used without galvanization 
and their adsorption mainly depends on certain physico-chemical properties of the inhibi-

tor group, such as electron density at the donor atom, π-orbital character and the electronic 

structure of the molecule [28].

ILs are composed entirely of organic cations and organic/inorganic anions that are liq-

uid at low temperature. Their relatively high cationic configuration makes them readily 
adsorb on the cathode surface under the electric field. In addition, some functional groups 
such as –C=N– group and electronegative nitrogen in the molecule of imidazolium ILs 
enables them spontaneous adsorption on the metal surface due to the specific interaction 
between these functional groups and the metal surface [2]. Furthermore, the high thermal 

stability, negligible vapour pressure and environmentally benign characteristics of ILs allow 

them to be considered as very promising replacements for the traditional volatile organic 

solvents. Therefore, it is hopeful to overcome these defects of traditional additives and toxic 

organic corrosion inhibitors, and help to realize additives with good stability and inhibitors 
with avirulence by using ILs as metal electrodeposition additives and corrosion inhibitors, 

respectively.

The application studies of ILs have been proposed varying from precious metal process-

ing [29–40] to mineral leaching [41–44]; however, very few have come to practical frui-
tion although several are at a pilot scale [45–47]. Except some technical difficulties that are 
hard to solve at our present state of knowledge [48], the relatively prohibitive high cost 
of ILs is also a main reason for delaying their industrial application [44]. In comparing to 
the use ILs as electrolytes for metal electrodeposition and rechargeable batteries, where the 
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 reproducible  operation in these ILs requires either a strictly controlled inert gas atmosphere 

with extremely low water concentration or at least closed vessel conditions with limited con-

tamination [49], the applications of ILs in electrodeposition additives and corrosion inhibi-
tors are not only cost accepted with the trace amount of consumption, but also have more 

practical operability.

On the basis of these discussions, it is accepted that the applications of ILs as additives for 

metal electrodeposition and corrosion inhibitors are with favourable industrial application 

prospect, as in our opinion they are very likely to initiatively realize the zero breakthrough of 
industrial applications of ILs.

3. Additives for metal electrodeposition

In modern electrodeposition and electrowinning practice, it is well known that the intro-

duction of one or more inorganic or organic additives in the electrolyte leads to produce 

smooth, free of voids and compacted metallic deposits at the cathode. The quantity of addi-

tives required is always considerably small, but their action is often specific [50]. Although 
the number of these additives studied in electrodeposition is very high, their action mecha-

nism can be divided into two main categories, which are levelling additive and brightening 

additive. Levelling additive [51] has been defined as the additive with the ability to produce 
deposit relatively thinner on small protrusions and then decrease in depth on height of the 

small surface irregularities. While brightening additive [52] can be defined as the ability to 
obtain fine deposits with the crystallites smaller than the wavelengths of visible light. In this 
section, we reported the use of a series of novel 1-alkyl-3-methylimidazolium hydrosulphate 
ILs, namely, [BMIM]HSO4, [HMIM]HSO4 and [OMIM]HSO4 as additives in zinc electrodepo-

sition from the acidic sulphate electrolyte. Furthermore, effects of ILs on copper electrodepo-

sition from acidic sulphate electrolyte were also introduced.

3.1. Additives for zinc electrodeposition

Zinc electrodeposition is very sensitive when it comes into contact with some types of 

impurities in augmenting simultaneous evolution of hydrogen during zinc ion electro-

reduction from aqueous solutions. Apart from occluding hydrogen into the zinc deposit, 
hydrogen evolution will increase specific electric energy consumption and decrease cur-

rent efficiency (CE), bringing about an increment in the level of internal stress to produce 
pitted  deposits [19]. To counteract the harmful effect of metallic impurities, achieve high 
CE and produce a smooth, levelled and dense cathodic deposit, additives such as glue 
and gum arabic are most often used. In addition, enormous organic additives [53–62] have 
been proposed for use as additives and some authorities have reported them to work bet-

