
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

22

Evolutionary Algorithms in
Decision Tree Induction

Francesco Mola1, Raffaele Miele2 and Claudio Conversano1
1University of Cagliari,

2University of Naples Federico II
Italy

1. Introduction

One of the biggest problem that many data analysis techniques have to deal with nowadays
is Combinatorial Optimization that, in the past, has led many methods to be taken apart.
Actually, the (still not enough!) higher computing power available makes it possible to
apply such techniques within certain bounds. Since other research fields like Artificial
Intelligence have been (and still are) dealing with such problems, their contribute to
statistics has been very significant.
This chapter tries to cast the Combinatorial Optimization methods into the Artificial
Intelligence framework, particularly with respect Decision Tree Induction, which is
considered a powerful instrument for the knowledge extraction and the decision making
support. When the exhaustive enumeration and evaluation of all the possible candidate
solution to a Tree-based Induction problem is not computationally affordable, the use of
Nature Inspired Optimization Algorithms, which have been proven to be powerful
instruments for attacking many combinatorial optimization problems, can be of great help.
In this respect, the attention is focused on three main problems involving Decision Tree
Induction by mainly focusing the attention on the Classification and Regression Tree-CART
(Breiman et al., 1984) algorithm. First, the problem of splitting complex predictors such a
multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the
possibility of growing “optimal” exploratory trees is also investigated by making use of Ant
Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees
for modelling multi-attribute response on the basis of a data-driven heuristic is also
described. The proposed approaches might be useful for knowledge extraction from large
databases as well as for data mining applications. The solution they offer for complicated
data modelling and data analysis problems might be considered for a possible
implementation in a Decision Support System (DSS).
The remainder of the chapter is as follows. Section 2 describes the main features and the
recent developments of Decision Tree Induction. An overview of Combinatorial
Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization
is presented in section 3. The use of these two algorithms within the Decision Tree Induction
Framework is described in section 4, together with the description of the algorithm for
modelling multi-attribute response. Section 5 summarizes the results of the proposed O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Advances in Evolutionary Algorithms

444

method on real and simulated datasets. Concluding remarks are presented in section 6. The
chapter also includes an appendix that presents J-Fast, a Java-based software for Decision
Tree that currently implements Genetic Algorithms and Ant Colony Optimization.

2. Decision tree induction

Decision Tree Induction (DTI) is a tool to induce a classification or regression model from
(usually large) datasets characterized by N observations (records), each one containing a set
x of numerical or nominal variables, and a variable y. Statisticians use the terms “splitting
predictors” to identify x and “response variable” for y. DTI builds a model that summarizes
the underlying relationships between x and y. Actually, two kinds of model can be
estimated using decision trees: classification trees if y is nominal, and regression trees if y is
numerical. Hereinafter we refer to classification trees to show the main features of DTI and
briefly recall the main characteristics of regression trees at the end of the section.
DTI proceeds by inducing a series of follow-up (usually binary) questions about the
attributes of an unknown observation until a conclusion about what is its most likely class
label is reached. Questions and their alternative answers can be represented hierarchically in
the form of a decision tree. It contains a root node and some internal and terminal nodes.
The root node and the internal ones are used to partition observations of the dataset into
smaller subsets of relatively homogeneous classes. To classify a previously unlabelled
observation, say i* (i*=1,…..,N), we start from the test condition in the root node and follow
the appropriate pattern based on the outcome of the test. When an internal node is reached a
new test condition is applied, and so on down to a terminal node. Encountering a terminal
node, the modal class of the observations in that node is the class label of y assigned to the
(previously) unlabeled observation. For regression trees, the assigned class is the mean of y
for the observations belonging to that terminal node.
Because of their top-down binary splitting approach, decision trees can easily be converted
into IF-THEN rules and used for decision making purposes.
DTI is useful for knowledge extraction from large databases and data mining applications
because of the possibility to represent functions of numerical and nominal variables as well
as of its feasibility, predictive ability and interpretability. It can effectively handle missing
values and noisy data and can be used either as an explanatory tool for distinguishing
observations of different classes or as a prediction tool to class labels of previously unseen
observations.
Some of the well-known DTI algorithms include ID3 (Quinlan, 1983), CART (Breiman et al.,
1984), C4.5 (Quinlan, 1993), SLIQ (Metha et al., 1996), FAST (Mola & Siciliano, 1997) and
GUIDE (Loh, 2002). All these algorithms use a greedy, top-down recursive partitioning
approach. They primarily differ in terms of the splitting criteria, the type of splits (2-way or
multi-way) and the handling of the overfitting problem.
DTI uses a greedy, top-down recursive partitioning approach to induce a decision tree from
data. In general, DTI involves the following tasks: decision tree growing and decision tree
pruning.

