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Abstract

Spatial interpolation has been widely and commonly used in many studies to create sur-
face data based on a set of sampled points, such as soil properties, temperature, and pre-
cipitation. Currently, there are many commercial Geographic Information System (GIS) 
or statistics software offering spatial interpolation functions, such as inverse distance 
weighted (IDW), kriging, spline, and others. To date, there is no “rule of thumb” on the 
most appropriate spatial interpolation techniques for certain situations, though general 
suggestions have been published. Many studies rely on quantitative assessment to deter-
mine the performance of spatial interpolation techniques. Most quantitative assessment 
methods provide a numeric index for the overall performance of an interpolated surface. 
Although it is objective and convenient, there are many facts or trends not captured by 
quantitative assessments. This study used 2D visualization and 3D visualization to iden-
tify trends not evident in quantitative assessment. This study also presented a special 
case, a closed system in which all interpolated surfaces should sum up to 100%, to dem-
onstrate the interaction between interpolated surfaces that were created separately and 
independently.

Keywords: spatial interpolation, quantitative assessment, 2D visualization, 
3D visualization, performance

1. Introduction

Spatial interpolation is the process of using a set of point data to create surface data [1, 2]. 

A point data set has data values only for certain locations, such as field work locations, within 
the study area. Surface data divides the study area into cells, with a data value for each cell. 
With surface data, there is often a data value for every location inside the study area, whether 
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it was sampled or not. Though a set of point data is more manageable in terms of labor, 

 budget, and time; surface data are more useful and practical in many disciplines, such as 

precision agriculture, particularly with variable rate applications [3–9].

There are many spatial interpolation algorithms available in the literature, as well as in com-

mercial GIS or statistics software [1, 10]. Each algorithm typically requires different param-

eters. Even with the same algorithm and same input data points, these different parameters 
can create different surfaces.

Evaluation of interpolated surfaces is difficult and often times overlooked. In most spa-

tial interpolation  studies, quantitative assessment was the only method used to evaluate 
the resultant surfaces. Most quantitative methods provide a numeric index for over-

all  performance. Such a numeric index is easy to understand and convenient [10–13]. 

However, interpolated surfaces cannot be described by one numeric index, as many char-

acteristics cannot be observed or evaluated by quantitative assessments. To date, there is 
no “rule of thumb” on which spatial interpolation techniques are most appropriate for 

certain situations [14].

The purpose of this chapter is to demonstrate a comprehensive approach to evaluate spa-

tial interpolation, including: common quantitative assessment, 2D visualization, and 3D 
visualization. This chapter also presents a special case, a closed system consisting of three 
variables. Spatial interpolation techniques were applied to the three variables separately and 
independently to create surfaces. 2D visualization and 3D visualization then were used to 
evaluate whether the interpolated surfaces met the requirements for a closed system. This 
chapter is organized as follows: Section 2—study area and data, Section 3—spatial interpo-

lation  methods, Section 4—quantitative assessments, Section 5—2D and 3D visualization, 
Section 6—special case of a closed system, and Section 7—conclusions.

2. Study area and data

The study area is a 12.15 ha field located at the northwest Missouri State University R.T. 
Wright Farm near Maryville, MO, USA (Figure 1). This field was managed under a corn‐
soybean rotation [14]. Soils within the field were mapped as mollisols. Soil samples were 
collected in January 2006 using five soils sampling schemes outlined in a previous study 
[15]: 0.11 ha grid with 110 samples, 0.98 ha grid with 12 samples, 3.04 ha grid with four 
samples, topography‐based composite with three samples, and whole‐field composite with 
only one sample. The soil pH value of the 110 sample points from the 0.11 ha grid was 
the input data for spatial interpolation in this study. Point sampling was used to collect 

grid‐based samples; five 1.27 cm diameter soil cores to a 15.24 cm depth were randomly 
collected from a 1.0 m2 area around the predetermined cell sample point. The five soil cores 
were composited to form the sample for each respective grid sample location. Soil pH was 
as determined using the standard laboratory method of the United States Department of 
Agriculture [16].
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3. Spatial interpolation methods

