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Abstract

Hypoxia-reoxygenation injury is a commonly used in vitro model of ischemia, which is
useful to study the recovery processes following the hypoxic period. Hypoxia can be
rapidly induced in vitro by replacing the culture atmosphere with hypoxic or anoxic gas
mixture. Cellular injury mostly occurs as a result of energetic failure in this model: the
lack of oxygen blocks the mitochondrial respiration and anaerobic metabolism becomes
the major source of high-energy molecules in the cells. In the absence of glucose, glycol-
ysis and pentose phosphate pathway fail to suffice the cellular energy prerequisite and
longer periods of oxygen-glucose deprivation (OGD) can completely deplete the cellular
NAD+ and ATP pools. The lack of NAD+ results in severe metabolic suppression and
predisposes the cells to other injury types. This includes oxidant-induced damage, since
oxidative stress activates poly(ADP-ribose) polymerase (PARP) that further depletes the
cellular NAD+ pool and leads to excessive cell death. The impaired mitochondrial
respiration also leads to an increase in the mitochondrial membrane potential and
augments the mitochondrial superoxide generation leading to oxidative stress. The
above processes ultimately lead to necrotic cell death, but in certain cell types, mito-
chondrial damage can also trigger apoptosis.

Keywords: hypoxia-reoxygenation injury, poly(ADP-ribose) polymerase, energetic
failure, mitochondrial dysfunction, oxidative stress

1. Introduction

This chapter gives an overview of the hypoxia-reoxygenation model, provides guidance to

perform hypoxia-reoxygenation or oxygen-glucose deprivation (OGD) experiments and dis-

cusses the mechanism of cellular damage in this model.

In vivo ischemia-reperfusion models are technically simple and reproduce many aspects of

ischemic diseases, but in vitromodels are equally important, because they allow detailed study

of the mechanism of cellular damage and make it possible to test large chemical libraries or

sets of human small interfering RNAs (siRNAs) that are essential for early phase drug discov-

ery [1–5]. Chemical hypoxia models that use mitochondrial uncoupling agents or respiration
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blockers reproduce the rapid onset of ischemia but there is no way to study the recovery

processes that occur during reperfusion [6–9]. The significance of true hypoxia-reoxygenation

models is in the capacity for recovery from the hypoxic phase, which makes these models

especially useful for ischemia-related experiments. Oxygen-glucose deprivation is a variation

of the hypoxia model to mimic the shortage of nutrients in ischemia.

2. Hypoxia-reoxygenation induction

The hypoxia/OGD models are simple experimental models that do not require expensive

laboratory instruments. Regular cell culture plasticware can be placed in a gas-tight chamber

and the culture atmosphere replaced with oxygen-free gas mixture using an inexpensive flow

meter. In addition, OGD can be induced by replacement of the culture medium with glucose-

free medium. The reoxygenation period is initiated by glucose supplementation and by

returning the culture vessels to regular atmosphere. The severity of the injury can be adjusted

to specific needs by varying the length of the hypoxic/OGD period. Therapeutic interventions

may be delivered prior to hypoxia induction or immediately following the reoxygenation

modelling preventive or reperfusion therapies.

In most hypoxia experiments, above the hypoxic and OGD groups it is essential to use

normoxia controls with normal glucose concentration or to expose normoxic controls to glu-

cose deprivation (GD). Since the normoxic and hypoxic cells must be physically separated

during the hypoxic period, identical cell plates must be prepared for the hypoxia and simulta-

neous normoxia exposures. Culture medium is replaced with fresh medium either containing

glucose or without glucose prior to the induction of hypoxia. Serum deprivation may be

necessary for complete removal of glucose in OGD injury. To induce hypoxia, the culture plates

are placed in gas-tight incubation chambers (Billups-Rothenberg Inc., Del Mar, CA) and the

chamber is flushed with oxygen-free gas mixture at 25–30 L/min flow rate for 5–10 min to

completely remove oxygen [1–5, 7, 10]. Hypoxia is maintained by clamping and incubating the

chambers at 37°C for the requested period. The composition of the gas mixture may vary

depending on the bicarbonate content of the culture medium and the required level of acidity

change (pH level), since hypercapnia can mimic the rapid development of acidic pH of ische-

mic tissues [11]. The CO2 content is typically between 5 and 20% with 80–95% N2. This

procedure removes oxygen from the atmosphere but dissolved oxygen remains in all fluids in

the chamber including the culture medium and additionally in water used for humidification,

thus complete anoxia is reached with a delay, following depletion of the remaining oxygen.