2.1 Tree growing

As for the growing of a decision tree, DTI use a greedy heuristic to make a series of locally
optimum decisions about which value of a splitting predictor to use for data partitioning. A

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

445

test condition depending on a splitting method is applied to partition the data into more
homogeneous subgroups at each step of the greedy algorithm.
Splitting methods differ with respect to the type of splitting predictor: for nominal splitting
predictors the test condition is expressed as a question about one or more of its attributes,
whose outcomes are “Yes”/”No”. Grouping of splitting predictor attributes is required for
algorithms using 2-way splits. For ordinal or continuous splitting predictors the test

condition is expressed on the basis of a threshold value υ such as (xi ≤ υ?) or (xi > υ?). By

considering all the possible split points υ, the best one υ* partitioning the instances into
homogeneous subgroups is selected.
In the classification problem, the sample population consists of N observations deriving

from C response classes. A decision tree (or classifier) will break these observations into k

terminal groups, and to each of these a predicted class (being one of the possible attributes

of the response variable) is assigned. In actual application, most parameters are estimated

from the data. In fact, denoting with t some node of the tree (t represents both a set of

individuals in the sample data and, via the tree that produced it, a classification rule for

future data) from the binary tree it is possible to estimate P(t) and P(i|t) for future

observations as follows:

 () (){ } ()
1 1

C C

i i iA ii i
P t P x t x i n nπ τ π

= =
= ∈ = ≈∑ ∑ (1)

 () (){ } (){ } { } () ()
1

C

i i it i i it ii
P i t P x i x t P x t x i P x t n n n nτ π τ π π

=
= = ∈ = ∈ = ∈ ≈ ∑ (2)

where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an
observation xi (x is the vector of predictor variables), ni and nt are the number of
observations in the sample that respectively are class i and node t, and nit is the number of
observations in the sample that are class i and node t.
In addition, by denoting with R the risk of misclassification, the risk of t (denoted with R(t))
and the risk of a model (or tree) T (denoted with R(T)) are measured as follows:

 () () ()()
1

,
C

i
R t P i t L i tτ

=
=∑ (3)

 () () ()
1

k

j jj
R T P t R t

=
=∑ (4)

where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is

the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj

are terminal nodes of the tree T. If L(i,i)=1 for all i≠j, and the prior probabilities τ are set to

be equal to the observed class frequencies in the sample, then P(i|t)=nit/nt and R(T) is the

proportion of misclassified observations.

When splitting a node t into tr and tl (left and right sons), the following relationship holds:

P(tl) R(tl) + P(tr) R(tr) ≤ P(t) R(t). An obvious way to build a tree is to chose that split

maximizing ΔR, i.e., the decrease in risk. To this aim, several measures of impurity (or

diversity) of a node are used. Denoting with f some impurity function, the local impurity of

a node t is defined as:

www.intechopen.com

 Advances in Evolutionary Algorithms

446

 () ()
1

C

iti
t f pε

=
=∑ (5)

where pit is the proportion of those in t that belong to class i for future samples. Since ε(t)=0
when t is pure, f must be concave with f(0)=f(1)=0. Two candidates for f are the information
index f(p) = -p log(p) and the Gini index f(p)= -p(1-p), that slightly differ for the two class
problem where nearly always choose the same split point. Once that f has been chosen, the
split maximizing the impurity reduction is:

 () () () () () ()l l r rp t t p t t p t tε ε ε εΔ = − − (6)

Data partitioning proceeds recursively until a stopping rule is satisfied: this usually happens
when the number of observations in a node is lower than a previously-specified minimum
number necessary for splitting, as well as when the same observations belong to the same
class or have the same response class.