Spatial interpolation, or spatial prediction, is a process to estimate values of locations that 
were not surveyed based on a network of points with known values [1, 2, 10, 11]. In most 

cases, the input data is a network of points, while the output is a surface that divides the 
study area into small cells with a data value for each cell. There are two basic assumptions 
for spatial interpolation. First is spatial autocorrelation, which is best explained by Tobler's 
first law of geography “everything is related to everything else, but near things are more 
related than distant things” [17]. The second assumption is that values are smooth and con-

tinuous over space. Many spatial interpolation techniques were developed based on these 

Figure 1. Study area: R. T. Wright University Farm in northwest Missouri, with NAIP (National Agricultural Imagery 
Program) 2006 CIR (color infrared) display.
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two  assumptions. Commercial GIS or statistical software provides several spatial interpola-

tion functions, such as inverse distance weighted (IDW), kriging, spline, and others.

Although there are many options for spatial interpolation, to date, there is no “rule of thumb” 

on which technique is best under what certain circumstances. Even with the same technique 
and same input point data, different parameters may result in different surfaces. Potentially, 
a given set of points and a given spatial interpolation technique can generate many different 
surfaces [10, 14]. Therefore, it is important to evaluate and understand the accuracy and reli-
ability of surface data generated from spatial interpolation. In this study, IDW, kriging, and 

spline will be used to demonstrate the process to evaluate and visualize spatial interpolation 
surfaces.

3.1. Inverse distance weighted

Inverse distance weighted is a deterministic estimation method where values at unmeasured 
points are determined by a linear combination of values at nearby measured points. Among 
available parameters, the power parameter can significantly affect the results. As the power 
parameter increases, IDW acts similarly to the nearest neighbor interpolation method in 

which the interpolated value is close to the value of the nearest measured value. The advan-

tages of IDW are that it is simple, easy to understand, and efficient. Disadvantages are that it 
is sensitive to outliers and there is no indication of error [1].

Schloeder et al. [18] compared IDW, kriging, and spline spatial interpolation methods. They 

concluded that IDW and kriging performed similarly and that both are more accurate than 

the spline interpolation method. Mueller et al. [19] compared IDW and kriging on soil prop-

erties. Though individual performance differed greatly depending on the existence of spatial 
structure and sampling density, they concluded little difference between the overall perfor-

mances between IDW and kriging. Kravchenko [20] conducted another study to compare IDW 

and kriging on soil properties. He reported that spatial structure significantly affected the 
accuracy of interpolation performance. He also reported that known variograms can greatly 
improve kriging performance, which may result in a better performance than IDW. Lu and 
Wong [21] developed a new form of IDW, which estimated data values at an unsampled loca-

tion based on spatial pattern found in its neighborhood. As already reported in Refs. [19, 20], 

Lu and Wong [21] also found that variograms may greatly affect the performance of kriging. 
Their new form of IDW may perform better than kriging without variograms.

3.2. Kriging

Kriging is a stochastic method similar to IDW in that it also uses a linear combination of 

weights at known locations to estimate the data value of an unknown location. Variogram 
is an important input in kriging interpolation. It is a measure of spatial correlation between 

two points. With known variograms, weights can change according to the spatial arrange-

ment of the samples. A major advantage of kriging is that, in addition to the estimated 
surface, kriging also provides a measure of error or uncertainty of the estimated surface. 
A disadvantage is that it requires substantially more computing time and more input from 
users, compared to IDW and spline [1].
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Bekele et al. [22] compared several spatial interpolation methods, including kriging and IDW. 
They found that kriging generally performed better than IDW. However, they concluded that 
a regression‐based autocorrelated error model was overall a more flexible method for inter-

polation. Laslett et al. [23] compared kriging and spline spatial interpolation methods and 

found that kriging produced better and more accurate surface than spline. Gotway et al. [24] 

compared kriging and IDW, and reported that kriging performed better than IDW and was 
relatively more stable because it was less dependent on spatial structure or soil sampling. 
Bishop and McBratney [25] conducted a study to explore the effect of having secondary data 
(such as color aerial photos) in the interpolation process. They reported an improved kriging 
performance.

