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Abstract

This chapter concerns discrete time Markov decision processes under a discounted
optimality criterion with state-action-dependent discount factors, possibly unbounded
costs, and noncompact admissible action sets. Under mild conditions, we show the
existence of stationary optimal policies and we introduce the value iteration and the
policy iteration algorithms to approximate the value function.
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1. Introduction

In this chapter we study Markov decision processes (MDPs) with Borel state and action spaces
under a discounted criterion with state-action–dependent discount factors, possibly unbound-
ed costs and noncompact admissible action sets. That is, we consider discount factors of the
form

( , ),n nx aa (1)
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where �� and �� are the state and the action at time �, respectively, playing the following role

during the evolution of the system. At the initial state �0, the controller chooses an action �0
and a cost �(�0,�0) is incurred. Then the system moves to a new state �1 according to a transition

law. Once the system is in state �1 the controller selects an action �1 and incurs a discounted

cost �(�0,�0)�(�1,�1) . Next the system moves to a state �2 and the process is repeated. In

general, for the stage � ≥ 1, the controller incurs the discounted cost

1

=0

( , ) ( , ),
n

k k n n
k

x a c x aa
-

Õ (2)

and our objective is to show the existence of stationary optimal control policies under the
corresponding performance index, as well as to introduce approximation algorithms, namely,
value iteration and policy iteration.

In the scenario of assuming a constant discount factor, the discounted optimality criterion in
stochastic decision problems is the best understood of all performance indices, and it is widely
accepted in several application problems (see, e.g., [1–3] and reference there in). However, such
assumption might be strong or unrealistic in some economic and financial models. Indeed, in
these problems the discount factors are typically functions of the interest rates, which in turn
depend on the amount of currency and the decision-makers actions. Hence, we have state-action–
dependent discount factors, and it is indeed these kinds of situations we are dealing with.

MDPs with non constant discount factors have been studied under different approaches (see,
e.g., [4–8]). In particular, our work is a sequel to [8] where is studied the control problem with
state-dependent discount factor. In addition, randomized discounted criteria have been
analyzed in [9–12] where the discount factor is modeled as a stochastic process independent
of the state-action pairs.

Specifically, in this chapter we study control models with state-action-dependent discount
factors, focusing mainly on introducing approximation algorithms for the optimal value
function (value iteration and policy iteration). Furthermore, an important feature in this work
is that there is no compactness assumption on the sets of admissible actions neither continuity
conditions on the cost, which, in most of the papers on MDPs, are needed to show the existence
of measurable selectors and continuity or semi-continuity of the minima function. Indeed, in
contrast to the previously cited references, in this work, we assume that the cost and discount
factor functions satisfy the �-inf-compactness condition introduced in [13]. Then, we use a
generalization of Berge’s Theorem, given in [13], to prove the existence of measurable selectors.
To the best of our knowledge there are no works dealing with MDPs in the context presented
in this chapter.

The remainder of the chapter is organized as follows. Section 2 contains the description of the
Markov decision model and the optimality criterion. In Section 3 we introduce the assumptions

Operations Research - the Art of Making Good Decisions56



on the model and we prove the convergence of the value iteration algorithm (Theorem 3.5). In
Section 4 we define the policy iteration algorithm and the convergence is stated in Theorem 4.1.

Notation. Throughout the paper we shall use the following notation. Given a Borel space �—
that is, a Borel subset of a complete separable metric space — ℬ(�) denotes the Borel �-algebra
and “measurability” always means measurability with respect to ℬ(�). Given two Borel spaces� and �′, a stochastic kernel �( ⋅ | ⋅ ) on � given �′ is a function such that �( ⋅ |�′) is a probability
measure on � for each �′ ∈ �′, and �(�| ⋅ ) is a measurable function on �′ for each � ∈ ℬ(�) .
Moreover, ℕ (ℕ0) denotes the positive (nonnegative) integers numbers. Finally, �(�) stands for

the class of lower semicontinuous functions on � bounded below and �+(�) denotes the

subclass of nonnegative functions in �(�).
2. Markov decision processes

Markov control model. Let

{ }( ):= , , ( ) | , , ,X A A x A x X Q caÌ ÎM (3)

be a discrete-time Markov control model with state-action-dependent discount factors
satisfying the following conditions. The state space � and the action or control space � are Borel
spaces. For each state � ∈ �, �(�) is a nonempty Borel subset of � denoting the set of admissible
controls when the system is in state �. We denote by � the graph of the multifunction � �(�),
that is,

= {( , ) : , ( )}x a x X a A xÎ ÎK (4)

which is assumed to be a Borel subset of the Cartesian product of � and �. The transition law�( ⋅ | ⋅ ) is a stochastic kernel on � given �. Finally, �:� (0,1) and �:� (0,∞) are measurable
functions representing the discount factor and the cost-per-stage, respectively, when the
system is in state � ∈ � and the action � ∈ �(�) is selected.