2.2 FAST splitting algorithm

The goodness of split criterion based on (6) expresses in different way some equivalent
criteria which are present in most of the tree-growing procedures implemented in
specialized software; such as, for instance, CART (Breiman et al., 1984), ID3 and C4.5
(Quinlan, 1993).
In many situations the computational time required by a recursive partitioning algorithm is
an important issue that can not be neglected. In this respect, a fast algorithm is required to
speed up the procedure. In view of that, it is worth considering a two-stage splitting
criterion which takes into account of the global role played by a splitting predictor in the
partitioning step. A global impurity reduction factor of any predictor xi is defined as:

 () () ()| | |
s

s

y x y g

g G

t t p g tε
∈

Ε = ∑ (7)

where εy|g(t) is the impurity of the conditional distribution of y given the s-th attribute of xs

and G is the number of attributes of xs (g ε G). The two-stage criterion finds the best splitting
predictor(s) as the one (or those) minimizing (7) and, consequently, the best split point
among the candidate splits induced by the best predictor(s) minimizing the (6) by taking
account only the partitions or splits generated by the best predictor. This criterion can be
applied either sic et simpliciter or by considering alternative modelling strategies in the
predictor selection (an overview of the two-stage methodology can be found in Siciliano &
Mola, 2000).
The FAST splitting algorithm (Mola & Siciliano, 1997) can be applied when the following
property holds for the impurity measure:

 () ()| | ;
s

y x y ht t h g h GΕ ≤ Ε ∀ ≠ ∈ (8)

and it consists of two basic rules:

• iterate the two-stage partitioning criterion by using (7) and (6): select one splitting
predictor at a time and consider, at each time, the previously unselected splitting
predictors;

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

447

• stop the iterations when the current best predictor in the order x(k) at iteration k does

not satisfy the condition ()
()
()*

1
| |

k k
y x y ht t

−
Ε ≤ Ε , where s*(k−1) is the best partition at the

iteration (k − 1).
The algorithm finds the optimal split with substantial time savings in terms of the reduced
number of partitions or splits to be tried out at each node of the tree. Simulation studies
show that the relative reduction in the average number of splits analyzed by the FAST
algorithm with respect to the standard approaches in binary trees increases as a function of
both the number of attributes of the splitting predictor and of the number of observations at
a given node. Further theoretical results about the computational efficiency of FAST-like
algorithms can be found in Klaschka et al. (1998).

2.3 Tree pruning

As for the pruning step, it is usually required in DTI in order to control for the size of the
induced model and to avoid in this way data overfitting. Typically, data is partitioned into a
training set (containing two-third of the data) and a test set (with the remaining one-third).
Training set contains labelled observations and it is used for the tree growing. It is assumed
that the test set contains unlabelled observations and it is used for selecting the final
decision tree: to check whether a decision tree, say T, is generalizable, it is necessary to
evaluate its performance on the test set in terms of misclassification error by comparing the
true class labels of the test data against those predicted by T. Reduced-size trees perform
poorly on both training and test sets causing underfitting. Instead, increasing the size of T
improves both the training and test errors up to a “critical size” from which the test errors
increase even though the corresponding training errors decrease. This means that T overfits
the data and cannot be generalized to class prediction of unseen observations. In the
machine learning framework, the training error is named resubstitution error and the test
error is known as the generalization error.
It is possible to prevent overfitting by haltering the tree growing before it becomes too
complex (pre-pruning). In this framework, one can assume the training data is a good
representation of the overall data and use the resubstitution error as an optimistic estimate
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987)
proposed a pessimistic approach that penalizes complicated models by assigning a cost
penalty to each terminal node of the decision tree: for C4.5, the generalization error is

R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the

misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is
the upper bound for R(t) computed from such a distribution (Quinlan, 1993).
An alternative pruning strategy is based on the growing of the entire tree and the
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree
departing from each internal node is replaced with a new terminal node whose class label
derives from the majority class of observations belonging to that subtree. The latter is
definitively replaced by the terminal node if such a replacement induces an improvement of
the generalization error. Pruning stops when no further improvements can be achieved. The
generalization error can be estimated through either the optimistic or pessimistic
approaches.
Other post-pruning algorithms, such as CART, use a complexity measure that accounts for
both the tree size and the generalization error. Once the entire tree is grown using training

www.intechopen.com

 Advances in Evolutionary Algorithms

448

observations, a penalty parameter expressing the gain/cost trade off for trimming each
subtree is used to generate a sequence of pruned trees, and the tree in the sequence
presenting the lowest generalization error (0-SE rule) or the one with a generalization error

within one standard error of its minimum (1-SE rule) is selected. Let α be a number in

