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1. Introduction  

One of the biggest problem that many data analysis techniques have to deal with nowadays 
is Combinatorial Optimization that, in the past, has led many methods to be taken apart. 
Actually, the (still not enough!) higher computing power available makes it possible to 
apply such techniques within certain bounds. Since other research fields like Artificial 
Intelligence have been (and still are) dealing with such problems, their contribute to 
statistics has been very significant. 
This chapter tries to cast the Combinatorial Optimization methods into the Artificial 
Intelligence framework, particularly with respect Decision Tree Induction, which is 
considered a powerful instrument for the knowledge extraction and the decision making 
support. When the exhaustive enumeration and evaluation of all the possible candidate 
solution to a Tree-based Induction problem is not computationally affordable, the use of 
Nature Inspired Optimization Algorithms, which have been proven to be powerful 
instruments for attacking many combinatorial optimization problems, can be of great help. 
In this respect, the attention is focused on three main problems involving Decision Tree 
Induction by  mainly focusing the attention on the Classification and Regression Tree-CART 
(Breiman et al., 1984) algorithm. First, the problem of splitting  complex predictors such a 
multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the 
possibility of growing “optimal” exploratory trees is also investigated by making use of Ant 
Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees 
for modelling multi-attribute response on the basis of a data-driven heuristic is also 
described. The proposed approaches might be useful for knowledge extraction from large 
databases as well as for data mining applications. The solution they offer for complicated 
data modelling and data analysis problems might be considered for a possible 
implementation in a Decision Support System (DSS). 
The remainder of the chapter is as follows. Section 2 describes the main features and the 
recent developments of Decision Tree Induction. An overview of Combinatorial 
Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization 
is presented in section 3. The use of these two algorithms within the Decision Tree Induction 
Framework is described in section 4, together with the description of the algorithm for 
modelling multi-attribute response. Section 5 summarizes the results of the proposed O
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method on real and simulated datasets. Concluding remarks are presented in section 6. The 
chapter also includes an appendix that presents J-Fast, a Java-based software for Decision 
Tree that currently implements Genetic Algorithms and Ant Colony Optimization.  

2. Decision tree induction  

Decision Tree Induction (DTI) is a tool to induce a classification or regression model from 
(usually large) datasets characterized by N observations (records), each one containing a set 
x of numerical or nominal variables, and a variable y. Statisticians use the terms “splitting 
predictors” to identify x and “response variable” for y. DTI builds a model that summarizes 
the underlying relationships between x and y. Actually, two kinds of model can be 
estimated using decision trees: classification trees if y is nominal, and regression trees if y is 
numerical. Hereinafter we refer to classification trees to show the main features of DTI and 
briefly recall the main characteristics of regression trees at the end of the section. 
DTI proceeds by inducing a series of follow-up (usually binary) questions about the 
attributes of an unknown observation until a conclusion about what is its most likely class 
label is reached. Questions and their alternative answers can be represented hierarchically in 
the form of a decision tree. It contains a root node and some internal and terminal nodes. 
The root node and the internal ones are used to partition observations of the dataset into 
smaller subsets of relatively homogeneous classes. To classify a previously unlabelled 
observation, say i* (i*=1,…..,N), we start from the test condition in the root node and follow 
the appropriate pattern based on the outcome of the test. When an internal node is reached a 
new test condition is applied, and so on down to a terminal node. Encountering a terminal 
node, the modal class of the observations in that node is the class label of y assigned to the 
(previously) unlabeled observation. For regression trees, the assigned class is the mean of  y 
for the observations belonging to that terminal node. 
Because of their top-down binary splitting approach, decision trees can easily be converted 
into IF-THEN rules and used for decision making purposes. 
DTI is useful for knowledge extraction from  large databases and data mining applications 
because of the possibility to represent functions of numerical and nominal variables as well 
as of its feasibility, predictive ability and interpretability. It can effectively handle missing 
values and noisy data and can be used either as an explanatory tool for distinguishing 
observations of different classes or as a prediction tool to class labels of previously unseen 
observations. 
Some of the well-known DTI algorithms include ID3 (Quinlan, 1983), CART (Breiman et al., 
1984), C4.5 (Quinlan, 1993), SLIQ (Metha et al., 1996), FAST (Mola & Siciliano, 1997) and 
GUIDE (Loh, 2002). All these algorithms use a greedy, top-down recursive partitioning 
approach. They primarily differ in terms of the splitting criteria, the type of splits (2-way or 
multi-way) and the handling of the overfitting problem.  
DTI uses a greedy, top-down recursive partitioning approach to induce a decision tree from 
data. In general, DTI involves the following tasks: decision tree growing and decision tree 
pruning. 

2.1 Tree growing 

As for the growing of a decision tree, DTI use a greedy heuristic to make a series of locally 
optimum decisions about which value of a splitting predictor to use for data partitioning. A 
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test condition depending on a splitting method is applied to partition the data into more 
homogeneous subgroups at each step of the greedy algorithm. 
Splitting methods differ with respect to the type of splitting predictor: for nominal splitting 
predictors the test condition is expressed as a question about one or more of its attributes, 
whose outcomes are “Yes”/”No”. Grouping of splitting predictor attributes is required for 
algorithms using 2-way splits. For ordinal or continuous splitting predictors the test 

condition is expressed on the basis of a threshold value υ such as (xi ≤ υ?) or (xi > υ?). By 

considering all the possible split points υ, the best one υ* partitioning the instances into 
homogeneous subgroups is selected. 
In the classification problem, the sample population consists of N observations deriving 

from C response classes. A decision tree (or classifier) will break these observations into k 

terminal groups, and to each of these a predicted class (being one of the possible attributes 

of the response variable) is assigned. In actual application, most parameters are estimated 

from the data. In fact, denoting with t some node of the tree (t represents both a set of 

individuals in the sample data and, via the tree that produced it, a classification rule for 

future data) from the binary tree it is possible to estimate P(t) and P(i|t) for future 

observations as follows: 

 ( ) ( ){ } ( )
1 1

C C

i i iA ii i
P t P x t x i n nπ τ π

= =
= ∈ = ≈∑ ∑  (1) 

 ( ) ( ){ } ( ){ } { } ( ) ( )
1

C

i i it i i it ii
P i t P x i x t P x t x i P x t n n n nτ π τ π π

=
= = ∈ = ∈ = ∈ ≈ ∑  (2) 

where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an 
observation xi (x is the vector of predictor variables), ni and nt are the number of 
observations in the sample that respectively are class i and node t, and nit  is the number of 
observations in the sample that are class i and node t. 
In addition, by denoting with R the risk of misclassification, the risk of t (denoted with R(t)) 
and the risk of a model (or tree) T (denoted with R(T)) are measured as follows: 

 ( ) ( ) ( )( )
1

,
C

i
R t P i t L i tτ

=
=∑   (3) 

 ( ) ( ) ( )
1

k

j jj
R T P t R t
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where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is 

the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj 

are terminal nodes of the tree T. If L(i,i)=1 for all i≠j, and the prior probabilities τ  are set to 

be equal to the observed class frequencies in the sample, then P(i|t)=nit/nt and R(T) is the 

proportion of misclassified observations. 