ter than glue or gum arabic. We have reported that 1-alkyl-3-methylimidazolium hydro-
sulphate ILs ([BMIM]HSO4 [18], [HMIM]HSO4 and [OMIM] HSO4 [19]) had a pronounced 

inhibiting effect on Zn2+ electroreduction and all were efficient as levelling agents for zinc 
electrodeposition.
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Figure 1(a) shows the effect of [BMIM]HSO4 on the CE during zinc electrodeposition. The CE 
increases with the initial addition of [BMIM]HSO4 and steadily decreases at higher concen-

trations. Without additives, the CE is ~89%, whereas at 5 mg dm−3 [BMIM]HSO4 the CE was 
~92.7% and then fell to 87.8% at 50 mg dm−3. The trend observed in CE with increasing [HMIM]
HSO4 and [OMIM]HSO4 concentration is similar to that for [BMIM]HSO4, where we obtained 

a CE of 92.9–92.2% with the addition of 2 mg·dm−3 [HMIM]HSO4 and 1 mg dm−3 [OMIM]

HSO4, respectively, but at higher concentrations there is a reduction. The CE decreases with 
increasing additive concentrations in the order [OMIM]HSO4 > [HMIM]HSO4 > [BMIM]HSO4, 

which reflects increasing absorbability at the electrode surface with increasing molecular size 
and hence molecular mass [62, 63]. 

The cyclic voltammograms recorded for zinc electrodeposition from acidic sulphate solu-

tion in the absence and presence of ILs additive [BMIM]HSO4 are presented in Figure 1(b). 

The voltammograms were initiated at point ‘A’ (−0.70 V versus SCE), scanned in the nega-

tive direction and reversed at −1.30 V in the positive direction. The nucleation overpotential 
(NOP) for zinc deposition on an aluminium substrate is defined as the potential difference 
between the electroreduction potential of zinc ions at ‘B’ and the crossover potential at ‘D’, 
which is regarded as an indicator of the extent of polarization of a cathode [64]. It is clear that 
the addition of additives has a significant effect on the zinc electrocrystallization process as 
shown in Figures 1(b) and 2–4, where the NOP values increase substantially, along with the 
reduction of the cathodic process area. The strong adsorption of the additives on the electrode 

surface is usually held to be responsible for this. The extent of absorption appears to be in 

the order [OMIM]HSO4 > [HMIM]HSO4 > [BMIM]HSO4, which shows the adsorbability of 

the studied additives and reflects their effect on the process of deposition. The analysis of 
the kinetic parameters [18, 19] indicates that the presence of ILs does not have any significant 
effect on the Tafel slopes and transfer coefficients, suggesting that they do not change the zinc 
electrodeposition mechanism in the absence of additives.

Figure 1. (a) Effect of additives on current efficiency during zinc electrodeposition. () [BMIM]HSO4, (●) [HMIM]HSO4 

and () [OMIM]HSO4. (b) Cyclic voltammograms of acidic zinc sulphate solutions in the absence and presence of 
5 mg dm−3 different additives. (1) Blank, (2) [BMIM]HSO4, (3) [HMIM]HSO4 and (4) [OMIM]HSO4 [18, 19].
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The investigated additives significantly changed the morphology of the zinc deposits as 
compared with those obtained from solutions without additives, as shown in Figure 2. The 

zinc deposit obtained from addition-free electrolyte is bright but not smooth and consists of 
hexagonal platelets of moderate size (Figure 2a). Introducing the additives into the solution 

did not affect the shape of the crystals but improved the quality of deposits by reducing the 
platelet sizes and giving smooth and compact deposits (Figure 2b and d) with changing the 

preferred crystal orientations [18, 19].