[0,+∞], called complexity parameter, measuring the “cost” of adding another variable to the
model. Let R(T0) be the risk for the zero split tree. Define:

 () ()R T R T Tα α= + (9)

to be the cost for the tree, and define Tα to be that subtree of the entire tree having the

minimal cost. Obviously, T0 is the entire tree and T∞ is the zero splits model. The idea is to

find, for each α, the subtree Tα ⊆ T0 minimizing Rα(T). The tuning parameter α ≥ 0 governs

the trade off between the tree size and its goodness of fit to the data. Large values of α result

in small trees, and conversely for smaller values of α. Of course, with α=0 the solution is the

full tree T0. It is worth noticing that, by adaptively choosing αI, it exists a unique smallest

subtree Tα minimizing Rα(T). A weakest link pruning approach is used to find Tα: it consists
in successively collapsing the internal node producing the smallest per-node increase in
R(T), continuing this way until the single-node (root) tree is produced. This gives a (finite)

sequence of subtrees, and it is easy to show that this sequence must contains Tα (see Breiman
et al (1984) for details).
Usually, pruning algorithms can be combined with V-fold cross-validation when few
observations are available. Training data is divided into V disjoint blocks and a tree is
grown V times on V-1 blocks estimating the error by testing the model on the remaining
block. In this case, the generalization error is the average error made for the V runs. The

estimation of αI is achieved by V-fold cross-validation: the final choice is the α̂ minimizing

the cross-validated R(T) and the final tree is ˆTα .

Cappelli et al. (2002) improved this approach introducing a statistical testing pruning to
achieve the most reliable decision rule from a sequence of pruned trees.

2.4 Regression tree

In the case the response variable is numeric, the outcome of a recursive partitioning
algorithm is regression tree. Here, the splitting criterion is SSt- (SSl - SSr), where SSt is the
residual sum of squares for the parent node, and SSl and SSr are the residual sum of squares
for the left and right son, respectively. This is equivalent to choosing the splits maximizing
the between-groups sum-of-squares in a simple analysis of variance. In each terminal node,

the mean value of the response variable μy of cases belonging to that node is considered as
the fitted value whereas the variance is considered as an indicator of the error of a node. For

a new observation ynew the prediction error is (ynew - μy). In the regression tree case, cost-
complexity pruning is applied with the sum of squares replacing the misclassification error.

2.5 DTI enhancements

A consolidated literature about the incorporation of parametric and nonparametric models
into trees appeared in recent years. Several algorithms have been introduced as hybrid or
functional trees (Gama, 2004), among the machine learning community. As an example, DTI
is used for regression smoothing purposes in Conversano (2002): a novel class of

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

449

semiparametric models named Generalized Additive Multi-Mixture Models (GAM-MM).
Other hybrid approaches are presented in Chan and Loh (2004), Su et al. (2004), Choi et al.
(2005) and Hothorn et al. (2006). Nevertheless, relatively simple procedures combining DTI
models in different ways have been proposed in the last decade in the statistics and machine
learning literature and their effectiveness in improving the predictive ability of the
traditional DTI method has been proven in different fields of application.
The first, rather intuitive, approach is Tree Averaging. It is based on the generation of a set
of candidate trees and on their subsequent aggregation in order to improve their
generalization ability. It requires the definition of a suitable set of trees and their associated
weights and classifies a new observation by averaging over the set of weighted trees (Oliver
and Hand, 1995). Either a compromise rule or a consensus rule can be used for averaging.
An alternative method consists in summarizing the information of each tree in a table cross-
classifying terminal nodes outcomes with the response classes in order to assess the
generalization ability through a statistical index and select the tree providing the maximum
value of such index (Siciliano, 1998).
Tree Averaging is very similar to Ensemble methods. These are based on a weighted or non
weighted aggregation of single trees (the so called weak learners) in order to improve the
overall generalization error induced by each single tree. They are more accurate than a
single tree if they have a generalization error that is lower than random guessing and if the
generalization errors of the different trees are uncorrelated (Dietterich, 2000).
A first example of Ensemble method is Bootstrap Aggregating, which is also called Bagging
(Breiman, 1996). It works by randomly replicating the training observations in order to
induce single trees whose aggregation by majority voting provides the final classification.
Bagging is able to improve the performance of unstable classifiers (i.e. trees with high
variance). Thus, bagging is said to be a reduction variance method.
Adaptive Boosting, also called AdaBoost (Freud & Schapire, 1996) is an Ensemble method
that uses iteratively bootstrap replication of the training instances. At each iteration,
previously-misclassified observations receive higher probability of being sampled. The final
classification is obtained by majority voting. Boosting forces the decision tree to learn by its
error, and is able to improve the performance of trees with both high bias (such as single-
split trees) and variance.
Finally, Random Forest (Breiman, 2001) is an ensemble of unpruned trees obtained by
randomly resampling training observations and variables. The overall performance of the
method derives from averaging the generalization errors obtained in each run.
Simultaneously, suitable measures of variables importance are obtained to enrich the
interpretation of the model.