Following the hypoxic exposure, restoration of the normal culture conditions is achieved by

supplementing the culture medium with glucose and foetal bovine serum (FBS) and by

reoxygenating the culture vessels in regular culture atmosphere. In most cells, the cellular

ATP level is recovered during a recovery period of 16–24 hours that might be the period of

interest in most experiments.

Drug treatments may be administered before the hypoxia induction to test preventive effects

or following the hypoxic period to test the therapeutic potential in ischemic diseases [1–3]. For

gene silencing small interfering RNAs may be added 48 hours prior to the hypoxia exposure to
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effectively reduce RNA and protein levels of the gene of interest at the time of the hypoxia

experiment [4, 5]. Unfortunately, gene silencing cannot be selectively used to study the hypoxic

or the reoxygenation phase. Pharmacological treatments using small compounds allow spe-

cific post-hypoxic treatments that permit the specific study of the recovery phase.

3. Mechanism of cellular damage in hypoxia-reoxygenation injury

3.1. Cellular energy depletion

Hypoxia and glucose deprivation cause energy depletion in the cells and may be directly

responsible for the viability reduction caused by the injury. Since the lack of oxygen blocks

aerobic metabolism, which is responsible for the larger part of ATP production in the cells, the

cells need to use other pathways to produce sufficient ATP for survival. Most cells can adapt to

low oxygen conditions in cell culture, producing ATP solely by anaerobic metabolism if

adequate glucose supply is present. However, the anaerobic pathways, glycolysis and pentose

phosphate pathway need to use high amounts of glucose to produce comparable output.

Glycolysis produces only two ATP molecules, but oxidative phosphorylation is capable to

produce ~30 ATPs per glucose molecule oxidized [12]. The typical mitochondrial ATP produc-

tion is lower than the theoretical maximum, since up to 20% of the basal metabolic rate may be

used to drive the proton leak [13], but it is still more than 10 times higher than the anaerobic

ATP production. The compensatory increase in anaerobic metabolism would be stopped by

the limited availability of NAD+, since protons are transferred to NAD+ by glyceraldehyde

phosphate dehydrogenase to produce NADH during glycolysis, if lactate dehydrogenase

(LDH) did not recycle NAD+. This step helps maintain the higher anaerobic metabolic rate,

but at the expense of metabolic acidosis (lactic acidosis).

However, in the absence of glucose, the ATP production will drop rapidly as the cellular

energy storage is depleted and cell death will be induced. Most cells can survive in culture if

the cellular ATP concentration will be reduced by less than 75–80% the normal ATP level [1–3, 5].

Following an OGD injury that does not reduce the cellular ATP concentration below 20% of

the initial baseline value full recovery is expectable if optimal culture conditions are provided.

Since the cells try to maintain normal ATP level and use all resources that can be utilized for

energy production during the OGD phase, the recovery process is time-consuming: all precur-

sor molecules need to be resynthesized in the cells. A more robust injury that decreases the

cellular ATP concentration below 20%will initiate severe viability loss in the cell population [2]

(Figure 1).

The cellular energy production remains impaired following an OGD injury: the cellular ATP

production is slow even if the energy sources are provided in liberal amounts. The loss of all

high-energy molecules is responsible for the diminished ATP synthesis following OGD. Not

only ATP, but also adenosine diphosphate (ADP) and NAD+ are greatly reduced in the cells to

minimize the ATP loss that will sustain the metabolic suppression [5]. ATP is the central

coenzyme in the cells that functions as universal energy currency to transfer chemical energy.

ATP molecules are generated in large quantities by constant recycling of ADP to ATP; the daily
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estimated ATP synthesis is around 1000 g/kg bodyweight [14]. Organic compounds are catab-

olized via a series of redox reactions in the cells and ultimately generate carbon dioxide and

water. During these reactions, energy is collected via transferring electrons from organic

donors to the acceptor molecule NAD+ and reducing it to NADH. Energy is retrieved from

NADH in the mitochondria as the electrons are gradually transferred to oxygen through the

electron transport chain and ATP is produced in the coupled oxidative phosphorylation reac-

tion. Thus, the energy stored by NAD+ molecules is interconvertible to ATP molecules and the

lack of NAD+ can severely limit the ATP generation.