Moreover, the addition of [BMIM]HSO4 was observed to relieve the harmful effect of 
impurities, such as copper, iron, cobalt, nickel and lead, to some extent and led to a reduc-

tion of the impurity content in the zinc deposits and improved the CE and the quality of 
the cathodic deposits [65]. Considering the anodic reaction, [BMIM]HSO4 was also found 

to have a catalytic effect on oxygen evolution by stimulating the reaction rate constant. 
Introduction of 5 mg dm−3 [BMIM]HSO4 can markedly reduce the oxygen evolution charge 

transfer resistance by at least 50% [66]. [BMIM]HSO4 manifested superior chemical and 

thermal stabilities compared with traditional industrial additives, gelatine and gum ara-

bic. The inhibition effects of gelatine and gum arabic on the zinc electrocrystallization 
weakened significantly under observation because of their partial degradation after 12-h 
long-time successive electrolysis and high temperature (90°C) treatments. In contrast, 24-h 
long-term successive electrolysis and high-temperature treatments have no effect on the 
activity of [BMIM]HSO4 [67].

The inhibition effect of [BMIM]HSO4 for zinc electrodeposition was also found in a typical 
plating solution (0.1 M ZnSO4 + 0.5 M Na

2
SO4) [22], in which [BMIM]HSO4 can induce the for-

mation of finer-grained deposits by the adsorption of additive in the first stages of  deposition 

Figure 2. Scanning electron micrographs of zinc deposits in the presence of different additives. (a) Blank, (b) [BMIM]
HSO4–5 mg·dm−3, (c) [HMIM]HSO4 –10 mg·dm−3 and (d) [OMIM]HSO4 –10 mg·dm−3 [18, 19].
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(Figure 3a and d). The corrosion behaviour of Q235 steel with coating by a thin layer of zinc 
in the presence of [BMIM]HSO4 exhibited more excellent protection of the base metal in com-

parison to the additive-free one in 3.5% NaCl solution (Figure 3e).

3.2. Additives for copper electrodeposition

Copper electrodeposition from acidic sulphate electrolyte with different small amounts of 
certain additives has been investigated extensively and it is well known that they lead to sig-

nificant changes in the properties and orientation of the deposit [68]. Appropriate amounts 
of additives are necessary for the formation of fine-grained, smooth and compact deposits. 
Additives, such as thiourea [69–71], gelatine [72, 73] and animal glue [74], are commonly 
used as levelling and brightening agents in copper electrodeposition and electrowinning in 

order to produce smooth, free of voids and porosity copper deposits. Although advances 

have been made, in many cases the use of these additives is still carried out in an empiri-

cal way, and there are still many unknown aspects concerning the mechanism of action of 

additives.

Recently, we have investigated the effect of [BMIM]HSO4 on copper electrodeposition [21]. 

Its effects on the morphology of cathodic deposits and the kinetic parameters of the cathodic 
process were deeply studied. Similar to the case for zinc electrodeposition, the addition of 
[BMIM]HSO4 was found to have a strong inhibiting effect on the electroreduction process, and 
the effect is more pronounced at higher additive concentrations.

The kinetic parameters obtained show that the presence of [BMIM]HSO4 has an inhibiting 

effect on the kinetics of the copper discharge process with slight changes in the copper elec-

trodeposition reaction pathway, indicated by the changes in Tafel slopes and the correspond-

ing charge transfer coefficient [21]. A possible mechanism of the action of this additive may 

Figure 3. SEM micrographs of zinc electrodeposits produced on GC electrode from solution 0.1 M ZnSO4 + 0.5 M NaSO4, 

pH 2.6 in the absence and presence of [BMIM]HSO4. (a) Blank, (b) 100 mg dm−3, (c) 250 mg dm−3 and (d) 500 mg dm−3. The 

deposition potential was −1.30 V and Q = 1.00 ± 0.01 C (e). Potentiodynamic polarization curves of Q235 steel substrate 
free and coated by a thin layer of zinc from the baths in the presence of different concentrations of [BMIM]HSO4 in 3.5% 
NaCl solutions. The deposition charges, Qd, were approximately 1.00 ± 0.01 C [22].
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be explained as follows: cathodic surface can effectively adsorb [BMIM]HSO4. When we add 