When splitting a node t into tr and tl (left and right sons), the following relationship holds: 

P(tl) R(tl) + P(tr) R(tr) ≤ P(t) R(t). An obvious way to build a tree is to chose that split 

maximizing ΔR, i.e., the decrease in risk. To this aim, several measures of impurity (or 

diversity) of a node are used. Denoting with f some impurity function, the local impurity of 

a node t is defined as: 
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 ( ) ( )
1

C

iti
t f pε

=
=∑  (5) 

where pit is the proportion of those in t that belong to class i for future samples. Since ε(t)=0 
when t is pure, f must be concave with f(0)=f(1)=0. Two candidates for f are the information 
index f(p) = -p log(p) and the Gini index f(p)= -p(1-p), that slightly differ for the two class 
problem where nearly always choose the same split point. Once that f has been chosen, the 
split maximizing the impurity reduction is: 

 ( ) ( ) ( ) ( ) ( ) ( )l l r rp t t p t t p t tε ε ε εΔ = − −  (6) 

Data partitioning proceeds recursively until a stopping rule is satisfied: this usually happens 
when the number of observations in a node is lower than a previously-specified minimum 
number necessary for splitting, as well as when the same observations belong to the same 
class or have the same response class. 

2.2 FAST splitting algorithm 

The goodness of split criterion based on (6) expresses in different way some equivalent 
criteria which are present in most of the tree-growing procedures implemented in 
specialized software; such as, for instance, CART (Breiman et al., 1984), ID3 and C4.5 
(Quinlan, 1993). 
In many situations the computational time required by a recursive partitioning algorithm is 
an important issue that can not be neglected. In this respect, a fast algorithm is required to 
speed up the procedure. In view of that, it is worth considering a two-stage splitting 
criterion which takes into account of  the global role played by a splitting predictor in the 
partitioning step. A global impurity reduction factor of any predictor xi is defined as: 

 ( ) ( ) ( )| | |
s

s

y x y g

g G

t t p g tε
∈

Ε = ∑  (7) 

where εy|g(t) is the impurity of the conditional distribution of y given the s-th attribute of xs 

and G is the number of attributes of xs (g ε G). The two-stage criterion finds the best splitting 
predictor(s) as the one (or those) minimizing (7) and, consequently, the best split point 
among the candidate splits induced by the best predictor(s) minimizing the (6) by taking 
account only the partitions or splits generated by the best predictor. This criterion can be 
applied either sic et simpliciter or by considering alternative modelling strategies in the 
predictor selection (an overview of the two-stage methodology can be found in Siciliano & 
Mola, 2000). 
The FAST splitting algorithm (Mola & Siciliano, 1997) can be applied when the following 
property holds for the impurity measure:  

 ( ) ( )| |            ;  
s

y x y ht t h g h GΕ ≤ Ε ∀ ≠ ∈  (8) 

and it consists of two basic rules: 

• iterate the two-stage partitioning criterion by using (7) and (6): select one splitting 
predictor at a time and consider, at each time, the previously unselected splitting 
predictors; 
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• stop the iterations when the current best predictor in the order x(k) at iteration k does 

not satisfy the condition ( )
( )
( )*

1
| |

k k
y x y ht t

−
Ε ≤ Ε , where s*(k−1) is the best partition at the 

iteration (k − 1). 
The algorithm finds the optimal split with substantial time savings in terms of the reduced 
number of partitions or splits to be tried out at each node of the tree. Simulation studies 
show that the relative reduction in the average number of splits analyzed by the FAST 
algorithm with respect to the standard approaches in binary trees increases as a function of 
both the number of attributes of the splitting predictor and of the number of observations at 
a given node. Further theoretical results about the computational efficiency of FAST-like 
algorithms can be found in Klaschka et al. (1998). 

2.3 Tree pruning 

As for the pruning step, it is usually required in DTI in order to control for the size of the 
induced model and to avoid in this way data overfitting. Typically, data is partitioned into a 
training set (containing two-third of the data) and a test set (with the remaining one-third). 
Training set contains labelled observations and it is used for the tree growing. It is assumed 
that the test set contains unlabelled observations and it is used for selecting the final 
decision tree: to check whether a decision tree, say T, is generalizable, it is necessary to 
evaluate its performance on the test set in terms of misclassification error by comparing the 
true class labels of the test data against those predicted by T. Reduced-size trees perform 
poorly on both training and test sets causing underfitting. Instead, increasing the size of T 
improves both the training and test errors up to a “critical size” from which the test errors 
increase even though the corresponding training errors decrease. This means that T overfits 
the data and cannot be generalized to class prediction of unseen observations. In the 
machine learning framework, the training error is named resubstitution error and the test 
error is known as the generalization error. 
It is possible to prevent overfitting by haltering the tree growing before it becomes too 
complex (pre-pruning). In this framework, one can assume the training data is a good 
representation of the overall data and use the resubstitution error as an optimistic estimate 
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987) 
proposed a pessimistic approach that penalizes complicated models by assigning a cost 
penalty to each terminal node of the decision tree: for C4.5, the generalization error is 

R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the 

misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is 
the upper bound for R(t)  computed from such a distribution (Quinlan, 1993).  
An alternative pruning strategy is based on the growing of the entire tree and the 
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree 
departing from each internal node is replaced with a new terminal node whose class label 
derives from the majority class of observations belonging to that subtree. The latter is 
definitively replaced by the terminal node if such a replacement induces an improvement of 
the generalization error. Pruning stops when no further improvements can be achieved. The 
generalization error can be estimated through either the optimistic or pessimistic 
approaches.  
Other post-pruning algorithms, such as CART, use a complexity measure that accounts for 
both the tree size and the generalization error. Once the entire tree is grown using training 
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observations, a penalty parameter expressing the gain/cost trade off for trimming each 
subtree is used to generate a sequence of pruned trees, and the tree in the sequence 
presenting the lowest generalization error (0-SE rule) or the one with a generalization error 

within one standard error of its minimum (1-SE rule) is selected. Let α be a number in 

[0,+∞], called complexity parameter, measuring the “cost” of adding another variable to the 
model. Let R(T0) be the risk for the zero split tree. Define: 

 ( ) ( )R T R T Tα α= +  (9) 

to be the cost for the tree, and define Tα to be that subtree of the entire tree having the 

minimal cost. Obviously, T0 is the entire tree and T∞ is the zero splits model. The idea is to 

find, for each α, the subtree Tα ⊆ T0 minimizing Rα(T). The tuning parameter α ≥ 0 governs 

the trade off between the tree size and its goodness of fit to the data. Large values of α result 

in small trees, and conversely for smaller values of α. Of course, with α=0 the solution is the 

full tree T0. It is worth noticing that, by adaptively choosing αI, it exists a unique smallest 

subtree Tα minimizing Rα(T). A weakest link pruning approach is used to find Tα: it consists 
in successively collapsing the internal node producing the smallest per-node increase in 
R(T), continuing this way until the single-node (root) tree is produced. This gives a (finite) 

sequence of subtrees, and it is easy to show that this sequence must contains Tα (see Breiman 
et al (1984) for details). 
Usually, pruning algorithms can be combined with V-fold cross-validation when few 
observations are available. Training data is divided into V disjoint blocks and a tree is 
grown V times on V-1 blocks estimating the error by testing the model on the remaining 
block. In this case, the generalization error is the average error made for the V runs. The 

estimation of αI is achieved by V-fold cross-validation: the final choice is the α̂  minimizing 

the cross-validated R(T) and the final tree is ˆTα . 