3. Combinatorial optimization

Combinatorial Optimization can be defined as the analysis and solution of problems that
can be mathematically modelled as the minimization (or maximization) of an objective
function over a feasible space involving mutually exclusive, logical constraints. Such logical
constraints can be seen as the arrangement of a bunch of given elements into sets. In a
mathematical form:

 (){ }min
T F

Tα
∈

 or (){ }max
T F

Tα
∈

 (10)

www.intechopen.com

 Advances in Evolutionary Algorithms

450

where T can be seen as an arrangement, F is the collection of feasible arrangements and α(T)
measures the value of the members of F.
Combinatorial Optimization problems are of great interest because many real life decision-
making situations force people to choose over a set of possible alternatives with the aim of
maximizing some utility function. On the one hand, the discreteness of the solutions space
offers the great advantage of concreteness and, indeed, elementary graphs or similar
illustrations can often naturally be used to represent the meaning of a particular solution to
a problem. On the other end, those problems carry a heavy burden in terms of
dimensionality. If more than few choices are to be made, the decision-making process has to
face with the evaluation of a terribly big expanse of cases. This dualism (intuitive simplicity
of presentation of a solution versus complexity of solutions search) has made this area of
combinatorics attractive for researchers from many fields, ranging from engineering to
management sciences.
Elegant procedures to find optimal solutions have been found for some problems, but for
most of them only a bunch of properties and algorithms have been developed that still do
not allow to reach a complete resolution. This is the case of Computational Statistics, in
which computationally-intensive methods are used to “mine“ large, heterogeneous, multi-
dimensional datasets in order to discover knowledge in the data.
To give an example, the objective of Cluster Analysis is to find the “best” partition of the
dataset according to some criterion, which is always expressed as an objective function. This
means that all possible and coherent partitions of the dataset should be generated and the
objective function has to be calculated for each of them. In many cases, the number of
possible partitions grows too rapidly with respect to the number of units, making such
strategy practically unfeasible. Another example is the apparently simple problem of
calculating the variance for interval data, for which the maximum and the minimum of the
variance function have to be searched over the multidimensional cube defined by all the
intervals in which the statistical units are defined.
These are examples of statistical problems that cannot be faced with the total enumeration

and evaluation of the solutions. In order to try to tackle with this kind of problems, a lot of

theory has been developed. One case is when some properties about the objective function

are available. These allow to calculate some kind of upper (or lower) bound that a set of

possible solutions could admit. In this case, the search could be performed just on the set of

possible solutions whose upper bound is higher. If one solution whose effective value is

higher than the bounds of all the other sets is found, it would not be necessary to continue

the search, being all the other subsets not able to provide better solutions. This is the case of

the aforementioned problem of finding the upper bound of variance for interval data,

because it can be verified that the maximum is necessarily reached in one of the vertices of

the multidimensional cube, so that exploring the whole cube is not necessary. Such a

situation allows to restrict the solutions space to a set of 2n possible solutions, where n is the

number of statistical units. Unfortunately, this does not solve the problem because the

solutions space becomes enormous even in presence of small datasets (with just 30 units the

number of solutions to evaluate is greater than one thousand millions).

The FAST algorithm is another example of a partial enumeration approach, in which a
measure of the upper bound of the predictive power of a solutions set is defined and
exploited in order to get the same results of the CART greedy approach by using a reduced
amount of computations.