[BMIM]HSO4 in the electrolyte, the additive molecules adsorb at the cathodic surface and 

interact with the Cu+ ions produced from Eq. (1) to form a copper-[BMIM]HSO4 complex 

Eq. (3) by these equations:

 
2Cu e Cu+ − ++ →  (1)

 Cu e Cu+ −+ ↔  (2)

 4 4 adsCu [BMIM]HSO [Cu [BMIM]HSO ]+ ++ ↔ −  (3)

 4 ads 4[Cu [BMIM]HSO ] e Cu [BMIM]HSO+ −− + → +  (4)

We attribute the inhibition effect of [BMIM]HSO4 on the process of copper electroreduction to 

the adsorption of the complex at active sites, where it may receive an electron from the cath-

ode and discharge copper atoms which are embedded at the active sites (Eq. (4)). The [BMIM]
HSO4 will be released and can then become a complex.

The effect of [BMIM]HSO4 on the complex-plane impedance diagrams is illustrated in Figure 4. 

The complex-plane impedance spectra obtained from the additive-free solution exhibit two 

capacitive features at high frequencies followed by an inductive loop at low-frequency val-

ues (Figure 4a). On the other hand, two intermediate-frequency capacitive features, far more 

separated at high concentration of additive (Figure 4b and c) in the presence of [BMIM]HSO4, 

are obtained; that implies that two adsorbed species play a role in the process of copper elec-

trodeposition and the addition of [BMIM]HSO4 brought about a change in the copper electro-

deposition mechanism.

Figure 5 shows the SEM images of copper deposits obtained by small-scale electrolysis from 
the sulphate electrolyte in the absence and presence of [BMIM]HSO4. As it can be seen from 

Figure 5(b and c), introducing [BMIM]HSO4 has brought a notable effect on the surface 
quality of the copper deposits as compared with those gained from the additive-free bath 

Figure 4. Impedance plots for copper electrodeposition at E= −0.15 V in the absence (a) and presence of [BMIM]HSO4 

(b) 10 mg·dm−3, (c) 50 mg·dm−3  [21].
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(Figure 5a) consisting of comparatively large, coarse grains. The size of the copper grain is 
smaller and continuously decreases with increasing additive concentrations in the presence 

of [BMIM]HSO4 (Figure 5b and c). The fact that there was a blockage of the electrocrystalliza-

tion process is indicated by the results. Blockage of the crystal growth process is the action of 

[BMIM]HSO4, which induces a relative improvement in the process of nucleation. This results 

in a finer grained deposit. It is also noteworthy that the copper deposits’ morphology remains 
essentially unchanged, irrespective of the additive concentration. The influence of [BMIM]
HSO4 on the crystallographic structure of the deposits is presented in Figure 5(d). The copper 

deposit consists of (111), (200), (220), (311) and (222) crystal orientations without additives. 
The addition of 10 mg·dm−3 [BMIM]HSO4 inhibited the growth in the direction of the (111), 

(311), (222) planes and promoted the growth of the (220) plane.

Pyridinium-based ionic liquids were also found to be readily adsorbed on the metallic sur-

face similar to that of imidazolium-based ILs [21], which provide a larger potential group to 
be researched as novel metal electrodeposition additives. We have previously studied the 

effects of two alkylpyridiniumILs (py-iLs), including N-butylpyridinium hydrogen sulphate 
(BpyHSO4) and N-hexylpyridinium hydrogen sulphate (HpyHSO4), on copper electrodeposi-

tion from acidic sulphate electrolyte [22]. BpyHSO4 and HpyHSO4 both turn out to be efficient 
levelling additives in copper electrodeposition, which leads to more levelled and fine-grained 
cathodic deposits. Copper electrodeposition is associated with the growth process and a nucle-

ation. The addition of py-iLs has a blocking effect on copper electrodeposition, which causes 
a blockage of the nuclei growth process and some improvement in the process of nucleation. 