3.3. Spline

Spline is a deterministic method to represent two‐dimensional curves on three‐dimensional 
surfaces. It can be imagined as fitting a flexible surface through a set of known points using 
a mathematical function. A major advantage of spline is that it can create fairly accurate and 
visually appealing surfaces based on only a few sample points. Disadvantages of spline are 
that the resultant surface may have different minimum and maximum values from the input 
data set, it is sensitive to outliers, and there is no indication of errors [1].

Laslett et al. [26] conducted an early study to evaluate and compare the performance of differ-

ent spatial interpolation methods, including kriging, IDW, spline, and others. They reported 

though each method may perform better than others under certain situations, overall spline 
and kriging performed relatively better than IDW. Voltz and Webster [27] compared kriging 

and spline on soil properties, and concluded that kriging performed overall better than spline. 
Robinson and Metternicht [28] compared spline, kriging, and IDW interpolations methods on 

soil properties. They reported that no single method was suitable for all situations. Simpson 

and Wu [29] compared IDW, kriging, and spline on interpolating lake depth, and reported that 

spline produced the most accurate results with less than the ideal amount of sampled points.

4. Quantitative assessment

Based on a previous study [14], six interpolated surfaces were chosen for demonstration pur-

poses. They are IDW (parameters: power 2, 10 neighbors), spline (parameters: tension, 10 
neighbors), kriging (parameters: circular, 10 neighbors), IDW (parameters: power 4, 20 neigh-

bors), spline (parameters: thin plate, 20 neighbors), and kriging (parameters:  exponential, 
20 neighbors). Each surface was evaluated by cross validation (Jackkniffing) by the 110 points 
from the 0.11 ha grid [10]. This validation process will go through iterations till all points were 
processed and validated. In each iteration, one sample point with known data value was dis-

carded, and the remaining sample points were used to predict the value at the location of the 
discarded point. The known data values were compared to their counterpart predicted values 
and a measure of prediction accuracy was calculated.

Four error measures were used as accuracy index [14]. They are (1) mean absolute error 

(MAE), see Eq. (1) [12, 30]; (2) root mean square errors (RMSE), see Eq. (2) [12]; (3) systematic 
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MAE RMSE RMSEs RMSEu

IDW, power 2, N 10 0.2930 0.3671 0.3164 0.1712

Spline, tension, N 10 0.2957 0.3702 0.3279 0.1813

Kriging, circular, N 10 0.2926 0.3669 0.3255 0.1669

IDW, power 4, N 20 0.2965 0.3702 0.3310 0.1815

Spline, thin plate, N 20 0.3481 0.4408 0.3508 0.3167

Kriging, exponential, N 20 0.2925 0.3661 0.3357 0.1540

N: neighbor parameter.

Table 1. Cross validation (Jackknifin g) by 110 sample points from 0.11 ha grid.

root mean square errors (RMSEs), see Eq. (3) [31]; and (4) unsystematic root mean square 

errors (RMSEu), see Eq. (4) [31]. Readings from the accuracy index, the lower values mean less 
errors, and therefore, higher accuracies and better performances.
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Table 1 summarizes these four error measures for these six interpolated surfaces. At first 
glance, they are quite compatible with each, meaning a similar performance. With closer 

examinations, one may notice that spline (parameter: thin plate, 20 neighbors) seems to have 
higher error measures, meaning more errors, and therefore worse performance. This par-

ticular interpolation has 0.3481 in MAE measure, while other surfaces are between 0.2925 
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and 0.2965; 0.4408 in RMSE measure while others between 0.3661 and 0.3702; and 0.3167 in 
RMSEu measure while others between 0.1540 and 0.1815. Among these four error measures, 
spline (parameter: thin plate, 20 neighbors) interpolation has considerably higher values than 
the other surfaces in three measures. On the other hand, IDW and kriging seem to perform 
similarly with compatible error measures.

