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Abstract

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative
colitis (UC), is a multi-factorial condition characterized by a chronic inflammation of the
gastrointestinal tract. In IBD, the balance between pro/anti-inflammatory cytokines and
immuno-regulatory cytokines is disturbed. An over-production of pro-inflammatory
cytokines and nitric oxide characterizes the pathogenesis of IBD. In Crohn’s disease the
major cytokines are generated by Th1- and Th17-polarized T cells. In contract, UC is
viewed more as an atypical Th2-type immune response characterized by the generation
of high amount of IL-5, IL-4 and IL-13. Both Th1 and Th17 cytokines are involved in the
up-regulation of iNOS expression in IBD and the production of high level of nitric oxide
(NO). The latter, as an effect, causes tissue damages through the generation of reactive
nitric oxygen species (RNOS). A better understanding of the pathogenesis of IBD has
led to the development of new therapeutic strategies based on targeting cytokines and
their receptors as well as NO modulation. Manipulation the microbiota with probiotics
and helminthes may have potential use as anti-inflammatory agents in IBD by inducing
anti-inflammatory cytokine pattern.

Keywords: cytokines, inflammatory bowel diseases, nitric oxide (NO), nitric oxide
synthases (NOS), anti-cytokine therapy

1. Introduction

Inflammatory bowel disease (IBD), represented mainly by ulcerative colitis (UC) and Crohn’s

disease (CD), is a multifactorial condition characterized by a chronic inflammation of the

gastrointestinal tract. It is widely accepted that IBD results from an uncontrolled mucosal

immune response to intestinal microflora in genetically susceptible hosts [1, 2]. The inflamed

intestine of patients with IBD is massively infiltrated by inflammatory cells that release a large

amount of proinflammatory mediators such as cytokines and nitric oxide (NO) [3].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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NO is a free radical which has several physiological and pathological functions. It is generated

from the oxidation of the amino acid L-arginine by a family of enzymes called nitric oxide

synthases (NOS). Three distinct isoforms of NOS are known: two isoforms constitutively

expressed in neuronal (nNOS) and endothelial (eNOS) tissues and an inducible isoform (iNOS)

expressed mainly in immune cells such as macrophages [4, 5]. The constitutively expressed

isoforms release low levels of NO that exert physiological functions, whereas iNOS releases a

high output of NO production under immunogenic and inflammatory stimuli [6, 7].

Cytokines are small soluble peptides which are produced by diverse immune and nonimmune

cells. They exert their biological functions through specific receptors activating the JAK-STAT

signaling pathway that control gene expression of target cells [8]. In IBD, the balance between

pro-/anti-inflammatory cytokines and immunoregulatory cytokines is disturbed leading to

distinguish a different T cell profile in CD and UC. Classically, Crohn’s disease is described as

TH1-type immune response characterized by the secretion of IFN-γ, IL-12, and TNF-α. In

contrast, ulcerative colitis is viewed more as an atypical TH2-type immune response which

generates high amount of IL-5, IL-4, and IL-13 [9, 10]. In addition, several studies have shown

the involvement of TH17-type cytokines (IL-17, IL-23, IL-22, IL-6) in the pathogenesis process

of both Crohn’s and ulcerative colitis [11, 12]. Interestingly, both TH1 and TH17 cytokines are

involved in the upregulation of iNOS expression in IBD. Indeed, a positive correlation between

nitric oxide production and increased proinflammatory cytokines (TNF-α, IL-6, IL-17 IL-12,

and IFN-γ) were observed in plasma of IBD patients [12, 13].

The considerable research conducted over the last year to better understand the pathogenesis

of IBD has led to the development of new therapeutic strategies based on targeting cytokines,

their receptors, as well as NO modulation. Unfortunately, some of those strategies showed

limited efficacy. Hence, better understanding of the mechanisms underlying the inflammation

and the immune response in IBDmay give arise to new alternative complementary therapeutic

strategies. Moreover, the assessment of NO production in IBD might be a useful inflammatory

marker to predict the stage of the disease [14].