Both additives increase the cathodic polarization of copper through their adsorption on the 

Figure 5. Scanning electron micrographs of copper deposits in the absence and presence of [BMIM]HSO4. (a) Blank, 

(b) 10 mg·dm−3 and (c) 50 mg·dm−3. (Insets: local magnified graphs). (d) XRD patterns for the copper deposits in the 
absence and presence of [BMIM]HSO4 (1) Blank, (2) 10 mg·dm−3 [21].
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cathodic surface and block the kinetics of the Cu2+ reduction process. A higher inhibition effect 
is offered by HpyHSO4 than by BpyHSO4, which may be due to HpyHSO4’s stronger adsorb-

ability and complexation in comparison with BpyHSO4.

For further nucleation investigation [23], the initial stages of the process of copper electrode-

position take place through a three-dimensional instantaneous nucleation with diffusion-con-

trolled growth of the nuclei. We changed the practically instantaneous nucleation mechanism 

observed in the additive-free solution to become more progressive for the additives in the 

solution. The blocking effect of alklpyridinium hydrosulphate-based ILs on the copper elec-

trocrystallization process through its cathodic adsorption on the active sites of the electrode 
surface brought about this change in the nucleation mechanism and, as a consequence, caused 

a decrease in the nucleation and growth rate of these nuclei and induced the formation of 

levelled and finer grained copper electrodeposits.

To be distinguished from alkylimidazolium and alkylpyridinium-based ILs, for which their 
additive effects were found to come from surface adsorption together with complexing action, 
quaternary ammonium-based ILs feature their action simply through specific adsorption [25]. 
The typically feasible cathodic adsorption of quaternary ammonium-based ILs, including 

tetraethylammonium hydrogen sulphate (NEt4HSO4, Figure 6a) and tetrabutyl-ammonium 

hydrogen sulphate (NBu4HSO4, Figure 6b), may have been caused by electrostatic attractive 
forces between dissolved quaternary ammonium cations and the electrically charged surface 

of the cathode, which can be schematically described in Figure 6(c). Furthermore, the possible 

difference applied during the process of electrodeposition makes the charge on the cathode 
surface more negative and enhances the adsorption of positively charged quaternary ammo-

nium ions. At a lower additive concentration, the alkyl chain of these quaternary ammonium 

cations may be oriented in the direction of the electrolyte. Nevertheless, a horizontal arrange-

ment to the cathode can also be made of them. As there is an increment in the concentration 

of added ILs, the alkyl chain may trend for a vertical arrangement to improve absorption [75]. 

Figure 6. Structures of quaternary ammonium-based ILs used. (a) NEt4HSO4, (b) NBu4HSO4 and (c) the proposed surface 

adsorption of NBu4+ at different additive concentrations on the cathode [25].
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In this manner, more quaternary ammonium cations can adsorb at the cathode surface and act 

together to form a layer above the head group; this will block the cathode surface and bring 
about an increment in the inhibition effect on the approach of the Cu2+ species and the result-

ing electroreduction reaction. Longer alkyl chain will result in greater surface adsorbability 

of the ILs cations because of the alkyl group’s electron releasing ability [76], which is found 
to improve with any increment in the alkyl chain. Therefore, NBu4HSO4 provides a higher 

inhibition effect than NEt4HSO4.

4. Corrosion inhibitors

Because of the general aggressiveness of acid solutions, inhibitors are commonly used to 

reduce the corrosive attack on metallic materials. Numerous possible inhibitors have been 
investigated. Amongst them there are inorganic inhibitors [77], but in much greater numbers 
there are organic compounds. Most of the effective organic inhibitors used contain hetero-

atoms such as oxygen, nitrogen, sulphur, phosphorous and multiple bonds in the organic 

compound molecules through which they can adsorbed on the metals surface [78–83]. The 
adsorption behaviour could include two main modes [1]. They are chemisorption (involving 

chemical combination between the metal and the adsorbate where electrons are shared and/

or transferred, usually leading to the formation of covalent bonds) and physisorption (involv-

ing physical force such as van der Waals and pure electrostatic attraction between the charged 
metal and the charged inhibitor molecules). The former may occur if the inhibitor contains 

lone pairs of electrons, multiple bonds or conjugated p-type bond system. And there is no 

electron transfer and no electron sharing in the later adsorption mode. In this section, we 

reported the effect of some alkylimidazolium ILs on the corrosion inhibition of metals such as 
mild steel, aluminium and copper in acid solution.