5. Visualization of spatial interpolation

5.1. 2D visualization

Figure 2 shows these six interpolated surfaces in a flat 2D visualization environment. With 
visual inspection, one may notice that among these three surfaces with 10 neighbors, krig-

ing (parameter: circular, 10 neighbors) appears differently. One may describe it as smoother 
with less extreme values (because of less red colors and blue colors). On the other hand, IDW 
(parameter: power 2, 10 neighbors) and spline (parameter: tension, 10 neighbors) seem to 
appear similarly. The same observation can be made in the group of three surfaces with 20 
neighbors. Kriging (parameter: exponential, 20 neighbors) appears smoother than other two 
surfaces. IDW (parameter: power 4, 20 neighbors) and spline (parameter: thin plate, 20 neigh-

bors) seem to appear similarly. Comparison between the group of 10 neighbors and the group 

of 20 neighbors, one may observe another interesting trend that the group of 20 neighbors 
generally appears to have more extreme values, with more red colors and blue colors, than 
the group of 10 neighbors.

Figure 2. Six interpolated surfaces with their parameters. N: neighbor. (a) IDW, power 2, N 10; (b) spline, tension, N 10; 
(c) kriging, circular, N 10; (d) IDW, power 4, N 20; (e) spline, thin plate, N 20; (f) kriging, exponential, N 20.
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Appearing smoother with less extreme values is not necessarily an indication of good per-

formance or bad performance. It is just a characteristic of the overall trend of the interpo-

lated surface, which was not revealed by quantitative assessment, such as four error measures 
shown earlier. An initial visual inspection of the interpolated surfaces already revealed a dif-
ferent observation from quantitative assessment. In quantitative assessment, it was observed 
that IDW and kriging performed similarly, and both are better than spline. With initial visual 
inspection, it was observed that IDW and spline performed similarly, while kriging performed 
differently, not necessarily in a better or worse way. Such difference warrants a further exami-
nation with visualization tools.

5.2. 3D visualization

Figure 3 shows the group of three surfaces with 10 neighbors in 3D visualization. One can con-

firm the trend observed in the 2D visualization that kriging (parameters: circular, 10 neighbors) 
appears smoothers than IDW (parameters: power 2, 10 neighbors) and spline (parameters: 
tension, 10 neighbors). This particular 3D visualization reveals even more trends that cannot 
be observed in quantitative assessment. In Figure 3, gray bars indicate locations of sample 

points, with bar height equaling data values. One may notice that kriging (parameters: circu-

lar, 10 neighbors) does not quite match the sampled data. Bars poke out (or appear above) the 
interpolated surface, indicating that the interpolated surface has data values less than actual 
sampled data. This is an indication of inexact interpolation [10], meaning the predicted data 

value at the sampled location is different from actual data value sampled at this same loca-

tion. It implies that kriging (parameters: circular, 10 neighbors) underestimated data values, 
compared to actual data values. This phenomena (bar poking out of the surface) is less evident 
for spline (parameters: tension, 10 neighbors), and almost nonexistent for IDW (parameters: 
power 2, 10 neighbors). This implies that, in this study, kriging and spline are inexact inter-

polations, while IDW is an exact interpolation. There are parameters that can control exact or 
inexact interpolation in kriging or spline. Unfortunately, for most food producers, novice GIS 
users, or the general public, they are not familiar with exact or inexact interpolation. Chances 
are they do not know how to control the exact or inexact interpolation, and will end up like 
this study with some inexact interpolations, which is not revealed in quantitative assessment.