Cappelli et al. (2002) improved this approach introducing a statistical testing pruning to 
achieve the most reliable decision rule from a sequence of pruned trees. 

2.4 Regression tree 

In the case the response variable is numeric, the outcome of a recursive partitioning 
algorithm is regression tree. Here, the splitting criterion is SSt- (SSl - SSr), where SSt is the 
residual sum of squares for the parent node, and SSl and SSr are the residual sum of squares 
for the left and right son, respectively. This is equivalent to choosing the splits maximizing 
the between-groups sum-of-squares in a simple analysis of variance. In each terminal node, 

the mean value of the response variable μy of cases belonging to that node is considered as 
the fitted value whereas the variance is considered as an indicator of the error of a node. For 

a new observation ynew the prediction error is (ynew - μy). In the regression tree case, cost-
complexity pruning is applied with the sum of squares replacing the misclassification error. 

2.5 DTI enhancements  

A consolidated literature about the incorporation of parametric and nonparametric models 
into trees appeared in recent years. Several algorithms have been introduced as hybrid or 
functional trees (Gama, 2004), among the machine learning community. As an example, DTI 
is used for regression smoothing purposes in Conversano (2002): a novel class of 
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semiparametric models named Generalized Additive Multi-Mixture Models (GAM-MM). 
Other hybrid approaches are presented in Chan and Loh (2004), Su et al. (2004), Choi et al. 
(2005) and Hothorn et al. (2006). Nevertheless, relatively simple procedures  combining DTI 
models in different ways have been proposed in the last decade in the statistics and machine 
learning literature and their effectiveness in improving the predictive ability of the 
traditional DTI method has been proven in different fields of application. 
The first, rather intuitive, approach is Tree Averaging. It is based on the generation of a set 
of candidate trees and on their subsequent aggregation in order to improve their 
generalization ability. It requires the definition of a suitable set of trees and their associated 
weights and classifies a new observation by averaging over the set of weighted trees (Oliver 
and Hand, 1995). Either a compromise rule or a consensus rule can be used for averaging. 
An alternative method consists in summarizing the information of each tree in a table cross-
classifying terminal nodes outcomes with the response classes in order to assess the 
generalization ability through a statistical index and select the tree providing the maximum 
value of such index (Siciliano, 1998). 
Tree Averaging is very similar to Ensemble methods. These are based on a weighted or non 
weighted aggregation of single trees (the so called weak learners) in order to improve the 
overall generalization error induced by each single tree. They are more accurate than a 
single tree if they have a generalization error that is lower than random guessing and if the 
generalization errors of the different trees are uncorrelated (Dietterich, 2000). 
A first example of Ensemble method is Bootstrap Aggregating, which is also called Bagging 
(Breiman, 1996). It works by randomly replicating the training observations in order to 
induce single trees whose aggregation by majority voting provides the final classification. 
Bagging is able to improve the performance of unstable classifiers (i.e. trees with high 
variance). Thus, bagging is said to be a reduction variance method. 
Adaptive Boosting, also called AdaBoost (Freud & Schapire, 1996) is an Ensemble method 
that uses iteratively bootstrap replication of the training instances. At each iteration, 
previously-misclassified observations receive higher probability of being sampled. The final 
classification is obtained by majority voting. Boosting forces the decision tree to learn by its 
error, and is able to improve the performance of trees with both high bias (such as single-
split trees) and variance. 
Finally, Random Forest (Breiman, 2001) is an ensemble of unpruned trees obtained by 
randomly resampling training observations and variables. The overall performance of the 
method derives from averaging the generalization errors obtained in each run. 
Simultaneously, suitable measures of variables importance are obtained to enrich the 
interpretation of the model.  

3. Combinatorial optimization  

Combinatorial Optimization can be defined as the analysis and solution of problems that 
can be mathematically modelled as the minimization (or maximization) of an objective 
function over a feasible space involving mutually exclusive, logical constraints. Such logical 
constraints can be seen as the arrangement of a bunch of given elements into sets. In a 
mathematical form: 

 ( ){ }min
T F

Tα
∈

   or   ( ){ }max
T F

Tα
∈

 (10) 
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where T can be seen as an arrangement, F is the collection of feasible arrangements and α(T) 
measures the value of the members of F.  
Combinatorial Optimization problems are of great interest because many real life decision-
making situations force people to choose over a set of possible alternatives with the aim of 
maximizing some utility function. On the one hand, the discreteness of the solutions space 
offers the great advantage of concreteness and, indeed, elementary graphs or similar 
illustrations can often naturally be used to represent the meaning of a particular solution to 
a problem. On the other end, those problems carry a heavy burden in terms of 
dimensionality. If more than few choices are to be made, the decision-making process has to 
face with the evaluation of a terribly big expanse of cases. This dualism (intuitive simplicity 
of presentation of a solution versus complexity of solutions search) has made this area of 
combinatorics attractive for researchers from many fields, ranging from engineering to 
management sciences.  
Elegant procedures to find optimal solutions have been found for some problems, but for 
most of them only a bunch of properties and algorithms have been developed that still do 
not allow to reach a complete resolution. This is the case of Computational Statistics, in 
which computationally-intensive methods are used to “mine“ large, heterogeneous, multi-
dimensional datasets in order to discover knowledge in the data. 
To give an example, the objective of Cluster Analysis is to find the “best” partition of the 
dataset according to some criterion, which is always expressed as an objective function. This 
means that all possible and coherent partitions of the dataset should be generated and the 
objective function has to be calculated for each of them. In many cases, the number of 
possible partitions grows too rapidly with respect to the number of units, making such 
strategy practically unfeasible. Another example is the apparently simple problem of 
calculating the variance for interval data, for which the maximum and the minimum of the 
variance function have to be searched over the multidimensional cube defined by all the 
intervals in which the statistical units are defined. 
These are examples of statistical problems that cannot be faced with the total enumeration 

and evaluation of the solutions. In order to try to tackle with this kind of problems, a lot of 

theory has been developed. One case is when some properties about the objective function 

are available. These allow to calculate some kind of upper (or lower) bound that a set of 

possible solutions could admit. In this case, the search could be performed just on the set of 

possible solutions whose upper bound is higher. If one solution whose effective value is 

higher than the bounds of all the other sets is found, it would not be necessary to continue 

the search, being all the other subsets not able to provide better solutions. This is the case of 

the aforementioned problem of finding the upper bound of variance for interval data, 

because it can be verified that the maximum is necessarily reached in one of the vertices of 

the multidimensional cube, so that exploring the whole cube is not necessary. Such a 

situation allows to restrict the solutions  space to a set of 2n possible solutions, where n is the 

number of statistical units. Unfortunately, this does not solve the problem because the 

solutions space becomes enormous even in presence of small datasets (with just 30 units the 

number of solutions to evaluate is greater than one thousand millions).  