4.1. Mild steel

Acid solutions are widely used in industry, such as acid pickling, industrial acid cleaning, 

acid descaling and oil well acidizing. However, due to their general aggressively, inhibitors 
are generally used in these processes to control metal dissolution. There are various organic 

inhibitors that tend to decrease the corrosion rate of steel and iron in acidic solutions [28, 
83–86]. ILs with imidazolium [87–92] and pyridinium cations [93, 94] have showed excel-
lent corrosion inhibition performance on mild steel in an acidic environment. We have first 
investigated the acid corrosion inhibition process of mild steel [2] in 1 M HCl by 1-butyl-

3-methyl-imidazolium chlorides (BMIC) and 1-butyl-3-methyl-imidazolium hydrogen sul-
phate ([BMIM]HSO4) and found that the studied inhibitors are mixed type inhibitors. For 

both inhibitors, the inhibition efficiency increased with an increase in the concentration of the 
inhibitor and the effectiveness of the two inhibitors are in the order [BMIM]HSO4 > BMIC.

Figure 7 shows the Nyquist plot diagram for mild steel in 1 M HCl solution in the absence 
and presence of BMIC and [BMIM]HSO4. It is clear from these figures that the impedance 
spectra obtained yield a semi-circular shape, suggesting that the corrosion of the mild steel in 

1 M HCl solution is mainly controlled by a charge transfer process [95, 96]. A similar profile 
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of the Nyquist plots observed in the absence and presence of the inhibitors indicates that the 
addition of inhibitors does not change the mechanism for the dissolution of mild steel in HCl.

The corrosion mechanism of iron in hydrochloric acid was proposed [97, 98] as follows. 
We assume that columbic attraction first adsorbed Cl− anion is onto the positively charged 

metal surface. Then the inhibitor molecules can be adsorbed via electrostatic interactions 

between the negatively charged metal surface and the positively charged molecules. These 

adsorbed inhibitor molecules come together with (FeCl−)
ads

 species to form monomolecular 

layers (by forming a complex) on the surface of the steel; it protects the surface of the steel 
from attack by chloride ions and prevents the oxidation reaction of (FeCl−)

ads
 as seen in steps 

(bd). In  contrast, in competition with hydrogen ions reducing hydrogen evolution (eg), 

the protonated imidazolium molecules are also adsorbed at cathodic sites.

These are the steps followed by the anodic dissolution of iron:

a. 
ads

Fe Cl (FeCl )− −+ ↔

b. 
ads ads

(FeCl ) (FeCl) e− −↔ +

c. 
ads

(FeCl) (FeCl ) e+ −→ +

d.  2(FeCl ) Fe Cl+ + −↔ +

The cathodic hydrogen evolution follows the steps:

e. 
ads

Fe H (FeH )+ ++ ↔

f. 
ads ads

(FeH ) e (FeH)+ −+ →

g. 
ads 2

(FeH) H e Fe H+ −+ + → +

Meanwhile, the presence of the electron-donating groups on the imidazolium base structure, 
such as Cl and S, increases the electron density on the nitrogen of the –C=N– group due to 
their ability of offer free electrons. In particular, the ability of S atom is more excellent than 
that of Cl [99]. Therefore, [BMIM]HSO4 is more effective than BMIC in inhibiting the corrosion 
of mild steel in HCl.