NAD+ biosynthesis occurs either via the de novo (kynurenine) pathway from tryptophan or via

the salvage pathway using nicotinamide as substrate [15–17]. NAD+ is not only used in cellular

energy production reactions catalyzed by dehydrogenases, but it is also utilized by poly(ADP-

ribose) polymerases (PARPs) in ADP-ribosylation reactions and by sirtuins in deacetylation

reactions that produce nicotinamide [18, 19]. Nicotinamide can be reused for NAD+ synthesis

via the salvage pathway: an energy-requiring (endothermic) two-step process that uses ATP. The

salvage pathway is considered as the main NAD+ biosynthesis pathway in humans and the major

substrate is nicotinamide, since nicotinamide deamidase, the enzyme that catalyzes the conver-

sion of nicotinamide to nicotinic acid, is missing in humans [20]. In the first step, nicotinamide is

converted to nicotinamide mononucleotide (NMN) by nicotinamide phosphoribosyltransferase

(NamPRT) using phosphoribosyl pyrophosphate (PRPP) as cosubstrate and one ATP molecule

(Figure 2). The second step is the conversion of NMN to NAD+ by nicotinamide mononucleotide

adenylyl transferases (NMNATs) that also requires one ATP molecule. This step is catalyzed by

NMNAT-1 in the nucleus, NMNAT-2 in the Golgi and NMNAT-3 in the mitochondria [21, 22].

Since the conversion of ribose 5-pyrophosphate (coming from the degradation of ADP-ribose

polymers) to PRPP requires a third ATP molecule, altogether three ATP molecules are necessary

Figure 1. Post-hypoxic recovery of the cellular ATP content. (A and B) LLC-PK1 cells were subjected to hypoxia in the

absence (OGD) or presence of 300 µM adenosine (ADE), inosine (INO) or glucose (GLC) to reduce the cellular ATP

content to 5, 10 or 20% of normoxic controls, and ATP concentration was measured during the 24-hour-long recovery

period. (A) ATP content gradually increased proportional to the hypoxic ATP depletion. (B) ATP resynthesis requires both

adenosine deaminase (ADA) and adenosine kinase (AK) activity in the cells. Blockage of ADA by EHNA (10 µM) and/or

AK by ABT 702 (ABT, 30µM) blocks the recovery of the cellular ATP content. (Data are shown as mean ± SD values. *p <

0.05 compared to OGD, #p < 0.05 compared to adenosine, †p < 0.05 compared to inosine, &p < 0.05 compared to glucose.)

From Ref. [2].
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for the resynthesis of one NAD+ molecule [15, 16, 20]. NamPRT is recognized as the rate-limiting

enzyme in NAD+ salvage, partly because this step requires more energy, if PRPP synthesis is also

considered, and because it relies on a single enzyme, while the cells contain multiple NMNAT

isoenzymes. NAD+ biosynthesis is an energy-requiring process, and it is further complicated by

sequestered localization of NAD+ in the cells: there are separate mitochondrial, cytoplasmic and

nuclear NAD+ pools and they are not completely exchangeable [16]. NAD+ biosynthesis is

estimated to occur at 5g/kg tissue/day [16] suggesting that nicotinamide may be recycled

several times a day. Still, the recovery occurs at a slower rate following a severe OGD injury,

because the lack of ATP limits the NAD+ turnover and the low NAD+ availability blocks the

ATP generation from metabolic sources.

The lack of NAD+ affects both mitochondrial respiration and anaerobic metabolism following

the OGD injury [5]. Severe metabolic suppression is detectable following the OGD injury if the

Figure 2. Compartmentalization of NAD+ biosynthesis. The ‘de novo’ synthesis of NAD+ starts from tryptophan and

produces the precursor quinolinic acid (QA), while the ‘salvage’ pathway utilizes the NAD+ break-down products

nicotinamide (Nam) and nicotinic acid (NA). QA, NA and Nam are converted to nicotinic acid mononucleotide (NAMN)

and nicotinamide mononucleotide (NMN) by the respective phosphoribosyltransferases (QAPRT: quinolinic acid

phosphoribosyltransferase, NAPRT: nicotinic acid phosphoribosyltransferase, NamPRT: nicotinamide phosphoribosyl-

transferase). NAMN and NMN are converted to nicotinic acid adenine dinucleotide (NAAD) and nicotinamide adenine

dinucleotide (NAD+) by transferring the adenylate moiety of ATP to the mononucleotides by compartment-specific NMN

adenylyl transferase (NMNAT) enzymes. NAAD is amidated by NAD synthetase (NADS) using glutamine as an ammo-

nium donor. There are three NMNAT isoforms: NMNAT1 is ubiquitous and is localized to the nucleus, NMNAT2 is

cytoplasmic and is predominantly expressed in the brain and NMNAT3 is present in the mitochondria. PARP-1 utilizes

NAD+ as a substrate to produce ADP-ribose polymers and nicotinamide.
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resynthesis of NAD+ is prevented by NamPRT inhibition: the mitochondrial oxygen consump-

tion of the cells is severely reduced in the cells (Figure 3). The respiratory capacity of the cells is

suppressed following OGD and while normal cells typically use no more than ~50–60% of their