The FAST algorithm is another example of a partial enumeration approach, in which a 
measure of the upper bound of the predictive power of a solutions set is defined and 
exploited in order to get the same results of the CART greedy approach by using a reduced 
amount of computations. 
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Another way to proceed is to make use of non exact procedures, often called heuristics. 
Those algorithms do not claim to find the global optimum, but are able to converge rapidly 
towards a local one. Non exact algorithms (that will be called heuristics in the rest of this 
chapter) are certainly not recent. What has changed, in time, is the respectability associated 
to them, due to the fact that many heuristics have been proved to rival their counterparts in 
elegance, sophistication and, particularly, usefulness. Many heuristics have been proposed 
in the literature, but only two kinds of them will be briefly described in this context due to 
their role in the problems that will be faced in the next sections. These are: Greedy 
procedures and Nature Inspired optimization algorithms. In Greedy procedures the 
optimization process selects, at each stage, an alternative that is the best among all the 
feasible alternatives without taking into account the impact that such choice will have on the 
subsequent decisions. The CART algorithm makes use of a greedy procedure to grow a tree 
in which the optimality criterion is maximised just locally, that is, for each node of the tree 
but not considering the tree as a whole. This approach clearly results in a suboptimal tree 
but allows, at least, to obtain a tree in a reasonable amount of time. Whereas, the so-called 
Nature Inspired heuristics, which are also called “Heuristics from Nature” (Colorni et al., 
1993), are Inspired by natural phenomena or behaviour such as Evolution, Ants, Honey-
Bees, Immune systems, Forests, etc. Some important Nature Inspired heuristics are: 
Simulated Annealing (SA),  TABU Search (TS) algorithms, Ant Colony Optimization (ACO) 
and Evolutionary Computation (EC). ACO and EC are described in the following since they 
are used throughout the chapter.  
Ant Colony Optimization represents a class of algorithms that were inspired by the 
observation of real ant colonies. Observation shows that a single ant only applies simple 
rules, has no knowledge and it is unable to succeed in anything when it is alone. However, 
an ant colony benefits from the coordinated interaction of each ant. Its structured behaviour, 
described as a “social life”, leads to a cooperation of independent searches with high 
probability of success. ACO were initially proposed by Dorigo (1992) to attack the Traveling 
Salesman Problem. A real ant colony is capable of finding the shortest path from a food 
source to its nest by using pheromone information: when walking, each ant deposits a 
chemical substance called pheromone and follows, in probability, a pheromone trail already 
deposited by previous ants. Assuming that each ant has the same speed, the path which 
ends up with the maximum quantity of pheromone is the shortest one. 
Evolutionary computation (Fogel and Fogel, 1993) incorporates algorithms that are inspired 
from evolution principles in nature. The methods of evolutionary computation algorithms 
are stochastic and their search methods imitate and model some natural phenomena, 
namely: 
1. the survival of the fittest 
2. genetic inheritance 
Evolutionary computing can be applied to problems when it is difficult to apply traditional 
methods (e.g., when gradients are not available) or when traditional methods lead to 
unsatisfactory solutions like local optima (Fogel, 1997). Evolutionary algorithms work with a 
population of potential solutions (i.e. individuals). Each individual is a potential solution to 
the problem under consideration and it is encoded into a data structure suitable to the 
problem. Each encoded solution is evaluated by an objective function (environment) in 
order to measure its fitness. The bias on selecting high-fitness individuals exploits the 
acquired fitness information. The individuals will change and evolve to form a new 
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population by applying genetic operators. Genetic operators perturb those individuals in 
order to explore the search space. There are two main types of genetic operators: Mutation 
and Crossover. Mutation type operators are asexual (unary) operators, which create new 
individuals by a small change in a single individual. On the other hand, Crossover type 
operators are multi-sexual (multary) operators, which create new individuals by combining 
parts from two or more individuals. As soon as a number of generations have evolved, the 
process is terminated according to a termination criterion. The best individual in the final 
step of the process is then proposed as a (hopefully suboptimal or optimal) solution for the 
problem. 
Evolutionary computing are further classified into four groups: Genetic Algorithms (GA), 
Evolutionary Programming, Evolution Strategies and Genetic Programming. Although there 
are many relevant similarities between these evolutionary computing paradigms, profound 
differences among them also emerge (Michalewicz, 1996). These differences generally 
involve the level in the hierarchy of the evolution being modelled, that is: the chromosome, 
the individual or the species. There are also many hybrid methods that combine various 
features from two or more of the methods described in this section. 
Genetic Algorithms (GAs), that will be used in the follwing, are part of a collection of 
stochastic optimization algorithms inspired by the natural genetics and the theory of the 
biological evolution. The idea behind genetic algorithms is to simulate the natural evolution 
when optimizing a particular objective function. GAs have emerged as practical, robust 
optimization and search methods in the last three decades. In the literature, Hollands’ 
genetic algorithm is called Simple Genetic Algorithm (Vose, 1999). It works with a 
population of individuals (chromosomes), which are encoded as binary strings (genes). 

4. Genetic algorithms and heuristics in DTI 

4.1 Genetic algorithm for complex predictors 

The CART methodology looks for the best split by making use of a brute-force 
(enumerative) procedure. All the possible splits from all the possible variables are generated 
and evaluated. Such a procedure must be performed anytime a node has to be split and can 
lead to computational problems when the number of modalities grows.  
Let us first consider how a segmentation procedure generates and evaluates all possible 
splits. Nominal unordered predictors (Nup) are more complicated to handle than ordered 
ones because the number of possible splits that can be generated grows exponentially with 
the number of attributes m. The number of possible splits is (2m-1-1). The computational 
complexity of a procedure that generates and evaluates all the splits from a nominal 
unordered predictor is O(2n). In this respect, it is evident that such enumerative algorithm 
becomes prohibitive when the number of attributes is high. This is one of the reasons why 
some software do not accept Nups with a number of attributes higher than a certain 
threshold (usually between 12 and 15).  
One of the possible way to proceed is to make use of a heuristic procedure, like the one 
proposed in this section. In order to design a Genetic Algorithm to solve such a 
combinatorial problem, it is necessary to identify: 

• a meaningful representation (coding) for the candidate solutions (the possible splits) 

• a way to generate the initial population 

• a fitness function to evaluate any candidate solution 

www.intechopen.com



Evolutionary Algorithms in Decision Tree Induction 

 

453 

• a set of useful genetic operators that can efficiently recombine and mutate the candidate 
solutions 

• the values of the parameters used by the GA (population size, genetic operators 
parameters values, selective pressure, etc.); 

• a stopping rule for the algorithm. 
The aforementioned points have been tackled as follows. As for the coding, it has been 
chosen the following representation: a solution is coded in a string of bits (chromosomes) 
called x, where each bit (gene) is associated to an attribute of the predictor according to the 
following rule: 

 
0

1
i

if i goes to left
x

if i goes to right

⎧
= ⎨
⎩

  (11) 

The choice of the fitness function is straightforward: the split evaluation function of the 
standard recursive partitioning algorithm is used (i.e. the maximum decrease in node 
impurity). Since the canonical (binary) coding is chosen, the corresponding two parents 
single-point crossover and mutation operators and, as a stopping rule can be used. In 
addition, a maximum number of iterations is chosen on the basis of empirical investigations. 
The rest of the GA features are similar to the classic ones: elitism is used (at each iteration 
the best solution is kept in memory) and the initial population is chosen randomly. 