Figure 7. Nyquist plots for mild steel in 1 M HCl solution in the absence (□) and presence of 5 × 10−4  (), 1 × 10−3 (), 

5 × 10−3 () and 1 × 10−2 M () inhibitor at 303 K: (a) BMIC, (b) [BMIM]HSO4 [2].
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The characteristics of adsorption of the imidazolium base inhibitors on the mild steel in 1.0 M 
HCl solution follow Langmuir’s adsorption isotherm. The analysis of thermodynamic param-

eters [2] such as equilibrium constant and standard free energy indicate that the inhibitors are 

physically adsorbed on the metal surface and the adsorption of inhibitor molecule with the 

corroding mild steel surface is a spontaneous and exothermic process [100].

4.2. Aluminium

A rapidly formed compact, strongly adherent and continuous oxide film may be responsible 
for the resistance of aluminium against corrosion in aqueous media [101, 102]. Consequently, 

many industries, such as reaction vessels, pipes, machinery and chemical batteries, have come 
to rely heavily on aluminium and its alloys. Hydrochloric acid solutions are employed for 

pickling, chemical and electrochemical etching of aluminium [103]. Having aggressive ions 
such as chloride, however, creates a huge localized attack [104]. The corrosion inhibition of 
aluminium in an acid medium has been reported while using hydrazone [105], anionic sur-

factants [106] and amino acid [107] as inhibitors. We have studied the corrosion inhibition 
performance of three alkylimidazolium ILs namely 1-butyl-3-methylimidazolium chlorides, 
1-hexyl-3-methylimidazolium chlorides (HMIC) and 1-octyl-3-methyl-imidazolium chlorides 
(OMIC) on the corrosion of aluminium in 1.0 M HCl [22]. All the inhibitors studied could be 

classified as mixed type inhibitors with the obvious inhibition effect on both cathodic and 
anodic reactions of the corrosion process. The inhibition efficiency increased with an increase 
in the concentration of inhibitor and the effectiveness of these inhibitors was in the order of 
OMIC > HMIC > BMIC. Similar to the adsorption behaviour of imidazolium base inhibitors 
on the mild steel, the adsorption of these inhibitors on the aluminium surface also obeyed 

Langmuir adsorption isotherm and had a physical mechanism involving a spontaneous and 

exothermic process.

The Nyquist plots (Figure 8) for aluminium in 1.0 M HCl solution showed that the imped-

ance spectra are made up of a large capacitive loop at high frequencies, which is followed by 

a small inductive one at low-frequency values. There is a relationship between the high-fre-

quency capacitive loop and the charge transfer of the corrosion process and the double layer 

behaviour, and the inductive loop could be interpreted in terms of the relaxation processes 

in the oxide film covering the electrode surface [108] or attributed to the stabilization of the 
layer by the adsorbed intermediate products of the corrosion reaction on the electrode surface 

involving inhibitor molecules as well as reactive products [109].

A general mechanism for the dissolution of aluminium in the presence of chloride ions would 

be similar to that reported in the literature [110, 111].

 (s) 2 ads
Al H O AlOH H e+ −+ ↔ + +  (5)

 
3

ads 2
AlOH H Al H O 2e+ + −+ ↔ + +

 (6)

 
3

ads 2
AlOH H Al H O 2e+ + −+ ↔ + +  (7)
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2[AlOH] Cl [AlOHCl]+ − ++ →  (8)

The water molecules originally adsorbed on the surface are partly displaced by the adsorption 

of imidazolium compounds on the aluminium surface; this blocks the formation of AlOH
ads

 

(Eq. (5)). Thus, we can prevent both the oxidation reaction of AlOH
ads

 to Al3+ as shown by step 

(Eq. (6)) and the complexation reaction between the hydrated cation [AlOH]2+ species that are 

formed in step (Eq. (7)) and chloride ions (Eq. (8)). Moreover, these protonated molecules also 
compete with the hydrogen ions, which will curtail the evolution of hydrogen. The presence 

of the electron-donating group (Cl) on the imidazolium base structure is observed to increase 
the electron density on the nitrogen of the –C=N– group and to result in high inhibition 
efficiency. In particular, this effect appears more pronounced with the increase in the chain 
length of the alkyl connecting with N(3) of the imidazolium ring. Therefore, the effectiveness 
of these inhibitors with the sequence of OMIC > HMIC > BMIC is obtained.