This chapter will address the cytokine involvement and their relationship with nitric oxide in

IBD immunopathogenesis as well as potential therapeutic targets that may arise.

2. Nitric oxide and IBD

Nitric oxide is a lipophilic-free radical, which plays a key role in regulating homeostasis of

many biological systems [15]. It is synthesized by a family of enzymes called NOS which

catalyze the oxidation of the terminal nitrogen of the amino acid L-arginine and produce L-

citrulline and NO [5, 7]. Three NOS isoforms have been identified and characterized in

humans and in mice; their nomenclature respects the chronological order in which they were

purified: The neuronal form (nNOS or NOS1), the inducible form (iNOS or NOS2), and the

endothelial form (eNOS or NOS3). nNOS and eNOS are termed constitutive NOS (cNOS) as

they are calcium-dependent, and are respectively expressed constitutively in neuronal and

endothelial tissue [4, 5, 7]. The effects of NO differ on its rate, duration, and place of
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production and the nature of the target molecules [16]. Under physiological conditions,

cNOS generates low levels of NO which have direct regulatory effects such as neurotrans-

mission and regulation of blood vessel [17, 18]. On the other hand, iNOS generates high

levels of NO which mediates antimicrobial and antitumor activities [16, 19, 20]. This isoform

was first isolated in murine macrophages then it was found in several other cells type

Including epithelial cells, hepatocytes, endothelial cells, and fibroblast. It is expressed after

induction by immunologic and inflammatory stimuli [6, 16, 19, 20]. However, when NO is

produced in excess, it becomes noxious. It causes deleterious effect indirectly through the

creation of reactive nitric oxygen species (RNOS) such as peroxynitrite anion (OONO−), the

nitroxyl anion (NO−), and dioxide nitrogen (NO2), responsible for the oxidative stress [7, 21,

22]. Peroxynitrite, a molecule with high oxidative potential, can trigger cytotoxic processes

such as lipid peroxidation and DNA damage leading to tissue damage and inflammation

[22]. NO has been implicated as a pathogenic mediator in a variety of conditions, such as

inflammatory bowel disease [23, 24] Figure 1.

The deleterious role of NO in IBD has been proposed after clinical studies that reported the

presence of a high level of nitrite/nitrate in plasma, urine, and the lumen of the colon [14, 25,

26]. Moreover, a correlation between overexpression of iNOS and increased concentration of

NO and the severity of diseases was shown [26]. In fact, an increased level of NO was found in

serum, stool, and urine of patients with active phase of UC and CD compared to inactive phase

[14, 24–26]. Although our study showed a significantly higher serum level of NO in CD

patients compared to UC patients, data from previous studies reported no significant differ-

ence between these two categories of disease, whereas a higher systemic level of NO in UC

compared to CD was reported [12–14, 24, 26].

As mentioned above, NO exerts its deleterious effects by combining with superoxide anion to

form peroxynitrite. Thus, experimental model of colonic inflammation could be induced by

intracolonic administration of peroxynitrite [27, 28]. Besides, high nitric oxide generation can

be accompanied by the production of carcinogenic nitrosamnies from neutrophils in inflamed

colonic mucosa. These nitrosamines may contribute to the increased risk of malignancy in

IBD [28].

Moreover, recent studies carried out on patients with very onset inflammatory bowel dis-

eases (VEOIBD) reported a genetic association with NOS2 single nucleotide polymorphisms

(SNPs) and VEOIBD. Younger pediatric IBD patients develop a different disease phenotype

compared to adults onset IBD, often characterized by a severe pancolitis and high expression

of iNOS. The therapeutic inhibition of iNOS expression in VEOIBD could then be beneficial

[29].

While several studies conducted on animal models report the deleterious effect of NO, some

recent studies have shown that NO may also exert protective effect against colitis [29–32].