4.2 An ACO algorithm for exploratory DTI 

When growing a Classification or a Regression Tree, CART first grows the so-called 
exploratory tree. Such tree is grown using data of the training set. Then, it is validated by 
using the test set or by cross-validation.  
In this section, the attention is focused on the exploratory tree-growing procedure. In this 
phase, in theory, the best possible tree should be built, which is the tree having the lowest 
global impurity measure among all the generable trees. It has been shown (Hyafil and 
Rivest, 1976) that  constructing the optimal tree is a NP-Complete problem. In other words, 
in order to use a polynomial algorithm, it is only possible to get suboptimal trees. For such a 
reason, the recursive partitioning algorithms make use of greedy heuristics to reach a 
compromise between the tree quality and the computational effort. In particular, most of the 
existing methods for DTI use a greedy heuristic, which is based on a top-down recursive 
partitioning approach in which, any time, the split that maximizes the one step impurity 
decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given 
node) and only once for each node, allows to grow a tree in a reasonable amount of time. On 
the other hand, this rule is able to generate only a suboptimal tree because anytime a split is 
chosen a certain subspace of possible trees is not investigated anymore by the algorithm. If 
the optimal tree is included in one of those subspaces there is no chance for the algorithm of 
finding it.  
Taking these considerations into account, we propose an Ant Colony Optimization 
algorithm to try to find best exploratory tree. In order to attack a problem with ACO the 
following design task must be performed: 
1. Represent the problem in the form of sets of components and transitions or by means of 

a weighted graph, on which ants build solutions 
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2. Appropriately define the meaning of the pheromone trails: that is, the type of decision 
they bias. 

3. Appropriately define the heuristic reference for each decision an ant has to take while 
constructing a solution. 

4.  If possible, implement an efficient local search algorithm for the problem to be solved. 
The best results from the application of the ACO algorithms to NP-hard combinatorial 
optimization problems are achieved by coupling ACO with local optimizers (Dorigo 
and Stutzle, 2004) 

5. Choose a specific ACO algorithm and apply it to the problem to be solved, taking the 
previous issues into account 

6. Tune the parameters of the ACO algorithm. A good starting point is to use parameter 
settings that were found to be good when applying the same ACO algorithm to similar 
problems or to a variety of other problems 

The most complex task is probably the first one, in which a way to represent the problem in 
the form of a weighted graph must be found. We use a representation based on the 
following idea: let us imagine having two nominal predictors P1 = {a1, b1, c1} and P2 = {a2, b2} 
with, respectively, two and three attributes. Such simple predictors are considered only to 
explain the idea, because of the combinatorial explosion of the phenomenon. In this case, the 
set of all possible splits, at a root node, is the following: 

• S1 = [a1] − [b1, c1] 

• S2 = [a1, b1] − [c1] 

• S3 = [a1, c1] − [b1] 

• S4 = [a2] − [b2] 
Any time a split is chosen, it generates two child nodes. For such nodes, the set of possible 
splits is, in the worst case, equal to 3 (the same as the parent node except the one that was 
chosen for splitting). This consideration leads to the representation shown in Figure 1 in 
which, for simplicity, only the first two levels of the possible trees are considered. 
It is easy to imagine how the complexity grows when we deal with predictors that generate 
hundreds or even thousands of splits (which is a common case).  
In Figure 1, the space of all possible trees is represented by a connected graph. Moving from 
a level to another one corresponds to split a variable. The arcs of such a graph have the same 
meaning of the arcs of the TSP graph (transition from a state to another one or, even better, 
addition of a component to a partial solution). In this view, it would be correct to deposit 
pheromone on them. The pheromone trails meaning, in this case, corresponds to the 
desirability to choose the corresponding split from a certain node. 
As for the heuristic information, it is possible to refer to the decrease in impurity deriving 
from adding the corresponding node to the tree. Such a measure has a meaning which is 
similar, in some way, to the one that visibility has in the TSP . An arc is much more desirable 
as higher the impurity decrease is. As a result, to make analogies with the TSP, such 
impurity decrease can be seen as an inverse measure of the distance between two nodes. 
Once the construction graph has been built, and pheromone trails meaning and heuristic 
function have been defined, it is possible to attack that problem using an ACO algorithm. It 
is important to note that, because of the specificity of the problem to be modelled (ants can 
move into a connected graph and there is a measure of “visibility”), the search of the best 
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass 
only one time for each city while, in our case, ants are forced to choose paths that 

www.intechopen.com



Evolutionary Algorithms in Decision Tree Induction 

 

455 

correspond to binary trees, since the solutions to build must be in the form of tree structures. 
All the ants will start from the root node and will be forced to move from one node to 
another in order to build a tour that corresponds to a tree.  

 

Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree. 

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each 
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail 
of any possible direction and decides for the one to choose (and, therefore, the associated 
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it 
recursively starts to move back to the other unexplored nodes.  
In different ACO algorithms, pheromone trails are initialized to a value obtained by 
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained 
with another heuristic (Dorigo suggests the nearest-neighbour heuristic). In our case, the 
greedy tree induction rule solution quality is used. Elitism will also be implemented and the 
chosen parameters (due to the strong similarity with TSP) are the same that have been used 
successfully for the TSP problem. 

4.3 Identification of a parsimonious set of decision trees in multi-class classification 

In many situations, the response variable used in classification tree modelling rarely 
presents a number of attributes that allow to apply the recursive partitioning algorithm in 
the most accurate manner. 
It is well known that: 
a) a multi-class response, namely a nominal variables with several classes, usually causes 

prediction inaccuracy;  
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b) multi-class and numeric predictors play often the role of splitting variables in the tree 
growing process in disadvantage of two-classes ones, causing selection bias. 

To account for the problems deriving from the prediction inaccuracy of tree-based classifiers 
grown for multi-class response, as well as to reduce the drawback of the loss of 
interpretability induced by ensemble methods in these situations, Mola and Conversano 
(2008) introduced an algorithm based on a Sequential Automatic Search of a Subset of Classifiers 
(SASSC). It produces a partition of the set of the response classes into a reduced number of 
disjoint subgroups and introduces a parameter in the final classification model that 
improves its prediction accuracy, since it allows to assign each new observation to the most 
appropriate classifier in a previously-identified reduced set of classifiers. It uses a data-
driven heuristic based on cross-validated classification trees as a tool to induce the set of 
classifiers in the final classification model. 
SASSC produces a partition of the set of the response classes into a reduced number of 
super-classes. It is applicable to a dataset X composed of N observations characterized by a 
set of J (numeric or nominal) splitting variables xj  (j=1,…..,J) and a response variable y 
presenting K classes. Such response classes identify the initial set of classes C(0) =(c1,c2,….,cK). 
Partitioning X with respect to C(0) allows to identify K disjoint subsets X(0)k, such that: X(0)k = 

{xs : ys ∈ ck}, with s=1,…..,N. In practice, X(0)k is the set of observations presenting the k-th 
class of y. The algorithms works by aggregating the K classes in pairs and learns a classifier 
to each subset of corresponding observations. The “best” aggregation (super-class) is chosen 
as the one minimizing the generalization error estimated using V-fold cross-validation. 