4.3. Copper

Copper and its alloys have been found widespread applications in many industrial processes 

such as industrial equipment, building construction, electricity, electronics, coinages and 

ornamental parts due to their electrical, thermal, mechanical and corrosion resistance proper-

ties [112]. However, the presence of aggressive ions such as chlorides, sulphates or nitrates 

creates extensive localized attack [113]. One effective approach to protect metals against the 
general aggression of acid solutions is the use of organic inhibitors, which can effectively con-

trol the metal dissolution and eliminate the undesirable acid consumption. Many organic com-

pounds including triazole, imidazole, thiazole, tetrazole, indole and its derivatives [114, 115] 
have been developed as corrosion inhibitors to inhibit copper corrosion in aggressive environ-

ments. As an example of ILs, alkylimidazolium-based ILs ([BMIM]HSO4, [HMIM]HSO4 and 

[OMIM]HSO4) have proved to be excellent inhibitors for the  corrosion inhibition of copper 

Figure 8. Effect of inhibitors on the impedance response of aluminum in 1.0 M HCl solution in the absence (□) and 
presence of 5 × 10−4 M () BMIC, () HMIC, () OMIC at 303 K [26].
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in 0.5 mol·L−1 H
2
SO4 solution [27], which behave as mixed type inhibitors with a pre-domi-

nantly cathodic action. The corresponding electrochemical impedance results suggested that 

these imidazolium-based molecules act by adsorbing at the copper/solution interface. The 
adsorption of these imidazolium-based compounds on the copper surface in an acidic solu-

tion is found to fit the Langmuir adsorption isotherm and occurs by a physisorption-based 
mechanism involving a spontaneous process.

The anodic dissolution of copper proceeds via a two-step reaction mechanism and can be 

described as follows: [116]

a.  2

4 4 adsCu SO e (CuSO )− − −+ − ↔

b.  2 2

4 ads 4(CuSO ) e Cu SO− − + −− ↔ +

where (CuSO4
−)

ads
 is an adsorbed species at the copper surface and does not diffuse into the 

bulk solution [52]. Consequently, the mass transport has little influence on dissolution of 
copper.

It is assumed that the negative sulphated ions are first adsorbed onto the positively charged 
metal surface by columbic attraction. Since the imidazolium group as well as nitrogen 
atom in the heteroaromatic ring of imidazolium compounds can be protonated in acidic 
 solutions [117]. The protonated inhibitor molecules can be adsorbed through electrostatic 
interactions between the positively charged molecules and the negatively charged metal sur-

face [2]. These adsorbed imidazolium compound molecules will interact with (CuSO4
−)

ads
 ions 

generated from (a) to form a protective layer (by forming a complex) at active sites, which 

hiders both mass and charge transfers and blocks the further oxidation reaction of (CuSO4
−)

ads
 

to Cu2+ as shown in step (b).

5. Conclusions

In this chapter, two perspective application studies of ILs in using as additives for metal elec-

trodeposition and inhibitors for metal anti-corrosion were summarized. It was shown that 
ILs had some intrinsic advantages over traditional organic agents. Due to their stability, high 

conductivity, low vapour pressure and environmental friendly nature, ILs were excellent lev-

elling agents for both zinc and copper electrodeposition, which were superior to traditional 
additives, and showed favourable corrosion resistant performance on mild steel, aluminium 

and copper in acidic solutions.

It is apparent that the future for ILs-based technology in these two aspects is extremely bright; 
however, more fundamental aspects issues have to be solved so that their applications will 

become a practical reality instead of laboratorial studies. What is the adsorption mechanism 

of ILs on the metal surface? What is the effect of ILs on the nucleation and growth of metal? 
And how is the influence of ILs on the structures of electric double layer, etc.? All these issues 
are the critical problems for further study.
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