Indeed, because of its strong bactericidal and cytostatic properties, high NO generation by

iNOS may represent a protective mechanism [28]. Recent study conducted on DSS-induced

colitis model has shown that nitrite administration exerts both preventive and therapeutic

effects in colonic inflammation [30]. More recently, iNOS deficiency was shown to aggravate

inflammation in animal model of colitis through enhancing TH17 differentiation [31].
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3. Cytokine regulation of nitric oxide in IBD

The inflamed tissue of patients with active IBD is characterized by a massive infiltration of

immune cells that release several proinflammatory mediators and produce high de novo

levels of NO. The expression of iNOS is highly regulated at both transcriptional and post-

transcriptional level by several proinflammatory cytokines and immunogenic stimuli such as

LPS [6, 7].

Figure 1. Involvement of cytokines and nitric oxide in IBD and the potential therapeutic targets. IBD is characterized

by a defective regulatory and anti-inflammatory immune responses mediated by cytokines such as interleukine-10 and

transforming growth factor (TGF)-β produced by regulatory T cells (Treg) and the over-production of interleukin (IL)-12,

IL-6 and IL-23 and tumor necrosis factor (TNF)-α by dendritic cells (DC) and macrophages. Th1-polarized cells secrete

interferon-γ, which induces the high production of nitric oxide (NO) by macrophages. Th2-polarized cells and natural

killer T (NKT) cells induce an immune response mediated by IL-5 and IL-13. Th17-polarized T-cell generation is induced

by transforming growth factor (TGF)-β, IL-6 and IL-23; they secrete IL-17A, IL-17F and IL-22. Biological therapies target

several molecular pathways by blocking cytokine activity and restoring the microbiota through the use of probiotics and

helminths. TLR, Toll-like receptor; NOD, nucleotide oligomerization domain; NF-κB,: nuclear factor kappa B; TSLP,

thymic stromal lymphopoietin; DSS, dextran sulfate sodium; ROR, retinoid-related orphan receptor; ILCs, innate lym-

phoid cells; Foxp, Forhead box protein P3.
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In both patients and animal models of IBD, a positive correlation between the overproduction

of proinflammatory cytokines, such as IL-1β, TNF-α, and IFN-γ, and an overexpression of

iNOS was found. Its expression was mainly detected in lamina propria mononuclear cells and

colon epithelial cells of inflamed mucosa [6, 12, 13, 25, 32–34]. Studies conducted on a DSS-

induced experimental model of colitis in BALB/c mice showed that neutralization of endoge-

nous TNF-α and/or IFN-γ ameliorated the chronic colitis and concomitantly decreased NO

generation [32]. These data support the fact that IFN-γ and TNF-α are both involved in the

exacerbation of DSS-induced colitis and may exert their detrimental role in the colonic mucosa

partly through the induction of high output of NO [32]. These cytokines had an additive effect

on the severity of histological damages and NO colonic levels. However, it seems that IFN-γ is

the most potent inducer of iNOS in macrophages and epithelial cells than TNF-α since its

neutralization was more effective in attenuating the experimental colitis [32].

Moreover, our studies reported an upregulation of iNOS expression in inflamed colonic

mucosa which correlates with high systemic levels of NO, IFN-γ, and IL-12. These observa-

tions suggest that IFN-γ and IL-12 may play a pivotal role in IBD pathogenesis through NO

pathway [12]. Human PBMC from IBD patients were shown to produce elevated level of NO

compared to controls. Proinflammatory cytokines such as IFN-γ, IL-6, TNF-α, and IL-1β

stimulate NO production in vitro in PBMC from patients with CD and UC suggesting that

human PBMC may constitute another cellular source of NO in IBD [12, 13]. Interestingly, this

study reported a positive correlation between TH17 cytokines including IL-6, IL-23, IL-17A,

and NO production in plasma of patients with IBD [12]. Moreover, the mucosal alterations

strongly correlated with high iNOS and pSTAT3 expression in colonic mucosa of patients with

active IBD. These observations suggest that IL-17 may be a potent inducer of iNOS expression

in inflamed mucosa of IBD patients leading to the exacerbation of the tissue damages. The

mechanism by which IL-17 induces NO production is likely dependent on nuclear factor

kappa B (NF-kB) expression. In fact, in vitro studies using osteoclastes cells showed that IL-17

induced high expression of mRNA of the NF-kB isoform RelA et p50 [35].