Suppose that, in the A-th iteration of the algorithm such a best aggregation is found for the 

pair of classes ci* and cj* (with i*≠ j and i*, j* ∈ (1,….,K)) that allows to aggregate the subsets 
Xi* and Xj*. Denoting with T(i*,j*) the decision tree minimizing the cross-validated 

generalization error δ(A)cv, the heuristic for selecting the “best” decision tree can be formalized 

as follows: 

   ( ) ( )
( )( ){ },

( , )

*, * arg min |cv i ji j
i j

i j Tδ= ∩X X
A

 (12) 

The SACCS algorithm is analytically described in Table 1. It proceeds by learning all the 
possible decision trees obtainable by joining in pairs the K subgroups, and by retaining the 

one satisfying the selection criteria introduced in (12). After the A-th aggregation, the 

number of subgroups is reduced to K(A-1) - 1, since the subgroups of observations presenting 

the response classes ci* and cj*  are discarded from the original partition and replaced by the 

subset X(A)(i*,j*) = X(i*) ∩ X(j*) identified by the super-class c(A) = (c(i*) ∩ c(j*)). The initial set of 

classes C is replaced by C(A), the latter being composed of a reduced number of classes since 

some of the original classes form the superclasses coming out from the A aggregations. 

Likewise, also X(A)k is formed by a lower number of subsets as a consequence of the A 
aggregations. 

The algorithm proceeds sequentially in the iteration A+1 by searching for the most accurate 

decision tree over all the possible ones obtainable by joining in pairs the K(A) subgroups. The 

sequential search is repeated until the number of subgroups reduces to one in the K-th 
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iteration. The decision tree learned on the last subgroup corresponds to the one obtainable 
applying the recursive partitioning algorithm on the original dataset.  
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the 
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees 
(k = 1, ….., K − 1) on disjoint subgroups of observations whose response classes complete the 
initial set of classes C(0): these response classes identify the super-classes relating to the sets 
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is 
also based on V-fold cross-validation and it is computed as a weighted average of the 
generalization errors obtained from each of the K − k decision trees composing the set. In 
accordance to the previously introduced notation, the overall generalization errors can be 

denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees 

composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv 
increases since the number of super-classes associated to T(k) is also decreasing. This means 
that a lower number of trees are learned on more heterogeneous subsets of observations, 
since each of those subsets pertain to a relatively large number of response classes. 
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Table 1. The SASSC algorithm 

Taking this inverse relationship into account, the analyst can be aware of the overall 

prediction accuracy of the final model on the basis of the relative increase in Θ(k)cv  when 
moving from 1 to K−1. In this respect, he can select the suitable number of decision trees to 
be included in the final classification model accordingly. Supposing that a final subset of g 
decision trees has been selected (g<<K−1), the estimated classification model can be 
represented as: 

 ( ) ( )( )
1

, 1

1 1

ˆ ˆ ˆ , ,
i

i

i

Mg

i k i p m

i m

f c I x x Rψ
−
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The parameter ψ is called “vehicle parameter”. It allows to assign a new observation to the 
most suitable decision tree in the subset g. It is defined by a set of g−1 dummy variables. 
Each of them equals 1 if the object belongs to the i-th decision tree (i = 1,…, g−1) and zero 
otherwise. The Mi regions, corresponding to the number of terminal nodes of the decision 
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tree i, are created by splits on predictors (x1,….,xp). The classification tree i assigns a new 

observation to the class ,ˆk ic  of y according to the region 
i
mR . I is an indicator function with 

value 1 if an observation belongs to 
i
mR  and value 0 if not. 

i
mR  is defined by the inputs 

used in the splits leading to that terminal node. The modal class of the observations in a 

region 
i
mR  (also called the m-th terminal node of the i-th decision tree) is usually taken as an 

estimate for ,ˆk ic . This notation is consistent with that used in Hastie et al. (2001). 

The estimation of τi is based on the prediction accuracy of each decision tree in the final 

subset g. A new observation is slipped into each of the g trees. The assigned class ,ˆk ic  is 

found with respect to the tree whose terminal node better classifies the new observation. In 
other words, a new observation is assigned to the purest terminal node among all the g 
decision trees. 
Another option of the algorithm is the possibility to learn decision trees to select the suitable 
pair of response classes satisfying (12) using alternative splitting criteria. As for CART, it is 
possible to refer to both the Gini index and Twoing as alternative splitting rules. It is known 
that, unlike Gini rule, Twoing searches for the two classes that make up together more than 
50% of the data and allows us to build more balanced trees even if the resulting recursive 
partitioning algorithm works slower. As an example, if the total number of classes is equal 
to K, Twoing uses 2K−1 possible splits. Since it has been proved (Breiman et al., 1984, pag.95) 
that the decision tree is insensitive to the choice of the splitting rule, it can be interesting to 
see how it works in a framework characterized by the search of the most accurate decision 
treers like the one introduced in SASSC. 

5. Application on real and simulated datasets  

Genetic Algorithm. The proposed GA has been applied on two datasets for which the 
optimal best split could be calculated and for a more complex one, for which it is not 
possible to proceed with such a brute force strategy. 
The first test has been done on the “Mushroom” dataset, available from the UCI Machine 
Learning Repository (source http://archive.ics.uci.edu/ml/). This dataset has a two-class 
response variable (“is the mushroom poisonous?”) and set of categorical and numerical 
predictors. One of them (gill colour) has 12 categories (attributes), which can be evaluated 
exhaustively. The GA algorithm could find the global best solution (which was extracted by 
using the Rpart package of the R software) in less than 10 iterations. The algorithm has then 
been tested on a simulated dataset which was obtained by uniformly generating a response 
variable with 26 modalities and a nominal unordered predictor with 16 modalities for 20,000 
observations. By letting be 16 the number of modalities of the splitting predictor it was 
possible, also in this case, to find the (global) best split by making use of the exhaustive 
enumeration. Such experimental studies showed that the most efficient configuration of the 
GA was the following: 

• By randomly selecting the initial population (no other solutions have been tried, in fact). 

• By setting the number of solutions building the population to be equal to the number of 
necessary genes (the number of categories of the predictor). 

• By setting a crossover proportion of 0.80. 

• By setting a mutation probability equal to 0.10. 

• By selecting the rank for choosing the solutions to be recombined. 
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For this kind of problem (20,000 units, 16 categories for the response variable and 26 
categories for the splitting predictor) the global optimum was reached in less than 30 
iterations.  
When the complexity of the problem grows many iterations seems to be required, though 
such number never appeared to grow exponentially. 
The GA has been tested also on the “Adult” dataset available from the UCI Machine 
Learning website. This dataset has been extracted from the US Census Bureau Database 
(source: http://www.census.gov/) with the aim of predicting whether a person earns more 
than 50,000 dollars per year. Such dataset has 325,614 observations and some categorical 
unordered splitting predictors with many attributes. In particular, the native-country 
predictor has 42 attributes.  
 