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

451

Another way to proceed is to make use of non exact procedures, often called heuristics.
Those algorithms do not claim to find the global optimum, but are able to converge rapidly
towards a local one. Non exact algorithms (that will be called heuristics in the rest of this
chapter) are certainly not recent. What has changed, in time, is the respectability associated
to them, due to the fact that many heuristics have been proved to rival their counterparts in
elegance, sophistication and, particularly, usefulness. Many heuristics have been proposed
in the literature, but only two kinds of them will be briefly described in this context due to
their role in the problems that will be faced in the next sections. These are: Greedy
procedures and Nature Inspired optimization algorithms. In Greedy procedures the
optimization process selects, at each stage, an alternative that is the best among all the
feasible alternatives without taking into account the impact that such choice will have on the
subsequent decisions. The CART algorithm makes use of a greedy procedure to grow a tree
in which the optimality criterion is maximised just locally, that is, for each node of the tree
but not considering the tree as a whole. This approach clearly results in a suboptimal tree
but allows, at least, to obtain a tree in a reasonable amount of time. Whereas, the so-called
Nature Inspired heuristics, which are also called “Heuristics from Nature” (Colorni et al.,
1993), are Inspired by natural phenomena or behaviour such as Evolution, Ants, Honey-
Bees, Immune systems, Forests, etc. Some important Nature Inspired heuristics are:
Simulated Annealing (SA), TABU Search (TS) algorithms, Ant Colony Optimization (ACO)
and Evolutionary Computation (EC). ACO and EC are described in the following since they
are used throughout the chapter.
Ant Colony Optimization represents a class of algorithms that were inspired by the
observation of real ant colonies. Observation shows that a single ant only applies simple
rules, has no knowledge and it is unable to succeed in anything when it is alone. However,
an ant colony benefits from the coordinated interaction of each ant. Its structured behaviour,
described as a “social life”, leads to a cooperation of independent searches with high
probability of success. ACO were initially proposed by Dorigo (1992) to attack the Traveling
Salesman Problem. A real ant colony is capable of finding the shortest path from a food
source to its nest by using pheromone information: when walking, each ant deposits a
chemical substance called pheromone and follows, in probability, a pheromone trail already
deposited by previous ants. Assuming that each ant has the same speed, the path which
ends up with the maximum quantity of pheromone is the shortest one.
Evolutionary computation (Fogel and Fogel, 1993) incorporates algorithms that are inspired
from evolution principles in nature. The methods of evolutionary computation algorithms
are stochastic and their search methods imitate and model some natural phenomena,
namely:
1. the survival of the fittest
2. genetic inheritance
Evolutionary computing can be applied to problems when it is difficult to apply traditional
methods (e.g., when gradients are not available) or when traditional methods lead to
unsatisfactory solutions like local optima (Fogel, 1997). Evolutionary algorithms work with a
population of potential solutions (i.e. individuals). Each individual is a potential solution to
the problem under consideration and it is encoded into a data structure suitable to the
problem. Each encoded solution is evaluated by an objective function (environment) in
order to measure its fitness. The bias on selecting high-fitness individuals exploits the
acquired fitness information. The individuals will change and evolve to form a new

www.intechopen.com

 Advances in Evolutionary Algorithms

452

population by applying genetic operators. Genetic operators perturb those individuals in
order to explore the search space. There are two main types of genetic operators: Mutation
and Crossover. Mutation type operators are asexual (unary) operators, which create new
individuals by a small change in a single individual. On the other hand, Crossover type
operators are multi-sexual (multary) operators, which create new individuals by combining
parts from two or more individuals. As soon as a number of generations have evolved, the
process is terminated according to a termination criterion. The best individual in the final
step of the process is then proposed as a (hopefully suboptimal or optimal) solution for the
problem.
Evolutionary computing are further classified into four groups: Genetic Algorithms (GA),
Evolutionary Programming, Evolution Strategies and Genetic Programming. Although there
are many relevant similarities between these evolutionary computing paradigms, profound
differences among them also emerge (Michalewicz, 1996). These differences generally
involve the level in the hierarchy of the evolution being modelled, that is: the chromosome,
the individual or the species. There are also many hybrid methods that combine various
features from two or more of the methods described in this section.
Genetic Algorithms (GAs), that will be used in the follwing, are part of a collection of
stochastic optimization algorithms inspired by the natural genetics and the theory of the
biological evolution. The idea behind genetic algorithms is to simulate the natural evolution
when optimizing a particular objective function. GAs have emerged as practical, robust
optimization and search methods in the last three decades. In the literature, Hollands’
genetic algorithm is called Simple Genetic Algorithm (Vose, 1999). It works with a
population of individuals (chromosomes), which are encoded as binary strings (genes).