On the other hand, the negative regulation of iNOS could be achieved by TH2 derived

cytokines such as IL-13 and IL-4. The inhibitory effect of these cytokines on iNOS protein and

mRNA expression has been demonstrated in the HT-29 epithelial cell line induced by IL-1a/

TNF-α/IFN-γ. Moreover, at low levels and in the presence of TNF-α, these cytokines exert

inhibitory effect on iNOS expression and activation. Although a high level of these cytokines

could inhibit iNOS mRNA induction in absence of TNF-α [36, 37]. The mechanism under the

inhibitory effect of IL-13 on iNOS expression in epithelial cells is dependent on the activation of

PtdIns 3-kinase pathway [37].

Furthermore, it has been shown that the immunosuppressive cytokine IL-10 inhibit iNOS

expression depending on the cell type. Indeed, unlike IL-13, IL-10 had no effect on iNOS

expression in colonic epithelial cells but was able to inhibit NO production in mouse-activated

macrophages [6, 36]. Recently, it has been demonstrated that the inhibition of NO and ROS in

mouse carrying a selective deletion of IL-10Rα in macrophages had less severe colitis than

wild-type mice. These data suggest that the protective effect of IL-10 is mainly mediated

through the downregulation of NO and ROS production by macrophages [38].
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These observations and others suggest that cytokines modulate the iNOS expression and

activity in colonic epithelium in human and experimental IBD, and might play homeostatic or

inflammatory role in gut inflammation through iNOS modulation.

Several studies have shown that NO can in turn modulate the immune response by

suppressing IL-12 production from dendritic cells and macrophages. In that manner NO may

control the generation of TH1-type response [39]. More recently, a study reported that expres-

sion of iNOS in macrophages and dendritic cells can modulate inflammatory cytokine expres-

sion including TNF-α, IL-6, IL-12p70, and IL-23. Growing evidence supports this notion and

suggests that NO may control T helper cell differentiation [31, 40]. Indeed, studies conducted

in experimental model of colitis showed that iNOS deficiency aggravates inflammation and

increased the percentage of TH17 cells. While an NO donor molecule suppressed IL-17 pro-

duction in T cell-deficient NOS cultures and reduced the percentage of IL-17 producing CD4+

T cells. In fact, NO has been found to regulate IL-17 expression at the transcriptional level

through the nitration of tyrosine residues in RORγt inhibiting therefore its binding to the

promoter region of IL-17 gene [31].

4. Cytokines implication in IBD

The dysfunction of mucosal immune responses in IBD is characterized by abnormalities of

both innate and adaptive immune systems. The final common pathway of this deregulated

immune activation is an abundant infiltration of immune cells in the intestinal mucosa [11, 41–

43]. These cells were found to release excessive proinflammatory mediators that amplify

inflammatory cascade through the activation of mitogen-activated protein kinases (MAPK) and

nuclear factor kappa B. Several studies have reported evidences about the contribution of cyto-

kines, adhesion molecules, reactive oxygen metabolites (ROMs), and nitric oxide in triggering

mucosal inflammation and injury in IBDs [8, 9, 23, 24, 43–45]. In IBD, the balance between

proinflammatory cytokines (TNF-α, IL-1β, IL-8, and IL-17), antiinflammatory cytokines (IL-4

and IL-13), and immunoregulatory cytokines (IL-10 and TGF-β) is disrupted [45]. According to

the cytokine environment found in IBDs patients, Crohn’s disease and ulcerative colitis were

conventionally associated to a different CD4+ helper T cells profile based on the paradigm