Figure 3. Suppressed cellular metabolism following oxygen-glucose deprivation (OGD). (A–F) H9c2 cells were

transfected with PARP-1 (siPARP-1) or CTL siRNA and 48 hours later the cells were exposed to hypoxia or oxygen-

glucose deprivation for 8 hours. Following the hypoxic phase, glucose and serum concentrations were normalized and the

cells were treated with NamPRT inhibitor FK866 (10 μM) to block NAD+ resynthesis (or vehicle) at normal oxygen tension

for 16 hours. The metabolic profile of the cells was determined by extracellular flux analysis. (A and D) The oxygen

consumption rate (OCR) and (C and F) the extracellular acidification rate (ECAR) were monitored using Oligomycin

(1 μg/mL), FCCP (0.3 μM) and antimycin A (2 μg/mL) injections. (B and E) Basal oxygen consumption and total

respiratory capacity were determined following the addition of FCCP. NamPRT inhibition severely blocks the recovery

of the respiratory capacity and prevents the anaerobic metabolic compensation. PARP-1 silencing increases the respiratory

capacity in cells with diminished NAD+ content. (n = 3, *p < 0.05 compared to CTL, #p < 0.05 PARP-1 silenced cells

compared to respective CTL siRNA treated cells.) From Ref. [5].
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respiratory capacity under baseline conditions, the cells use their full respiratory capacity

following hypoxia of OGD injury. While the basal anaerobic metabolism is less affected by

the lack of NAD+ the anaerobic compensation is reduced by 70%, which makes the cells

extremely sensitive to other injuries that require excess energy. At this stage, NAD+ is func-

tionally shared between the mitochondrial and cytoplasmic pools, as the blockage of mito-

chondrial NAD+ recycling by inhibition of ATP synthase immediately draws a halt to

anaerobic metabolism. This phenomenon can help explain the vulnerability of the cells: any

injury that causes mitochondrial impairment can simultaneously block the anaerobic metabo-

lism in the cells.

3.2. Oxidative stress during reoxygenation

Oxidative stress is an important contributor to cellular damage in hypoxia- or OGD-

reoxygenation injury. While it is recognized as the major cause of cellular damage in ische-

mia-reperfusion injury in vivo [23–25], reoxygenation does not induce severe oxidative stress in

the in vitro injury. Mitochondria are the major sources of oxidants in vitro following OGD or

hypoxia. The mitochondrial respiratory chain is turned off by the lack of oxygen during

hypoxia or OGD, but the electrons and protons are fed to the mitochondria as long as possible.

As a result, the protons pumped from the matrix to the intermembrane space may increase the

transmembrane gradient [5]. Mitochondrial uncoupling proteins are responsible for

maintaining the physiological mitochondrial membrane potential [26]. They allow reverse

transfer of protons from the intermembrane space to the matrix without coupled ATP synthe-

sis. This proton leak may reduce the efficiency of ATP production, but it also helps against

mitochondrial hyperpolarization [27–29].

Superoxide is produced by the mitochondrial electron transport chain itself, most importantly

at complex III: a low percentage of electrons from quinone molecules are transferred to oxygen

instead of complex III even in healthy mitochondria [30–34]. The amount of ROS generation is

relatively low, approximately 0.2–2% of the oxygen consumed by the mitochondria is reduced

to superoxide [28]. However, this process would leave behind excess protons in the

intermembrane space and increase the mitochondrial membrane potential, if mitochondria

did not possess a safety mechanism against it. Uncoupling proteins and especially UCP2 are

responsible for protecting against hyperpolarization. The elevated mitochondrial membrane

potential directly increases the mitochondrial superoxide generation [35, 36]. This action is

reversible: if the mitochondrial membrane potential is normalized, the superoxide generation

will decrease to normal levels [27, 34, 37]. However, the action of UCP2 and UCP3 is regulated

by reactive oxygen species (ROS) generation as their activity is affected by glutathionylation:

increase in ROS production prompts the deglutathionylation and activation of proton conduc-

tivity via UCP2 and UCP3, while at low ROS levels the uncoupling proteins are

glutathionylated that effectively deactivates the proton conductance process [28, 38]. During

hypoxia or OGD, the absence of oxygen completely deactivates UCPs in the cell and it

excludes the compensation for the hyperpolarization in the beginning of the reoxygenation

phase. While an increase is detectable in the mitochondrial membrane potential, the amount of

superoxide generation hardly exceeds the normal levels immediately following hypoxia or
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OGD due to the suppressed mitochondrial activity [5], but increased ROS production can be

detected in the cells even after full recovery of the cellular ATP and NAD+ contents [5]

(Figure 4).