Figure 4 shows the group of three surfaces with 20 neighbors in 3D visualization. One can 
observe the same trend that kriging (parameters: exponential, 20 neighbors) appears smooth-

ers than other two surfaces, with evident bars poking out of the surface. Comparing the group 
of 10 neighbors and the group of 20 neighbors, one may notice a difference in overall surface 
appearance. Taking IDW for example, IDW (parameters: power 2, 10 neighbors) has some 
pointy peaks, while IDW (parameters: power 4, 20 neighbors) appears duller. Same can be 
observed between spline (parameters: tension, 10 neighbors, pointy) and spline (parameters: 
thin plate, 20 neighbors, duller). One may also notice another abnormality on the south and 
north edges of spline (parameters: thin plate, 20 neighbors). There are some extreme peaks 
or villages among these two edges. This is also visible in the 2D visualization in Figure 2(e), 

where some clusters of blue colors appear along the south edge and the north edge of the 

study area. Such clusters of blue colors are only visible in this particular interpolation.

Applications of Spatial Statistics24



Figure 3. 3D visualization of three interpolations with 10 neighbor points. Each interpolation is displayed with a 
continuous tone, lighter colors for lower values, and stronger colors for higher values. View at the image from southwest. 
Soil sample data are displayed as gray bars, height of bars indicates data values. (a) Kriging, circular; (b) spline, tension; 
(c) IDW, power 2; (d) kriging, circular, spline, tension, and IDW, power 2 three interpolations.

Figure 4. 3D visualization of three interpolations with 20 neighbor points. Each interpolation is displayed with a 
continuous tone, lighter colors for lower values, and stronger colors for higher values. View at the image from southwest. 
Soil sample data are displayed as gray bars, height of bars indicates data values. (a) Kriging, exponential; (b) spline, thin 
plate; (c) IDW, power 4; (d) kriging, exponential, spline, thin plate, and IDW, power 4 three interpolations.
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Table 2 shows the descriptive statistics for these six interpolated surfaces, as well as the 
original sample data set (110 points from 0.11‐ha grid). One may notice that only IDW 
surfaces have the exact minimum and maximum values as the original sample data. 
Overall, kriging has a smaller range (difference between minimum and maximum) than 
spline. Spline (parameters: thin plate, 20 neighbors) has the largest range, as observed in 
Figures 2(e) and 4(b).

In summary, different assessment methods reveal different characteristics of these interpo-

lations. The quantitative assessment indicated that IDW and kriging performed similarly, 
and both better than spline. 2D visualization indicated that IDW and spline performed 
similarly, while kriging performed differently, not necessarily in a better or worse way. 
3D visualization indicated that IDW is an exact interpolation, while kriging and spline are 
inexact  interpolations. It was also revealed that kriging has the tendency to underestimate 
data  values, compared to actual data values. Spline had the tendency to generate extreme 
data values along edges of the study area. Quantitative assessment is widely and commonly 
used in most spatial interpolation studies. Although 2D and 3D visualization tools do not 
provide quantitative indication of good or bad performance, they both revealed something 
 quantitative assessment failed to report.

6. Interactions between spatial interpolations

So far, we have examined spatial interpolations on the individual surface level. As discussed 
earlier, it is difficult to determine which one performed better than others, based on one 
assessment method. Different assessment methods reveal different characteristics of interpo-

lations. It is essential to understand these interpolated surfaces from all available assessment 
methods.

There are occasions where spatial interpolations were used to estimate a single variable in 
a larger project where multiple variables consist of a closed system. The V‐I‐S (vegetation‐

Min. Max. Mean S.D.

IDW, power 2, N 10 5.29 7.11 6.30 0.24

Spline, tension, N 10 5.30 7.11 6.34 0.23

Kriging, circular, N 10 5.80 6.65 6.30 0.17

IDW, power 4, N 20 5.29 7.11 6.31 0.31

Spline, thin plate, N 20 5.29 7.91 6.34 0.35

Kriging, exponential, N 20 5.71 6.78 6.30 0.18

110 samples from 0.11 ha 5.29 7.11 6.27 0.38

N: neighbor points.