TH2/TH1. Thus, Crohn’s disease was described as TH1-type immune response promoted by

the transcription factors STAT-4 and T-bet and characterized by the secretion of IFN-γ, IL-12,

and TNF-α [9, 46]. Indeed, the studies conducted by our and other teams showed high levels of

IL-12 and IFN-γ in CD patients with active disease [13]. IL-12 produced by macrophages/

monocytes system and dendritic cells plays a pivotal role in enhancing natural killer (NK)

cell-mediated cytotoxicity. Moreover, it is admitted that both IL-12 and IL-18 induce high level

of IFN-γ production leading to the reinforcement of TH1 immune response [13, 47, 48]. In

addition, TNF-α plays a pivotal role in the pathogenesis of IBD. It induces expression of

adhesion molecules, increases the local release of nitric oxide, and enhances the production of

metalloproteinases leading to the loss of epithelial integrity [49, 50]. In contrast, ulcerative

colitis was viewed as a TH2-type immune response promoted by the expression of the tran-

scription factors STAT-6 and GATA-3 and the secretion of IL-5, IL-4, and IL-13 [41].
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Furthermore, Fuss et al. demonstrated that UC patients, unlike CD patients, have atypical

natural killer T cells. These cells produce high IL-13 levels and have cytotoxic activity toward

epithelial cells [51].

Currently, the aforementioned classical concept of the pathogenesis of IBDs is reconsidered

with the strong involvement of TH 17 cells. This subset of CD4+ T helper is promoted by the

activation of the transcriptions factors STAT-3 and ROR-γt and is characterized by the produc-

tion of IL-17A, IL-17F, IL-22, IL-21, IL-6, and IL-26 and the chemokine CCL20 [52, 53]. Several

evidences support the implication of the TH17 cells in the intestinal mucosa protection against

invading pathogens such as Candida and Salmonella, through chemotaxis of neutrophils and

stimulation of antimicrobial peptides production by epithelial cells [54]. However, both in CD

and UC high level of TH17 cytokines signature was demonstrated in the serum and inflamed

mucosa. Increased IL-17A production can drive and aggravate the chronic inflammatory

response [13, 55, 56]. More recently, another subset of TH17, TH1/TH17cells producing both

IFN-γ and IL-17 has been identified in ileal form of active Crohn’s disease and experimental

models of colitis [57–59]. In addition, it has been reported that TH17 induce the production of

high level of TNF-α, IL-1β, chemokines (IL-8), and matrix metalloproteinases such as MMP-9.

Moreover, the expression of the cytokine IL-23 and CCL20, a chemoattractant for TH17

expressing CCR6, was highly upregulated in Crohn’s disease lesions. IL-23 is a crucial effector

necessary for the stabilization and expansion of TH17 cells. It enhances the expression of the

master transcription factor (RORγt) following IL-6 and TGF-β stimulation. Moreover, it plays

an important role in the development and propagation of the inflammatory response in the gut

by inhibiting the expression of the transcription factor Foxp3 and the development of Treg cells

[11, 52, 53, 58–60].

The TH17/Treg balance plays an essential role in maintaining intestinal homeostasis. The

immunoregulatory cytokine TGF-β orchestrates the differentiation of TH17 and Treg cells in

a dose-dependent manner. In the presence of high level of IL-6 and inflammatory mediators,

TGF-β promotes the differentiation of TH17 cells. Conversely, high level of TGF-β and

low level of IL-6 and inflammatory mediators promote the development of Foxp3+Treg-

induced cells (iTreg) [61, 62]. Regarding the proinflammatory role of IL-6, elevated levels of

this cytokine and its soluble receptor sIL-6R were found in colonic mucosa and sera of patients

with inflammatory bowel disease. Compelling evidence in human and in animal models

showed that IL-6 plays an important role in maintaining a chronic response by promoting the

accumulation of T cells resistant to apoptosis. Besides, IL-6 induces the production of IFN-γ,

TNF-α, and IL-1β and increases the expression of adhesion proteins such as ICAM-1 protein

which participates in the migration and activation of inflammatory cells to the intestine

[63, 64].