Figure 4. Mitochondrial oxidant production in hypoxia-reoxygenation injury. (A–F) H9c2 cardiomyocytes were exposed

to hypoxia or oxygen-glucose deprivation (OGD) for 8 hours, followed by 16-hour-long recovery. Cells were simulta-

neously maintained at normoxia in glucose-containing culture medium as controls (CTL) or subjected to glucose depri-

vation (GD). (A and B) ATP and (C and D) NAD+ contents were determined both at the end of the hypoxia (A and C) and

following the recovery (B and D). (E and F) The mitochondrial potential and (G and H) superoxide production were

measured by JC-1 and MSOX Red (MSOX) at the end of the hypoxia (E and G) and following the recovery (F and H). (n =

4, *p < 0.05 compared to CTL.) From Ref. [5].
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Oxidative stress damages the DNA and RNA molecules causing modified bases and strand

breaks and also induces oxidative protein damage. To minimize further dysfunction caused by

impaired molecules, repair processes are promptly activated in the cells and PARP-1 is the key

enzyme that orchestrates this process. The activation of PARP-1 is an easily detectable sign of

oxidative stress in the cells and tissues [39–41].

3.3. The function of PARP-1 and its role in oxidative stress-induced cell death

PARP-1 is the major isoform of poly(ADP-ribose) polymerases in the cells that mainly resides

in the nucleus. It detects DNA strand breaks and plays a role in base excision repair by adding

multiple ADP-ribose units to the DNA associated histone proteins using NAD+ as a substrate.

It promotes DNA repair by recruiting components of the repair machinery and also by pro-

viding sequestered energy source for the repair in the form of ADP-ribose. Poly(ADP-ribose)

(PAR) induces conformation changes in the DNA due to its negative charge, which may serve

as a surface for interaction in DNA repair. The removal of PAR is catalyzed by poly(ADP-

ribose) glycohydrolase (PARG), an enzyme that is mainly localized to the cytoplasm and needs

to translocate to the nucleus to counteract PARP.

While the far-reaching activity of PARP-1 in DNA repair suggests that it is essential for DNA

integrity and cell survival, PARP-1 knockout mice are viable and do not exhibit high suscepti-

bility for spontaneous tumour development [42]. There is no human ‘PARP-1 deficiency

syndrome’. Single nucleotide polymorphisms of the PARP gene have been identified, but only

few studies found association with functional changes and increased risk of cancer, nephritis

or arthritis [43–46]. DNA repair processes possibly rely on redundant actions of many other

components or PARP-1 is substituted by other PARP isoforms [47, 48]. On the other hand, the

principal role of PARP-1 is indisputable in cell metabolism and oxidative stress-induced cell

death.

In oxidative stress, the enzyme is capable of over-activation by creating huge branching PAR

polymers within minutes, thereby depleting the available NAD+ pool of the cells and causing

energetic failure [40, 49, 50]. Inhibition of PARP activity prevents necrotic cell death in oxida-

tive stress and promotes cell survival and apoptosis, a favourable cell death form. During

apoptosis PARP is inactivated by caspase cleavage that dissociates the DNA binding and

catalytic domains of PARP and prevents PARP activation by DNA strand breaks. Apart from

caspases, various proteases (cathepsin, calpain, granzyme B) may inactivate PARP by proteo-

lytic cleavage following OGD or hypoxia injury [2]. PARP also catalyzes its self-PARylation

and this auto-modification reduces the catalytic activity of the enzyme, thus, it also serves as a

control of its activity. It was suggested that other post-translational modifications of the

enzyme (phosphorylation, acetylation) are also implicated in the regulation of PARP activity

[49, 51].

PARP also regulates gene transcription via interacting with other transcription factors or by

directly binding to promoter regions to control cellular metabolism [52, 53]. Among others, the

PAR-degrading enzyme PARG, the nuclear NAD+ synthesis enzyme NMNAT-1 and Nuclear

Respiratory Factor 1, which activates the expression of metabolic genes regulating cellular
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growth and mitochondrial respiration, were identified as PARP interactors [53–56]. The inter-

play between PARP-1 and the NAD+ biosynthesis enzyme NMNAT-1 is particularly interest-

ing because it suggests that under baseline conditions the nuclear NAD+ utilization and

recycling are fully coupled processes [54, 57].