The model ℳ represents a controlled stochastic system and has the following interpretation.
Suppose that at time � ∈ ℕ0 the system is in the state �� = � ∈ �. Then, possibly taking into

account the history of the system, the controller selects an action �� = � ∈ �(�), and a discount

factor �(�, �) is imposed. As a consequence of this the following happens:

1. A cost �(�,�) is incurred;

2. The system visits a new state �� + 1 = �′ ∈ � according to the transition law
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[ ]1( | , ) := Pr | = , = , ( ).n n nQ B x a x B x x a a B X+ Î ÎB (5)

Once the transition to state �′ occurs, the process is repeated.

Typically, in many applications, the evolution of the system is determined by stochastic
difference equations of the form

1 0= ( , , ), ,n n n nx F x a nx+ ÎN (6)

where ��  is a sequence of independent and identically distributed random variables with

values in some Borel space �, independent of the initial state �0, and �:� × � × � � is a given

measurable function. In this case, if � denotes the common distribution of ��, that is

[ ] 0( ) := , ( ), ,q x Î Î ÎnD P D D S nB N (7)

then the transition kernel can be written as

[ ]
{ }
[ ]

( | , ) = Pr ( , , ) | = , =

= : ( , , )

= 1 ( , , ) ( ), ( ),( , ) ,

n n n n n

BS

Q B x a F x a B x x a a

s S F x a s B

F x a s ds B X x a

x

q

q

Î

Î Î

Î Îò B K
(8)

where 1�( ⋅ ) represents the indicator function of the set �.
Control policies. The actions applied by the controller are chosen by mean of rules known as

control policies defined as follows. Let ℍ0: = � and ℍ�: = �� × �, � ≥ 1 be the spaces of admis-

sible histories up to time �. A generic element of ℍ� is written as ℎ� = (�0,�0,...,�� − 1,�� − 1,��) .
Definition 2.1 A control policy (randomized, history-dependent) is a sequence � = ��  of stochastic

kernels �� on � given ℍ� such that ��(�(��) |ℎ�) = 1, for all ℎ� ∈ℍ�, � ∈ ℕ0.

We denote by Π the set of all control policies.

Let � be the set of measurable selectors, that is, � is the set of measurable function �:� � such
that �(�) ∈ �(�) for all � ∈ �.
Definition 2.2 A control policy � = ��  is said to be:

a. deterministic if there exists a sequence ��  of measurable functions ��:ℍ� � such that
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[ ] 0( | ) = 1 ( ) , , , ( );n n C n n n nC h g h h n C Ap " Î Î ÎBH N (9)

b. a Markov control policy if there exists a sequence ��  of functions �� ∈ � such that

[ ] 0( | ) = 1 ( ) , , , ( ).n n C n n n nC h f x h n C Ap " Î Î ÎBH N (10)

In addition

c. A Markov control policy is stationary if there exists � ∈ � such that �� = � for all � ∈ ℕ0.
If necessary, see for example [1–3, 14–16] for further information on those policies.

Observe that a Markov policy � is identified with the sequence �� , and we denote � = �� .
In this case, the control applied at time � is �� = ��(��) ∈ �(��) . In particular, a stationary

policy is identified with the function � ∈ �, and following a standard convention we denote by� the set of all stationary control policies.

To ease the notation, for each � ∈ � and � ∈ �, we write

( , ) : = ( , ( )),
( | , ) : = ( | , ( )),

c x f c x f x
Q x f Q x f x× ×

(11)

and

( , ) := ( , ( )).x f x f xa a (12)

The underlying probability space. Let (�, ℱ) be the canonical measurable space consisting of

the sample space � = �∞: = � × � × ⋅ ⋅ ⋅ and its product � −algebra ℱ. Then, under standard
arguments (see, e.g., [1, 14]) for each � ∈ � and initial state � ∈ �, there exists a probability

measure ��� on (�,ℱ) such that, for all ℎ� ∈ ℍ�, �� ∈ �(��), � ∈ ℕ0, � ∈ ℬ(�), and � ∈ ℬ(�),
[ ]

[ ]
0 = =1;

| = ( | );
x

x n n n n

P x x

P a C h C h

p

p pÎ
(13)

and the Markov-like property is satisfied

[ ]1 | , = ( | , ).x n n n n nP x B h a Q B x ap
+ Î (14)
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The stochastic process �, ℱ, ���,  ��  is called Markov decision process.