It is well established that ongoing inflammation in Crohn’s disease and ulcerative colitis is

mediated by uncontrolled T cell response. Altered Treg regulatory mechanisms have been

documented in IBD. However, it is still not clear whether this defect is due to a numerical lack

of Treg or to a defective TGF-β and IL-10 immunoregulatory activity [65, 66]. Interestingly, it

has been shown in inflamed colon of CD patients a common CD4+T cell population, which

coexpresses both Foxp3 and RORγt. This resident Treg cells showed plasticity toward TH17 in
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inflammatory environment. Treg/TH17 balance is tightly regulated by intestinal factors such as

endogenous mircroflora as well as the presence of retinoic acid. Indeed, it has been reported

that the vitamin A metabolite, retinoic acid promotes Treg differentiation while inhibiting the

formation of TH17 cells [55, 67, 68]. Thus, these data support the involvement of altered

intestinal microenvironment in the development of IBD and rupture of gut homeostasis.

Other studies conducted on IBD experimental models reported the implication of other cyto-

kines with immunomodulatory role such as IL-25, TSLP, and IL-22, opening therefore the way

to new therapeutic strategies in IBD [69–71].

5. Therapeutic implications

Inflammatory bowel diseases are chronic conditions with no treatment to achieve a complete

healing. As the exact etiopathology of these conditions is still not known, the conventional

treatment (salazosulfamide, glucocorticoids, and immunosuppressive agents) remains

symptomatic. It aims to attenuate inflammation and enable patients entering long-lasting

remission.

It is well established that cytokines are key mediators in the pathogenesis of IBD. Thereby,

their targeting represents a rational and promising therapeutic approach. Blocking

proinflammatory cytokines such as TNF-α has led the revolution of biological therapies in

several immune diseases including IBD. Chimeric (infliximab), humanized (certolizumab

pegol), and fully human monoclonal anti-TNF-α antibodies (adalimumab) have been

approved for the treatment of active refractory and fisulizing forms of Crohn’s disease [72–

74]. Even if the anti-TNF-α is the leader of biological therapies, many side effects have been

assigned to its use such as infections and lymphoma risks [75]. Moreover, some patients were

refractory or intolerant to anti-TNF-α therapy. Over the last years extensive therapeutic

approaches have targeted other cytokines as well as their receptors and signaling pathways in

treatment of IBD such as IFN-γ, IL-17A, IL-23/IL-12p40, and Jak1/3 signaling pathway. As

described above, the axis IL-12/IFN-γ plays a key role in the pathogenesis of human IBD and

experimental colitis. These findings lead to target IFN-γ or IL-12 for the therapy of IBD.

Indeed, the monoclonal antibody ustekinumab, targeting the common p40 subunit of IL-12/

IL-23, appears to be efficient in inducing clinical remission in moderate-to-severe Crohn’s

disease patient’s nonresponding to anti-TNF-α therapy [76, 77]. However, the blockade of

IFN-γ with specific monoclonal antibody, fontolizumab, had no clinical beneficial effect in

patients with active CD [78]. Moreover, targeting TH17 cytokines in colitis with the anti-IL-

17A antibody, secukinumab, showed disappointing results [79]. That result may be related to

the cytokine pattern that can change depending on the location of the inflammatory injuries,

the stage of the disease, and the T cell plasticity observed in inflamed mucosa of CD patients.