PARP activation may cause mitochondrial dysfunction in cells exposed to oxidative stress that

is best characterized by reduced mitochondrial reserve capacity [58]. The cellular NAD+ pool is

compartmentalized within the cells and since the NAD+ pools are non-exchangeable between

the nucleus and the mitochondria [22], the PARP-mediated nuclear NAD+ depletion may

develop mitochondrial failure via prior depletion of the cytoplasmic NAD+ pool and inhibition

of glycolysis. There seems to be a competition for substrate between PARP-1 and other NAD+ -

consuming enzymes including the sirtuins [40, 59]. The sirtuin family members use NAD+ for

their deacetylation function and are mainly implicated in the regulation of glucose and lipid

metabolism [59, 60]. The various sirtuins show distinct intracellular localization profile, Sirt1,

Sirt6 and Sirt7 are predominantly nuclear proteins [59]. While PARP and sirtuins share their

common substrate, the NAD+ consumption by sirtuins is hardly comparable to that of PARP,

thus competition for substrate has little impact on PARP activity. Still Sirt1 may affect the

action of PARP-1 via direct interaction of the two proteins and by modulating PARP activity

via deacetylation [61]. On the other hand, the nuclear sirtuins are possibly affected by PARP1-

mediated NAD+ consumption under oxidative stress, since the lack of PARP-1 increases Sirt-1

activity and stimulates the mitochondrial metabolism [62]. Thus, it suggests that sirtuins and

especially Sirt-1 may play a role in PARP-mediated mitochondrial suppression, as PARP-

mediated NAD+ consumption decreases Sirt-1 activity and mitochondrial metabolism.

PARP-1 activation is generally associated with necrotic cell death, but PARP-1 may be involved

in other cell death forms. The obligatory trigger of PARP activation is DNA single strand

break, which can be induced by a variety of oxidants. In pathophysiological conditions,

reactive species capable of inducing DNA strand breakage, and thereby PARP activation,

include hydroxyl radical, nitroxyl radical, as well as peroxynitrite (a reactive oxidant produced

from the reaction of nitric oxide and superoxide) [63–65]. In response to DNA damage, PARP

becomes activated and, using NAD+ as a substrate, catalyzes the building of homopolymers of

adenosine diphosphate ribose units. Depending of the severity of DNA damage this process

can be overwhelming and it may deplete the cellular NAD+ and ATP pools and can eventually

lead to cell death via the necrotic route [39]. Hypoxia- or OGD-reoxygenation injury predis-

poses the cells to PARP-1 mediated NAD+ depletion: lower level of oxidative stress and PARP-

1 activity can exhaust the cellular NAD+ pool and lead to necrosis (Figure 5).

The activation of PARP-1 is a regulated process and the enzyme also plays an important role in

programmed cell death forms [66, 67]. PARP-1 activity level depends on the severity of

oxidative stress, and its high catalytic activity is necessary to promote immediate DNA repair.

This protective mechanism helps maintain genome integrity: the ADP-ribose units provide

energy source for base excision repair and the negatively charged polymer recruits other repair

proteins to the site of the damage [68]. Low level of PARP activity is always detectable, and it is

associated with normal gene expression and physiological maintenance of DNA integrity.

Severe DNA damage that occurs under pathological conditions induces excessive activation
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of the enzyme that can rapidly deplete the cellular NAD+ content. Less severe oxidative

damage can induce moderate PARP activation to restore the DNA integrity and if the repair

process is unsuccessful, apoptosis may be induced [39, 40, 66]. The apoptotic process follows

the intrinsic or mitochondrial pathway in this case [69], and it requires a nuclear-to-mitochon-

drial signal for initiation. The signalling molecules have not been unequivocally identified, but

PARP-1 and the PAR polymer might be directly involved in this process [70]. PARP-1 can

generate large PAR polymers that may escape from the nucleus. The PAR polymer itself can

induce membrane damage, mitochondrial depolarization and apoptosis-inducing factor (AIF)

release [70]. AIF released from the mitochondria translocates to the nucleus and plays a role in

cell death progression [71]. This PAR-mediated cell death program is occasionally discrimi-

nated from necrosis and apoptosis as parthanatos, a distinct cell death form [70]. Triggering of

the mitochondrial apoptotic signal leads to caspase activation, which becomes detectable 1

hour following the start of reoxygenation and remains elevated for several hours in hypoxia-

reoxygenation injury [2]. During apoptosis caspase cleavage inactivates PARP-1 by removing

the catalytic region of the protein from the DNA binding region to avoid unnecessary NAD+

consumption caused by the fragmented DNA [72].