Optimality criterion. We assume that the costs are discounted in a multiplicative discounted
rate. That is, a cost � incurred at stage � is equivalent to a cost �Γ� at time 0, where

1
0=0

:= ( , ) if 1, and =1.n
n k kk

x a na-
G ³ GÕ (15)

In this sense, when using a policy � ∈ �, given the initial state �0 = �, we define the total

expected discounted cost (with state-action–dependent discount factors) as

=0
( , ) := ( , ) ,x n n n

n
V x E c x app

¥é ù
Gê ú

ë û
å (16)

where ��� denotes the expectation operator with respect to the probability measure ��� induced

by the policy �, given �0 = �.

The optimal control problem associated to the control model ℳ, is then to find an optimal

policy �∗ ∈ � such that �(�∗,�) = �(�) for all � ∈ �, where

( ) := ( , )infV x V x
p

p
ÎP (17)

is the optimal value function (see [10]).

3. The value iteration algorithm

In this section we give conditions on the model that imply: (i) the convergence of the value
iteration algorithm; (ii) the value function � is a solution of the corresponding optimality
equation; and (iii) the existence of stationary optimal policies. In order to guarantee that �(�)
is finite for each initial state � we suppose the following.

Assumption 3.1. There exists �0 ∈ � such that for all � ∈ �,�(�0,�) < ∞.
At the end of Section 4 we give sufficient conditions for Assumption 3.1. We also require
continuity and (inf-) compactness conditions to ensure the existence of "measurable minimiz-
ers." The following definition was introduced in [13].

Definition 3.2. A function �:� ℝ is said to be �-inf-compact on � if for each compact subset � of� and � ∈ ℝ, the set
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{( , ) ( ) : ( , ) }Kx a Gr A u x a rÎ £ (18)

is a compact subset of � × �, where ���(�): = (�,�):� ∈ �, � ∈ �(�) .
Assumption 3.3. (a) The one-stage cost � and the discount factor � are �-inf-compact functions on�. In addition, � is nonnegative.

(b) The transition law � is weakly continuous, that is, the mapping

( , ) ( ) ( | , )
X

x a u y Q dy x a® ò (19)

is continuous for each bounded and continuous function on �.
For each measurable function � on �,� ∈ �, and � ∈ �, we define the operators

( )
( ) := ( , ) ( , ) ( ) ( | , )inf

a A x X

Tu x c x a x a u y Q dy x aa
Î

ì üï ï+í ý
ï ïî þ

ò (20)

and

( ) := ( , ) ( , ) ( ) ( | , ).f
X

T u x c x f x f u y Q dy x fa+ ò (21)

A consequence of Assumption 3.3 is the following.

Lemma 3.4. Let � be a function in �+(�) . If Assumption 3.3 holds then the function �:� ℝ defined

by

( , ) := ( , ) ( , ) ( ) ( | , )
X

v x a c x a x a u y Q dy x aa+ ò (22)

is �-inf-compact on �
Proof. First note that by the �-inf-compactness hypothesis �( ⋅ , ⋅ ) and �( ⋅ , ⋅ ) are l.s.c on ���(�)
for each compact subset � of �. Then, since � and � are nonnegative functions, from Assump-
tion 3.3 we have that �( ⋅ , ⋅ ) is l.s.c on ���(�). Thus, for each � ∈ ℝ, the set

{( , ) ( ) : ( , ) }Kx a Gr A v x a rÎ £ (23)
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is a closed subset of the compact set (�, �) ∈ ���(�):�(�,�) ≤ � . Then, � is �-inf-compact on�.

Observe that the operator � is monotone in the sense that if � ≥ � then �� ≥ ��. In addition,
from Assumption 3.3 and ([13], Theorem 3.3), we have that � maps �+(�) into itself. Further-

more, there exists � ∈ � such that

( ) = ( ), .fTu x T u x x XÎ% (24)

To state our first result we define the sequence �� ⊂ �+(�) of value iteration functions as:

0

1

0;
( ) = ( ), .n n

v
v x Tv x x X-

º

Î
(25)

Since � is monotone, note that ��  is a nondecreasing sequence.