Table 2. Descriptive statistics for six interpolation results and the original sample set
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impervious surface‐soil) model commonly used in modeling physical urban areas [32–34] 

is an example of such a closed system. In the V‐I‐S model, urban areas are represented by 
composition of vegetation, impervious surface, and soil. For example, industrial areas may be 
made of 50% impervious surface, 20% vegetation, and 30% soil, while low density residential 
areas may be made of 30% impervious surface, 60% vegetation, and 10% soil. The sum of V, 
I, and S percentage should be 100%, i.e., a closed system. When surveying V, I, and S percent-
age with field work, image processing, or photo interpretation, one can  assure that surveyed 
data values sum up to 100%, meeting the closed system requirements. When doing the spatial 
interpolation to generate surfaces of V, I, and S percentages, special attention should be paid 
to the interactions between variables or surfaces.

6.1. Data and spatial interpolation in a closed system

A small experiment was conducted to demonstrate how individual spatial interpolation 
interacts with each other on a closed system. Fifteen points were visited and V, I, and S per-

centages were sampled in a grass field in Northwest Missouri State University in Maryville, 
MO, USA (see Figure 5). This field is grassy, with scattered trees, bushes, and pitches of 

Figure 5. Study area: a grass field in Northwest Missouri State University, with 2003 IKONOS image (R, G, B/3, 2, 1) true 
color display.
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Figure 6. Nine interpolated surfaces for percentage vegetation, impervious surface, and soil, created by IDW, kriging, 
and spline spatial interpolation methods, respectively. (a) Veg: idw; (b) Veg: kriging; (c) Veg: spline; (d) Imp: idw; (e) 
Imp: kriging; (f) Imp: spline; (g) Soil: idw; (h) Soil: kriging; (i) Soil: spline.

soil. Impervious surface can only be found on the edges (roads and parking lots). Each 
point is 30 m away from its immediate four neighbors. At each point location, 100 samples 
were taken, with each sample verified as either vegetation, impervious surface, or soil. All 
100 samples were then summed and converted to V, I, and S percentage for that point loca-

tion. Most points have various amounts of vegetation and soil, with no impervious surface, 
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except two points near the south edge of the study area, which is close to parking lots where 
impervious surface exists.

Three spatial interpolations were chosen for demonstration purposes. They are: IDW 

 (parameters: power 2, 10 neighbors), spline (parameters: tension, 10 neighbors), and kriging 
(parameters: circular, 10 neighbors). Each interpolation was applied to create V, I, and S sur-

faces. In total, there were nine surfaces generated. Figure 6 shows these nine interpolated sur-

faces. One may quickly observe how differently these surfaces appear, especially among these 
vegetation percent surfaces. One may also notice that among three impervious surfaces, only 
spline surface shows data values greater than 10, which is along the south edge. Among three 
vegetation surfaces, only spline shows data values in orange or red colors (very low) near 
the northeast corner. Among three soil surfaces, only spline shows data values in blue colors 
(very high) near the northeast corner. These are extreme values near edges of interpolated 
surfaces, a trend associated with spline interpolation, as observed in the earlier examples, also 
shown in Figures 2(e) and 4(b), as well as discussed in Ref. [14].

6.2. Evaluation and visualization of spatial interpolation in a closed system

Figure 7 shows these surfaces in 3D visualization, looking from the southeast. Figure 7(a) 

shows the three percentage surfaces generated by IDW, top surface for vegetation, middle 
surface for soil, and bottom surface for impervious surface. Figure 7(b) shows the three 

percentage surfaces generated by kriging, and Figure 7(c) for spline. Bars indicate locations 

of sampled points. Height of bars equals the percent of vegetation. One may observe that 
bars poking out of kriging vegetation surface, means an inexact interpolation. One may also 
observe the extreme data values on spline surfaces. In this 3D visualization, it is evident that 
three interpolation methods performed very differently.