PARP-1 itself can exit the nucleus in oxidative stress and interact with cytoplasmic or mito-

chondrial proteins [4]. Thereby, PARP-1 can have direct access to the cytoplasmic or mitochon-

drial NAD+ pools and can PARylate cytoplasmic and mitochondrial proteins [73]. In this

process, the PAR-binding E3 ubiquitin ligase RNF146 (ring finger protein 146, dactylidin also

Figure 5. The mechanism of energetic failure in hypoxia-reoxygenation injury. The events of hypoxia/OGD-

reoxygenation injury leading to ATP depletion with the contribution of PARP labelled in red.
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named Iduna) is involved [74–76], which can capture the PARP-1 protein and promote its

ubiquitination and proteasomal degradation [4]. RNF146 was discovered as a neuroprotective

gene product that when over-expressed exerted protection against NMDA excitotoxicity and

MNNG-induced PARP-1 dependent cell death in vitro [77] and protects against oxidative

stress-mediated neural injury in transgenic mice [78]. RNF146 is a 359 amino acid long,

cytoplasmic protein that contains conserved Really Interesting New Gene (RING) and WWE

domains. The special zinc finger domain (RING domain) between amino acids 38–75 is

responsible for the E3 ubiquitin-protein ligase activity [79]. The WWE domain at 92–168

mediates specific interaction with ADP-ribosylated proteins (PAR-recognition sequence) and

the carboxy-terminal half of the protein, which shows similarity to nucleoporin 155, a compo-

nent of the nuclear pore complex, possibly plays a role in bidirectional trafficking of molecules

between the nucleus and the cytoplasm [78, 79]. RNF146 can bind to the PAR polymer, thus it

can recognize the auto-PARylated PARP-1 and other PARylated proteins, but their distinct

subcellular localization (PARP-1 is present in the nucleus and RNF146 in the cytoplasm) pre-

vents their direct association under physiological conditions. However, when the nuclear

membrane integrity is disrupted, RNF146 can translocate to the nucleus, directly interact with

PARP-1 and both proteins are rapidly degraded by the proteasome [4]. This interaction affects

PARP-1 removal during cell division: PARP-1 is sequestered and degraded during the mitotic

phase, and also results in rapid PARP-1 removal in oxidative stress. In the latter case, not only

PARP-1 but also its targets, the PARylated proteins are affected, including the NAD+ biosyn-

thesis enzymes NamPRT and nicotinamide N-methyltransferase and various metabolic

enzymes, e.g. lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH),

pyruvate dehydrogenase and succinate dehydrogenase [80] that can slow down the recovery

following OGD or hypoxic injury. A small fraction of PARP-1 is localized to the mitochondria

and plays a role in mitochondrial DNA repair, but it may also be involved in degradation of

interacting mitochondrial proteins [73, 81, 82]. Inhibition of PARP-1 activity renders protection

against reoxygenation-induced oxidative damage and cell death in OGD injury but this effect

is limited by the low concentration of cellular ATP [2, 5] and may not be comparable to the

beneficial effects of PARP inhibitors observed in ischemia-reperfusion injury in vivo [83, 84].

3.4. Increased sensitivity to oxidative damage

Post-hypoxic cells show increased sensitivity to oxidant-induced cellular injury due to (1)

diminished ATP and NAD+ pools, (2) low mitochondrial metabolic output and (3) reduced

antioxidant capacity. Hypoxia and glucose deprivation decrease the intracellular concentra-

tions of ATP and NAD+ that greatly reduce the tolerance to cytotoxic injuries since they are

associated with enhanced energy consumption. Oxidant-induced cellular damage is further

aggravated by the diminished NAD+ and ATP synthesis due to mitochondrial dysfunction and

restricted glycolytic capacity. The exposure to low oxygen atmosphere induces down-regula-

tion of antioxidant genes that reduces the buffering capacity during the reoxygenation phase

[85, 86]. Changes in oxygen supply are detected via reduced levels of oxidants and hypoxia-

inducible factor-α (HIF-1α) is responsible for transcriptional regulation of the antioxidant

enzymes [87, 88]. The diminished scavenging capability and the higher oxidant generation
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during the recovery period greatly reduce the tolerance to oxidants. Overall, these factors

increase the vulnerability of the cells and oxidants can induce devastating damage during the

reoxygenation period.

The cells may be treated with exogenous oxidants following the in vitro hypoxic or OGD injury

to better mimic tissue reperfusion, since (1) the infiltration and ROS production of circulating

leukocytes is missing and (2) the ratio of culture volume/packed cell volume is a couple of

orders of magnitude higher than the ratio of extracellular/intracellular space, thus oxidants

produced by the cells are instantaneously diluted in in vitro hypoxia-reoxygenation injury.

Oxidants induce more severe cell damage in post-OGD cells than in normal cells, since the

cellular NAD+ content is much lower following OGD exposure (Figure 6). The cellular NAD+

Figure 6. Hypoxia and OGD increases the sensitivity to exogenous oxidants. H9c2 cells were subjected to 8-hour-long

hypoxia/OGD or GD, and then following the normalization of glucose concentration and oxygen tension the cells were

exposed to various concentrations of H2O2 for 3 hours. (A and B) The viability of the cells was evaluated by the MTTassay.