Theorem 3.5. Suppose that Assumptions 3.1 and 3.3 hold. Then

a. �� �.
b. � is the minimal solution in �+(�) of the Optimality Equation, i.e.,

( )
( ) = ( ) = ( , ) ( , ) ( ) ( | , ) .inf

a A x X

V x TV x c x a x a V y Q dy x aa
Î

ì üï ï+í ý
ï ïî þ

ò (26)

c. There exists a stationary policy �∗ ∈ � such that, for all � ∈ �,�(�) = ��∗�(�), that is

( ) = ( , ) ( , ) ( ) ( | , ),
X

V x c x f x f u y Q dy x fa* * *+ ò (27)

and �∗ is an optimal policy.

Proof. Since ��  is nondecreasing, there exists � ∈ �+(�) such that �� �. Hence, from

Monotone Convergence Theorem, ([13], Lemmas 2.2, 2.3), and ([1], Lemma 4.2.4), we obtain,
for each � ∈ �, ��(�) = ��� − 1(�) ��(�), as � ∞, which, in turn implies

= .Tv v (28)
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Therefore, to get (a)-(b) we need to prove that � = �. To this end, observe that for all � ∈ � and
π∈Π

1 1 1( ) ( , ) ( | ) ( , ) ( ) ( | , ) ( | ).n nA A X
v x c x a da x x a v x Q dx x a da xp a p-£ +ò ò ò (29)

Then, iterating (29) we obtain

( ) ( , ), ,n nv x V x np£ ÎN (30)

where

1

=0
( , ) = ( , ) ,

n

n x t t t
t

V x E c x app
-é ù
Gê ú

ë û
å (31)

is the � −stage discounted cost ��. Then, letting � ∞ we get �(�) ≤ �(�,�), for all � ∈ � and� ∈ �. Thus,

( ) ( ), .v x V x x X£ Î (32)

On the other hand, from (28) and (24), let � ∈ � such that �(�) = ���(�), � ∈ �. Iterating this

equation, we have (see (31))

1 1

=0
=1

1

=0

( ) = ( , ) ( , ) ( , )

( , ) ( )

( , ).

n tf
x k tk

t

nf
x k nk

n

v x E c x f x f c x f

E x f v x

V f x

a

a

-
-

-

é ù
+ê ú

ë û
é ù+ ë û

³

åÕ

Õ
(33)

Hence, letting � ∞,
( ) ( , ) ( ), .v x V f x V x x X³ ³ Î (34)

Combining (32) and (34) we get � = �.
Now, let � ∈ �+(�) be an arbitrary solution of the optimality equation, that is, �� = �. Then,

applying the arguments in the proof of (34) with � instead of � we conclude that � ≥ �. That
is, � is minimal in �+(�) .
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Part (c) follows from (b) and ([13], Theorem 3.3). Indeed, there exists a stationary policy �∗ ∈ �
such that �(�) = ��∗�(�), � ∈ �. Then, iteration of this equation yields �(�) = �(�∗,�), which

implies that �∗ is optimal.

4. Policy iteration algorithm

In Theorem 3.5 is established an approximation algorithm for the value function � by means

of the sequence of the value iteration functions �� . In this case the sequence ��  increase to� and it is defined recursively. Now we present the well-known policy iteration algorithm
which provides a decreasing approximation to � in the set of the control policies.

To define the algorithm, first observe that from the Markov property (14) and applying
properties of conditional expectation, for any stationary policy � ∈ � and � ∈ �, the corre-
sponding cost �(�,�) satisfies

1

=0
=1

1
1 1=0

=2

( , ) = ( , ) ( , ) ( , ) ( , )

= ( , ) ( , ) ( , ) ( , ) ( , ) | = ( | , )

= ( , ) ( , ) ( , ) ( | , ) = ( , ), .

tf
x k tk

t

tf
k tkX

t

fX

V f x c x f x f E x f c x f

c x f x f E c x f x f c x f x y Q dy x f

c x f x f V f y Q dy x f T V f x x X

a a

a a

a

¥
-

¥
-

é ù
+ ê ú

ë û
é ù

+ +ê ú
ë û

+ Î

åÕ

åÕò

ò

(35)

Let �0 ∈ � be a stationary policy with a finite valued cost  Then, from (35),

0 0 0 0 0

00

( ) = ( , ) ( , ) ( ) ( | , )

= ( ), .
X

f

w x c x f x f w y Q dy x f

T w x x X

a+

Î
ò (36)

Now, let �1 ∈ � be such that

(37)

and define 

In general, we define a sequence ��  in �+(�) as follows. Given �� ∈ �, compute

 Next, let �� + 1 ∈ � be such that
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(38)

that is,

(39)

Then we define 

Theorem 4.1. Under Assumptions 3.1 and 3.3, there exists a measurable nonnegative function 
such that  and  Moreover, if � satisfies

(40)

then 

To prove the Theorem 4.1 we need the following result.