4. Genetic algorithms and heuristics in DTI

4.1 Genetic algorithm for complex predictors

The CART methodology looks for the best split by making use of a brute-force
(enumerative) procedure. All the possible splits from all the possible variables are generated
and evaluated. Such a procedure must be performed anytime a node has to be split and can
lead to computational problems when the number of modalities grows.
Let us first consider how a segmentation procedure generates and evaluates all possible
splits. Nominal unordered predictors (Nup) are more complicated to handle than ordered
ones because the number of possible splits that can be generated grows exponentially with
the number of attributes m. The number of possible splits is (2m-1-1). The computational
complexity of a procedure that generates and evaluates all the splits from a nominal
unordered predictor is O(2n). In this respect, it is evident that such enumerative algorithm
becomes prohibitive when the number of attributes is high. This is one of the reasons why
some software do not accept Nups with a number of attributes higher than a certain
threshold (usually between 12 and 15).
One of the possible way to proceed is to make use of a heuristic procedure, like the one
proposed in this section. In order to design a Genetic Algorithm to solve such a
combinatorial problem, it is necessary to identify:

• a meaningful representation (coding) for the candidate solutions (the possible splits)

• a way to generate the initial population

• a fitness function to evaluate any candidate solution

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

453

• a set of useful genetic operators that can efficiently recombine and mutate the candidate
solutions

• the values of the parameters used by the GA (population size, genetic operators
parameters values, selective pressure, etc.);

• a stopping rule for the algorithm.
The aforementioned points have been tackled as follows. As for the coding, it has been
chosen the following representation: a solution is coded in a string of bits (chromosomes)
called x, where each bit (gene) is associated to an attribute of the predictor according to the
following rule:

0

1
i

if i goes to left
x

if i goes to right

⎧
= ⎨
⎩

 (11)

The choice of the fitness function is straightforward: the split evaluation function of the
standard recursive partitioning algorithm is used (i.e. the maximum decrease in node
impurity). Since the canonical (binary) coding is chosen, the corresponding two parents
single-point crossover and mutation operators and, as a stopping rule can be used. In
addition, a maximum number of iterations is chosen on the basis of empirical investigations.
The rest of the GA features are similar to the classic ones: elitism is used (at each iteration
the best solution is kept in memory) and the initial population is chosen randomly.

4.2 An ACO algorithm for exploratory DTI

When growing a Classification or a Regression Tree, CART first grows the so-called
exploratory tree. Such tree is grown using data of the training set. Then, it is validated by
using the test set or by cross-validation.
In this section, the attention is focused on the exploratory tree-growing procedure. In this
phase, in theory, the best possible tree should be built, which is the tree having the lowest
global impurity measure among all the generable trees. It has been shown (Hyafil and
Rivest, 1976) that constructing the optimal tree is a NP-Complete problem. In other words,
in order to use a polynomial algorithm, it is only possible to get suboptimal trees. For such a
reason, the recursive partitioning algorithms make use of greedy heuristics to reach a
compromise between the tree quality and the computational effort. In particular, most of the
existing methods for DTI use a greedy heuristic, which is based on a top-down recursive
partitioning approach in which, any time, the split that maximizes the one step impurity
decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given
node) and only once for each node, allows to grow a tree in a reasonable amount of time. On
the other hand, this rule is able to generate only a suboptimal tree because anytime a split is
chosen a certain subspace of possible trees is not investigated anymore by the algorithm. If
the optimal tree is included in one of those subspaces there is no chance for the algorithm of
finding it.
Taking these considerations into account, we propose an Ant Colony Optimization
algorithm to try to find best exploratory tree. In order to attack a problem with ACO the
following design task must be performed:
1. Represent the problem in the form of sets of components and transitions or by means of

a weighted graph, on which ants build solutions

www.intechopen.com

 Advances in Evolutionary Algorithms

454

2. Appropriately define the meaning of the pheromone trails: that is, the type of decision
they bias.

3. Appropriately define the heuristic reference for each decision an ant has to take while
constructing a solution.

4. If possible, implement an efficient local search algorithm for the problem to be solved.
The best results from the application of the ACO algorithms to NP-hard combinatorial
optimization problems are achieved by coupling ACO with local optimizers (Dorigo
and Stutzle, 2004)

5. Choose a specific ACO algorithm and apply it to the problem to be solved, taking the
previous issues into account

6. Tune the parameters of the ACO algorithm. A good starting point is to use parameter
settings that were found to be good when applying the same ACO algorithm to similar
problems or to a variety of other problems