State Goes to State Goes to 

United-States Left Cuba Left 

Jamaica Right India Left 

Unknown Country Left Mexico Right 

South Left Puerto-Rico Right 

Honduras Right England Left 

Canada Left Germany Left 

Iran Left Philippines Left 

Italy Left Poland Left 

Columbia Right Cambodia Left 

Thailand Left Ecuador Right 

Laos Right Taiwan Left 

Haiti Right Portugal Right 

Dominican-Republic Right El-Salvador Right 

France Left Guatemala Right 

China Left Japan Left 

Yugoslavia Left Peru Right 

Outlying-US Right Scotland Left 

Trinadad-Tobago Right Greece Left 

Nicaragua Right Vietnam Right 

Hong Left Ireland Left 

Hungary Left Holland-Netherlands Right 

Table 2. The split provided by the GA for the native-country in the Adult dataset 

The GA has been run with the aim of trying to find a good split by making use of the native-
country splitting predictor that both R and SPSS, for instance, refused to process. As 
previously  mentioned, 30 iterations seemed to be not enough because, in many runs of the 
algorithm, the “probably best” solution appeared after iteration 80. The  solution provided 
by the algorithm is shown in Table 2. It gives an idea of the complexity of the problem.  
The corresponding decrease in the node impurity is 0.3628465. The algorithm has been 
tested over many simulated dataset and the number of required iterations for the algorithm 
to reach convergence has been shown to linearly grow as a function of the number of 
attributes of the splitting predictor (the number of observations in the dataset appeared to 
be uninfluential).  
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Ant System. The strong complexity of the decision tree growing procedure (Hyafil & Rivest, 
1976) does not allow to exhaustively enumerate and evaluate all the possible generable 
trees, even from very small datasets. In this respect, it is not possible to check whether the 
chosen heuristic is able to find the global optimum (in the same manner as it has been 
previously done for the genetic algorithm).  
In the first experiment the algorithm has been tested on a simulated dataset of 500 
observations with 11 nominal unordered predictors (with a number of attributes that ranges 
between 2 and 9) and 2 numeric (continuous) predictors. It could be seen that, when the 
required tree depth increases, the differences between the global impurity of the tree 
obtained by the CART greedy heuristic and the one obtained by the Ant System tend to 
increase. Table 3 reports such results.  
 

Tree Depth CART Ant System 

4 0.158119 0.153846 

5 0.147435 0.121794 

6 0.100427 0.085477 

7 0.079059 0.059829 

8 0.044871 0.029911 

Table 3.Global impurity of the decision trees extracted by the proposed algorithm on a 
simulated dataset 

Figure 2 shows the result obtained on the “Credit” dataset that can be found in the SPAD 
software (source: www.spadsoft.com). This dataset has 468 observations on which 11 
nominal variables have been observed together with a two-class response variable. The aim 
would be to predict such response variable (“is a customer good or bad?).  
The first decision tree is the one found by the CART heuristic and the second one has been 
extracted after 200 iterations of the Ant System algorithm. 
Table 4  shows the global impurity of the trees extracted by the CART and Ant heuristics. 
 

  

Fig. 2. Decision Trees for the Credit dataset obtained using the CART heuristic (left panel) 
and after 200 iterations of the Ant System algorithm (right panel). 

The algorithms presented here are in an early stage of development. In these examples, an 
Ant System has been proposed to attack the problem of finding the best exploratory 
decision tree and it came out that the Ant System-based decision trees performed better than 
the ones found by the CART greedy heuristic. Even if the improvements weren’t too large 
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(from 2% to 5% in all of the simulation studies) such algorithm could be still useful for the 
situations in which high accuracy is required from the decision tree would. Ant System, on 
the other hand, is the simplest (yet less efficient) ACO technique, so that the use of more 
powerful ACO algorithms (which is currently under development) would reasonably bring 
better results. It is well known that ACO algorithms reach their maximum efficiency when 
coupled with local search techniques or can improve their efficiency by making use of 
candidate lists.  
 

Tree Depth CART Ant System 

2 0.2948 0.2734 

3 0.2435 0.2301 

4 0.2029 0.1816 

5 0.1773 0.1517 

6 0.1645 0.1539 

Table 4. Global impurity of the decision trees extracted by the proposed algorithm on the 
Credit dataset 

SASSC algorithm. In the following, the SASSC algorithm is applied on the “Letter 
Recognition” dataset from the UCI Machine Learning Repository (source 
http://archive.ics.uci.edu/ml/). This dataset is originally analyzed in Frey & Slate (1991), 
who did not achieve a good performance since the correct classified observations did never 
exceed 85%. Later on, the same dataset is analyzed in Fogarty(1992) using nearest 
neighbours classification. Obtained results give over 95.4% accuracy compared to the best 
result of 82.7% reached in Frey & Slate(1991). Nevertheless, no information about the 
interpretability of the nearest neighbour classification model is provided and the 
computational inefficiency of such a procedure is deliberately admitted by the authors. 
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-white rectangular 
pixel displays into one of the 26 letters in the English alphabet. The character images are 
based on 20 different fonts and each letter within these 20 fonts was randomly distorted to 
produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical 
attributes that have to be submitted to a decision tree. Dealing with K = 26 response classes, 
SASSC provides 25 sequential aggregations. Classification trees aggregated at each single 
step were chosen according to 10-fold cross validation. A tree was aggregated to the 
sequence if it provided the lowest cross validated generalization error with respect to the 
other trees obtainable from different aggregations of (subgroups of) response classes. 
The results of the SASSC algorithm are summarized in Figure 3. It compares the 
performance of the SASSC model formed by g=2 up to g=6 superclasses with that of CART 
using, in all cases, either Gini or Twoing as splitting rules. Bagging (Brieman, 1996) and 
Random Forest (Breiman, 2001) are used as benchmarking methods as well. Computations 
have been carried out using the R software for statistical computing. 
The SASSC model using 2 superclasses consistently improves the results of CART using the 
Gini (Twoing) splitting rule since the generalization error reduces to 0.49 (0.34) from 0.52 
(0.49). As expected, the choice of the splitting rule (Gini or Twoing) is relevant when the 
number of superclasses g is relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for 

higher values of g (results for g ≥ 5 are almost identical). Focusing on the Gini splitting 
criterion, the SASSC’s generalization error further reduces to 0.11 when the number of 
subsets increases to 6. For comparative purposes, Bagging and Random Forest have been 
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trained using 6 and 10 classifiers respectively and, in these cases, obtained generalization 
errors are worse than those deriving from SASSC with g = 6. As for Bagging and Random 
Forest, increasing the number of trees used to classify each subset of randomly drawn 
objects improves the performance of these two methods in terms of prediction accuracy. The 
reason is that their predictions derive form (“in-sample”) independent bootstrap 
replications. Instead, cross-validation predictions in SASSC derives from aggregations of 
classifications made on “out-of-sample” observations that are excluded from the tree 
growing procedure. Thus, it is natural to expect that cross-validation predictions are more 
inaccurate than bagged ones. Of course, increasing the number of subsets of the response 
classes in SASSC reduces the cross-validated generalization error but, at the same time, 
increases the complexity of the final classification model. In spite of a relatively lower 
accuracy, interpretability of the results in SASSC with g = 6 is strictly preserved. 
 

 

Figure 3. The generalization errors for the Letter Recognition dataset provided by 
alternative approaches: as for SASSC, subscript G(T) indicates the Gini (Twoing) splitting 
rule, whereas apex g indicates the number of superclasses (i.e., decision trees) identified by 
the algorithm. The subscript for Bagging and Random Forest indicates the number of trees 
used to obtain the classification by majority voting. 