Lemma 4.2. Under Assumption 3.3, if �:� ℝ is a measurable function such that �� is well defined,� ≤ ��, and

[ ]( ) = 0 , ,lim x n n
n

E u x x Xp p
®¥

G " ÎP Î (41)

then � ≤ �.
Proof. From the Markov property (14), for each π∈Π and � ∈ �,

[ ]1 1 1( ) | , = ( ) ( | , )x n n n n n n nX
E u x h a u y Q dy x ap

+ + +G G ò (42)

= ( , ) ( , ) ( ) ( | , ) ( , )n n n n n n n n nX
c x a x a u y Q dy x a c x aaé ùG + -ë ûò (43)

( )
( , ) ( , ) ( ) ( | , ) ( , )infn n n n n n nXa A xn

c x a x a u y Q dy x a c x aa
Î

é ù³ G + - Gë ûò (44)

= ( ) ( , ) ( ) ( , ),n n n n n n n n n nTu x c x a u x c x aG - G ³ G - G (45)
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which, in turn implies

[ ]1 1( , ) ( ) ( ) | , .n n n x n n n n n nc x a E u x u x h ap
+ +G ³ G - G (46)

Therefore, for all � ∈ ℕ (see (31)),

[ ]
1

=0
( , ) = ( , ) ( ) ( ) .

k

k x n n n x k k
n

V x E c x a u x E u xp pp
-

G ³ - Gå (47)

Finally, letting � ∞, (41) yields �(�,�) ≥ �(�), and since � is arbitrary we obtain �(�) ≥ �(�) .
Proof of Theorem 4.1. According to Lemma 4.2, it is sufficient to show the existence of a
function  such that  and  To this end, from (36)–(38),

(48)

Iterating this inequality, a straightforward calculation as in (34) shows that

(49)

In general, similar arguments yield

(50)

Therefore, there exists a nonnegative measurable function � such that  In addition, since
 ∀� ∈ ℕ0, we have  Next, letting � ∞ in (47) and applying ([17], Lemma

3.3), we obtain  which implies 

4.1. Sufficient conditions for Assumption 3.1 and (40)

An obvious sufficient condition for Assumption 3.1 and (40) is the following:

C1 (a) There exists � ∈ (0,1) such that for all (�,�) ∈ �, �(�,�) < �.
(b) For some constant �, 0 ≤ �(�,�) ≤ � for all (�,�) ∈ �.

Indeed, under condition C1, �(�,�) ≤ �/(1 − �) for all � ∈ � and � ∈ �, and  is a bounded
sequence which in turn implies (since  the boundedness of the function  This fact
clearly yields (40).
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Other less obvious sufficient conditions are the following (see, e.g., [15, 16, 2]).

C2 (a) Condition C1 (a).

(b) There exist a measurable function �:� (1,∞) and constants � > 0, � ∈ (1,1/�), such that
for all (�,�) ∈ �,

( )
( , ) ( )sup

A x
c x a MW x£ (51)

and

( ) ( | , ) ( ).
X

W y Q dy x a W xb£ò (52)

First note that by condition C2 and the Markov property (14), for any policy � ∈ � and initial
state �0 = � ∈ �,

[ ]1 0( ) | , = ( ) ( | , ) ( ), .x n n n n n nX
E W x h a W y Q dy x a W x np b+ £ " Îò N (53)

Then, using properties of conditional expectation,

[ ] [ ]1 0( ) ( ) , .x n x nE W x E W x np pb+ £ " ÎN (54)

Iterating inequality (51) we get

[ ] 0( ) ( ), .n
x nE W x W x np b£ " ÎN (55)

Therefore, by condition C2, for any policy � ∈ � and � ∈ �,
,

=0 =0
( , ) ( ) ( )

( ).
1

n n
x n n x n
n n

V x E c x a M E W x

M W x

p pp a a

ab

¥ ¥

£ £

£
-

å å
(56)

Thus, Assumption 3.1 holds.

On the other hand, if �+�(�) denotes the subclass of all functions � in �+(�) such that
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( ):= < ,sup
( )W

x X

h xu
W xÎ

¥ (57)

then, because ��( ⋅ ) = �(�� + 1, ⋅ ), from (53) and condition C2, we have that �� ∈ �+�(�) for all� = 1,2,... and

[ ]( ) = 0 , .lim x n k n
n

E w x x Xp p
®¥

G " ÎP Î (58)

Since  (40) follows from (55).
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