In this context, studies conducted on CD patients and in experimental model of colitis showed

a pronounced TH1–TH17 response as the disease becomes chronic. These results can be also

explained by the plasticity between TH1/TH17 and TH17/Treg [80, 81].
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On the other hand, the use of immunoregulatory cytokines such as IL-10 and TGF-β has been

extensively studied in order to restore the defective regulatory response in IBD [65]. Adminis-

tration of recombinant human IL-10 has not been beneficial to patients with active UC and CD.

However, the inhibition of Smad7 with a specific antisense oligonucleotide restores TGF-β1

signaling and showed safe and beneficial effects in a phase 1 study in active CD [82].

Another approach to downregulate T cell activation and resistance against apoptosis in IBD

consists of neutralizing IL-6 receptor. Therapeutic benefit of blockade of IL-6R with a human-

ized anti-IL6R antibody, tocilizumab, was shown in established experimental colitis and in

patients with Crohn’s disease [83].

Based on experimental model of colitis, IL-13 is associated with the onset of inflammation in

ulcerative colitis. Thus, targeting IL-13 or the factors that regulate its production might be a

potential therapy in UC. Notably, treatment of patients with IFN-β exerted beneficial effect

through the reduction of IL-13 production by the lamina propira T cells [84]. However, in a

recent study, it has been shown that the efficiency of IFN-β treatment depends on TH17

cytokine profile of patients. Thereby, patients with low level of IL-17A showed positive clinical

response to IFN-β than patients with high IL-17A levels [85].

Consistent with these data, an alternative therapeutic approach that aims to block intracellular

signaling pathways of several cytokines has been explored. In particular, the JAK/STAT path-

way which is responsible for signal transduction of various cytokine receptors involved in both

the innate and adaptive immune response. Indeed, small molecule inhibitor of Janus kinases

(JAKs) specific for JAK1 and JAK3, namely, tofacitinib, inhibit the signaling of several cyto-

kines such as IL 2, IL 4, IL 7, IL 9, IL 15, and IL 21. It has been shown that tofacitinib can

suppress T cell differentiation and activation conferring beneficial effects in IBD, particularly in

ulcerative colitis [86–88].

Furthermore, given the complexity of cytokines network in IBD, it has been suggested that

simultaneous neutralization of two cytokines using bispecific dual variable domain antibodies

could yield promising result in treating IBD [89].

The limited efficacy that has shown certain cytokine-based therapy led to the search for

alternative therapeutic pathways that regulate cytokines balance in IBD. There is growing

body of evidence that suggest that probiotics and heminths may have potential use as

antiinflammatory agents in IBD by inducing antiinflammatory cytokines pattern. The results

of our studies and others demonstrated that some probiotics such as Bifidobacterium infantis

and Bifidobacterium longum downregulate proinflammatory cytokines IFN-γ, IL-12, TNF-α,

and IL-8 production and stimulate immunoregulatory cytokine IL-10 production [33, 90–92].

Moreover, it has been reported that B. infantis feeding in DSS-induced colitis model

downregulate IL-17A expression and induce IL-10 production restoring thereby the TH17/

Tregs balance [93, 94]. Human clinical trials showed encouraging evidence on the efficacy of

the probiotics preparation VSL#3 and the probiotic Escherichia coli Nissle 1917 to maintain

remission in ulcerative colitis. Unfortunately, very few studies reported the beneficial use of

probiotics in CD [95, 96]. Furthermore, other studies have oriented the use of probiotics
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lactobacillus to deliver cytokines such as IL-10 or anti-TNF-α locally to potentiate their action

while limiting their side effects [97, 98]. Concerning the use of helminths in shaping the immune

responses in IBD, there is overwhelming data showing their immunoregulatory effects. Indeed,

immunity to helminth is TH2-type response dependent on the secretion of antiinflammatory

cytokines (IL-4, IL-5, IL-13, and IL-9) and the induction of Tregs. Experimental studies demon-

strated that helminthes infection attenuate damaging TH1-/TH17-driven inflammatory

responses through the induction of regulatory responses [99–101] Figure 1.
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