When adding three surfaces generated by IDW together, because it is a closed system, all 

cells supposedly should have a data value close to 100%. So do three surfaces generated by 
kriging and spline. Figure 8 shows the sum of three surfaces generated by IDW, kriging, 

and spline. Figure 8(a) shows the sum of V, I, and S surfaces generated by IDW. One can 

Figure 7. 3D visualization of V, I, and S percentage surface. Top surface is for vegetation, middle for soil, and bottom 
for impervious surface. Bars indicate locations of sampled points. Height of bars equals vegetation percent. (a) IDW; (b) 
kriging; (c) spline.
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observe that there is no major variation from 100% in sum percentage as all cells fall into 
the category of 99–100.9 range. One may also observe the same trend for spline as shown 
in Figure 8(c). However, kriging as displayed in Figure 8(b) shows a lot of variations from 
100% in the sum of V, I, and S percentage. This is another evidence of inexact interpola-

tion, as the interpolated data are not true to the sampled data even at the exact location 
where it is sampled. Table 3 shows descriptive statistics for these sum surfaces. One may 
clearly see that kriging is the only interpolation method that failed to meet the closed system 

 requirement (sum of all variables equals to 100%) when individual variable is interpolated 
separately and independently.

Figure 9 shows these three sum surfaces in a 3D visualization environment. Bars indicate the 
locations of sampled data. Height of bars is set at 100, the requirement for a closed system.

Min. Max. Mean S.D.

Sum surface estimated by IDW 100 100 100 0

Sum surface estimated by kriging 85.12 132.00 104.68 9.69

Sum surface estimated by spline 100 100 100 0

Table 3. Descriptive statistics for three sum surfaces estimated by IDW, kriging, and spline

Figure 8. 2D visualization of sum surfaces estimated by (a) IDW, (b) kriging, and (c) spline.
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One may again observe the bars overreach or underreach the kriging sum surface, an indica-

tion of inexact interpolation. On the other hand, IDW and spline seem to quite meet the 100% 
requirement.

It has to be noted that in this experiment, there are only 15 sample points. It is a very small num-

ber of samples. The results in this experiment can be biased due to small sample. Nevertheless, 
some interesting trends were observed by 2D and/or 3D visualization, which was not evident 
in quantitative assessment. When examining the interactions between  interpolated surfaces in 
a closed system, both IDW and spline met the requirement, i.e., summing variables to 100%, 
even though each surface was generated from one variable separately and independently. On 
the other hand, kriging failed to meet this requirement. It was observed again that kriging is 
an inexact interpolation. Furthermore, it was also observed that spline, as reported earlier in 
this study and in Ref. [14], had the tendency to generate extreme values along edges of the 
study area.

7. Conclusion

In this study, three spatial interpolation algorithms (IDW, kriging, and spline) were applied to 

a set of soil pH value data to demonstrate the complexity of the process to validate the results 
of spatial interpolation. Three methods of validation were used: quantitative assessment, 2D 
visualization, and 3D visualization. Each validation method revealed different characteristics 
of each spatial interpolation. With quantitative assessment, it was observed that IDW and 
kriging performed similarly, and both are better than spline. With 2D visualization, it was 
observed that IDW and spline performed similarly, while kriging performed differently, not 
necessarily in a good or bad way. With 3D visualization, it was observed that kriging is an 
inexact interpolation. It was also observed that spline had a tendency to create extreme values 
along edges of the study area.

Figure 9. 3D visualization of sum surfaces estimated by (a) IDW, (b) kriging, and (c) spline. Bars indicate location of 
sampled data, with height set to 100.
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Another experiment was conducted to demonstrate the interactions between interpolated 
surfaces, especially in a closed system. There were three variables in this closed system, each 
represented a percentage of a specific land cover in an urban area. In a closed system, these 
three variables should sum up to 100%. Three spatial interpolation algorithms (IDW, kriging, 
and spline) were applied to each variable separately and independently. These interpolated 
surfaces were then added up to form a sum surface. It was observed that both IDW and spline 
successfully met the requirement, making the sum surface 100% for all cells, while kriging 

failed to meet this requirement.

In conclusion, each spatial interpolation algorithm performed differently. One has to be 
careful on evaluation of the results. Though quantitative assessment is commonly and 
widely used in most spatial interpolation studies, it is essential to understand that evalua-

tion of a spatial interpolation should not rely on quantitative assessment alone. 2D visual-
ization and 3D visualization can reveal some facts that cannot be observed in quantitative 
assessment.
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