(C and D) LDH activity was measure in the supernatant. Non-linear curve-fitting was applied to the raw data (A and C)

and the concentration of H2O2 that caused 50% reduction in the viability (B) or 50% increase in the LDH release (D) are

shown. GD and OGD resulted in narrower range of H2O2 tolerance (steeper curves). From Ref. [5].
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pools may be completely depleted by a moderate oxidative damage that hardly induces

viability reduction in normal cells [5]. Cells undergoing OGD injury are less tolerant to oxi-

dants and can survive oxidant-exposure in a narrow concentration range. PARP inhibition

reduces the NAD+ consumption and has protective effect against oxidant-induced cell damage

in post-hypoxic or post-OGD cells that is in line with in vivo ischemia-reperfusion data [23, 67,

89–91].

4. Interventions to increase the recovery following hypoxia-reoxygenation

or OGD-reoxygenation injury

In drug discovery, the ultimate goal of using in vitromodels, like hypoxia-reoxygenation or the

OGD-reoxygenation is to find novel drugs that show efficacy against ischemic diseases in vivo.

The relative contribution of various pathways leading to cellular damage in hypoxia or OGD-

injury has not been definitely established, thus it is unclear which pathways can serve as drug

targets in this injury. Furthermore, there are notable differences between the hypoxia-

reoxygenation model and ischemia-reperfusion injury that may result in discrepancy between

the in vitro and in vivo drug efficacy [92, 93]. There are numerous factors that may account for

this difference and their significance should be individually evaluated depending on the target

disease for each organ or tissue type. While the organs consist of various cell types and the

extracellular matrix, usually a single cell type is used in the in vitro model. This excludes the

cells that build up the blood vessels and the circulating blood cells, and the secreted pro-

inflammatory mediators and ROS produced by leukocytes are similarly absent. There are

functional differences between tissues and cultured cells including muscle contraction, absorp-

tion of nutrients in the digestive system, kidney filtration, excretion and reabsorption and the

detoxification function of the liver that all require lot of metabolic energy. Cultured cells may

show slightly different expression profiles than their in vivo counterparts that may affect the

expression level of drug targets and can change the observed responses. There are deficiencies

of the in vitro model, which are associated with the differences in extracellular volume: the

hypoxia induction is slower, the energy resources are more abundant and the dilutions of

secreted cytotoxic or cytoprotective agents are greater than in vivo. On the other hand, there

are no drug absorption, solubility and metabolism issues in vitro that may reduce the drug

effects in vivo.

Interventions that reduce the cellular damage in hypoxia-reoxygenation injury and

enhance recovery following hypoxia or OGD exposure may target (1) the metabolism and

energy resources, (2) the oxidative stress pathways and antioxidant responses or (3) the

proteasome and proteolytic activity. Apart from these universal cellular targets, some

tissue-specific receptors were also found to have beneficial effects in some models. Energy

replenishment using adenosine or inosine is effective in various cell types exposed to OGD

injury since the pentose part of these nucleosides can be anaerobically metabolized

through the pentose phosphate pathway [1–3]. Purine nucleosides are preferable to glu-

cose in hypoxia since their metabolism can produce more ATP molecules than glycolysis

and their utilization is more effective at low concentrations. Furthermore, they possess
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anti-inflammatory and weak PARP inhibitor activity that supports their activity in vivo

[94]. Various ROS scavengers and antioxidants also exert cytoprotective effect in hypoxia-

reoxygenation models [95] and inhibition of the NAD+ consumer PARP-1 that recognizes

the oxidative DNA damage is also beneficial [96, 97]. Not only the necrosis-associated

PARP-1 blockage is effective in OGD-reoxygenation injury, but also caspase inhibition has

protective effect in select cell types, confirming that the cell death features both apoptotic

and necrotic elements in this injury [2]. Proteasome inhibition that possibly prevents the

degradation of key signalling proteins and metabolic enzymes is also beneficial in hyp-

oxia-reoxygenation injury [98, 99].

5. Conclusion

The hypoxia-reoxygenation model is a valuable tool in hypoxia and ischemia research that

may be combined with other injury models to fully reproduce features of inflammatory and

vascular diseases. This low-cost model does not require advanced research skills and may be

optimized within a short time in the laboratory. The cellular damage mostly occurs as a

consequence of energetic failure and shows necrotic characteristics in this model. Both the

hypoxic phase and the post-hypoxic recovery period involve massive changes in the cellular

metabolism: a characteristic suppression of mitochondrial energy production is caused by the

lack of oxygen and later by the shortage of NAD+ supply. The recovery from this state is a

delicate process that recreates the balance in cellular energetics.
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