6. Discussion and conclusions 

In the last two decades, computational enhancements highly contributed to the increase in 
popularity of DTI algorithms. This cause the successful use of Decision Tree Induction (DTI) 
using recursive partitioning algorithms in many diverse areas such as radar signal 
classification, character recognition, remote sensing, medical diagnosis, expert systems, and 
speech recognition, to name only a few. But recursive partitioning and DTI are two faces of 
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the same medal. While the computational time has been rapidly reducing, the statistician is 
making more use of computationally intensive methods to find out unbiased and accurate 
classification rules for unlabelled objects. Nevertheless, DTI cannot result in finding out 
simply a number (the misclassification error), but also an accurate and interpretable model. 
Software enhancements based on interactive user interface and customized routines should 
empower the effectiveness of trees with respect to interpretability, identification and 
robustness. The latter considerations have been the inspiration for the algorithms presented 
in this chapter aimed at the improvement of DTI effectiveness. They lead to easily 
interpretable solutions for rather complicated data analysis problems and can be fruitfully 
used in different fields of Knowledge Discovery from Databases (KDD) and data mining 
such as, for example, web mining and Customer Relationship Management (CRM). 
A Genetic Algorithm for multi-attribute predictor splitting is proposed in this chapter. It can 

be said that the proposed GA works very well in presence of treatable splitting predictors, 

for which the exhaustive enumeration is affordable. The algorithm always reaches the global 

optimum very quickly. This makes possible to think positively, even if nothing can be said, 

of course, about the case in which the number of attributes gets too large for the exhaustive 

enumeration and evaluation. Obtained results can be considered definitely useful in those 

cases where there are no other ways to attack the problem. Future research directions will 

include exhaustive enumerations on bigger datasets on a grid computing infrastructure.  

In addition an Ant Colony Optimization algorithm is also proposed for exploratory tree 

growing. Such algorithm could be useful for the situations in which high accuracy is 

required from the decision tree would. Ant System, on the other hand, is the simplest (yet 

less efficient) ACO technique, so that the use of more powerful ACO algorithms (which is 

currently under development) would reasonably bring better results. It is well known that 

ACO algorithms reach their maximum efficiency when coupled with local search techniques 

or can improve their efficiency by making use of candidate lists.  

Finally, a sequential search algorithm for modelling multi-attribute response through DTI 

has also been introduced. The motivation underlying the formalization of the SASSC 

algorithm derives from the following intuition: basically, since standard classification trees 

unavoidably lead to prediction inaccuracy in the presence of multi-class response, it would 

be favourable to look for a relatively reduced number of decision trees each one relating to a 

subset of classes of the response variable, the so called super-classes. Reducing the number 

of response classes for each of those trees naturally leads to improve the overall prediction 

accuracy. To further enforce this guess, an appropriate criterion to derive the correct number 

of super-classes and the most parsimonious tree structure for each of them has to be found. 

In this respect, a sequential approach that automatically proceeds through subsequent 

aggregations of the response classes might be a natural starting point. 

The analysis of the Letter Recognition dataset demonstrated that the SASSC algorithm can 

be applied pursuing two complementary goals: 1) a content-related goal, resulting in the 

specification of a classification model that provides a good interpretation of the results 

without disregarding accuracy; 2) a performance-related goal, dealing with the development 

of a model resulting effective in terms of predictive accuracy without neglecting 

interpretability.  Taking these considerations into account, SASSC appears as a valuable 

alternative to evaluate whether a restricted number of independent classifiers improves the 

generalization error of a classification model. 
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Appendix: The J-FAST software 

The algorithms presented in this chapter have been implemented in the Java language. In 
order to make it possible to test them on real datasets a Java segmentation framework, called 
J-FAST, has been developed. The first aim of this software is to take care of all the necessary 
operations to perform before and after running the recursive partitioning algorithm. These 
can be summarized as follows: reading data from text files and spreadsheets; processing 
data before carrying out the tree growing process; specifying the type of recursive 
partitioning algorithm to be applied (i.e., classification or  regression tree) ; interpretation of 
the results.  
The J-FAST program is a Java-based recursive partitioning software, which is particularly 
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform 
application for building classification and regression trees using any kind of heuristic in the 
tree growing process (like the CART greedy algorithm or the FAST branch and bound 
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heuristic or any other one written by the user). It  also allows to interactively visualize and 
compare the results. J-FAST divides the recursive partitioning procedure into three main 
sections. The data-importing Graphical User Interface (see Figure 4) allows to read data 
from Excel-like spreadsheets and plain text files and automatically recognises the nature of 
the variables by distinguishing the categorical, numerical or alphanumerical columns of a 
data matrix. J-Fast also allows the user to specify the Decision Tree Induction model by 
choosing the response variable, as well as which predictor(s) should be treated as ordinal, 
nominal or as excluded from the analysis.  
 

 

Fig. 4. J-Fast data importing Graphical User Interface 

A second GUI visualizes some information about the chosen DTI model and provides some 
descriptive statistics about the analyzing data. It also allows the user to specify which are 
the features of the DTI model under specification, such as the learning sample rate, the 
stopping conditions, the possibility of obtaining a verbose output. It also asks the user to 
choose between all the recursive partitioning heuristics that are present into the class path. 
Then, the software starts the tree growing procedure. 
The third component of the J-FAST software is the results navigator. It allows the user to 
interactively display and navigate into the results of the analysis. 
The results navigator GUI (see Figure 5) consists of two windows. The first one is the main 
results window. It visualises the obtained decision tree, charts the misclassification rates and 
the selected node’s information panel (there is a button for visualizing the splitting rule to 
reach the node, the misclassification rate for the node, etc.). The second component is the 
Tree Console Window (Figure 6). It contains buttons that allow the user to navigate through 
the pruning sequence and access directly the best, the trivial and the maximal tree. For each 
tree in the pruning sequence, the node that is going to be pruned is highlighted. By clicking 
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on the node, the interface allows to get the data units which fall in that node and to write 
them into a file in order to continue the analysis of such units using another software. It is 
also possible, from the second step GUI, to simultaneously start more than one analysis in 
order to obtain different tree navigators simultaneously on the screen. This feature is 
particularly useful for comparing trees grown from different datasets or on the same dataset 
but with using different DTI specifications. 
 

 

Fig. 5. J-Fast data results navigator Graphical User Interface 

J-FAST is more than a simple recursive partitioning software. Because of the fact that it has 
been mainly designed to support the research activity, it offers many useful functions like 
the possibility of saving created objects (trees, datasets, nodes, etc.) via the Java serialization 
mechanism in order to better analyze using other ad-hoc written Java programs (some of 
them have already been implemented, like a different tree interface called “TreeSurfer”).  
Interactivity with the R statistical software is also provided: by right-clicking on a node it is 
possible to send the corresponding data to R in order to continue the analysis. This is 
particularly useful if another statistical analysis (i.e. a logit model) has to be made on a 
particular segment (node) extracted from the obtained decision tree. 
J-FAST has to be also  considered as a Java objects Library (or API - Application Program 
Interface), for building Classification and Regression Trees. Any researcher which is able to 
program in Java could use the classes from the J-FAST API in order to get trees without 
having to write all the necessary code. In addition, the J-FAST platform offers many useful 
objects. The most important ones are: 

• Statistics: it provides univariate and bivariate descriptive statistics. 

• DataSet: it stores data for recursive partitioning purposes (response variable, predictors, 
etc.). 

• Split: it specifies the type of split (binary, ternary,etc.) 
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• TreeGrower: it is a class for growing decision trees 

• Pruner: it is class that for decision tree pruning 

• TreeViewer: it is a interactive interface class 

• Utility: it encompasses many useful function like reading data from plain text files, 
Excel-like  spreadsheets, etc. 

• TreeBuild interface: it defines all the rules to follow for the programmer to write his 
own heuristic. 

 

 

Fig. 6. J-Fast tree console window Graphical User Interface 
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