The most complex task is probably the first one, in which a way to represent the problem in
the form of a weighted graph must be found. We use a representation based on the
following idea: let us imagine having two nominal predictors P1 = {a1, b1, c1} and P2 = {a2, b2}
with, respectively, two and three attributes. Such simple predictors are considered only to
explain the idea, because of the combinatorial explosion of the phenomenon. In this case, the
set of all possible splits, at a root node, is the following:

• S1 = [a1] − [b1, c1]

• S2 = [a1, b1] − [c1]

• S3 = [a1, c1] − [b1]

• S4 = [a2] − [b2]
Any time a split is chosen, it generates two child nodes. For such nodes, the set of possible
splits is, in the worst case, equal to 3 (the same as the parent node except the one that was
chosen for splitting). This consideration leads to the representation shown in Figure 1 in
which, for simplicity, only the first two levels of the possible trees are considered.
It is easy to imagine how the complexity grows when we deal with predictors that generate
hundreds or even thousands of splits (which is a common case).
In Figure 1, the space of all possible trees is represented by a connected graph. Moving from
a level to another one corresponds to split a variable. The arcs of such a graph have the same
meaning of the arcs of the TSP graph (transition from a state to another one or, even better,
addition of a component to a partial solution). In this view, it would be correct to deposit
pheromone on them. The pheromone trails meaning, in this case, corresponds to the
desirability to choose the corresponding split from a certain node.
As for the heuristic information, it is possible to refer to the decrease in impurity deriving
from adding the corresponding node to the tree. Such a measure has a meaning which is
similar, in some way, to the one that visibility has in the TSP . An arc is much more desirable
as higher the impurity decrease is. As a result, to make analogies with the TSP, such
impurity decrease can be seen as an inverse measure of the distance between two nodes.
Once the construction graph has been built, and pheromone trails meaning and heuristic
function have been defined, it is possible to attack that problem using an ACO algorithm. It
is important to note that, because of the specificity of the problem to be modelled (ants can
move into a connected graph and there is a measure of “visibility”), the search of the best
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass
only one time for each city while, in our case, ants are forced to choose paths that

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

455

correspond to binary trees, since the solutions to build must be in the form of tree structures.
All the ants will start from the root node and will be forced to move from one node to
another in order to build a tour that corresponds to a tree.

Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree.

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail
of any possible direction and decides for the one to choose (and, therefore, the associated
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it
recursively starts to move back to the other unexplored nodes.
In different ACO algorithms, pheromone trails are initialized to a value obtained by
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained
with another heuristic (Dorigo suggests the nearest-neighbour heuristic). In our case, the
greedy tree induction rule solution quality is used. Elitism will also be implemented and the
chosen parameters (due to the strong similarity with TSP) are the same that have been used
successfully for the TSP problem.

4.3 Identification of a parsimonious set of decision trees in multi-class classification

In many situations, the response variable used in classification tree modelling rarely
presents a number of attributes that allow to apply the recursive partitioning algorithm in
the most accurate manner.
It is well known that:
a) a multi-class response, namely a nominal variables with several classes, usually causes

prediction inaccuracy;

www.intechopen.com

 Advances in Evolutionary Algorithms

456

b) multi-class and numeric predictors play often the role of splitting variables in the tree
growing process in disadvantage of two-classes ones, causing selection bias.

To account for the problems deriving from the prediction inaccuracy of tree-based classifiers
grown for multi-class response, as well as to reduce the drawback of the loss of
interpretability induced by ensemble methods in these situations, Mola and Conversano
(2008) introduced an algorithm based on a Sequential Automatic Search of a Subset of Classifiers
(SASSC). It produces a partition of the set of the response classes into a reduced number of
disjoint subgroups and introduces a parameter in the final classification model that
improves its prediction accuracy, since it allows to assign each new observation to the most
appropriate classifier in a previously-identified reduced set of classifiers. It uses a data-
driven heuristic based on cross-validated classification trees as a tool to induce the set of
classifiers in the final classification model.
SASSC produces a partition of the set of the response classes into a reduced number of
super-classes. It is applicable to a dataset X composed of N observations characterized by a
set of J (numeric or nominal) splitting variables xj (j=1,…..,J) and a response variable y
presenting K classes. Such response classes identify the initial set of classes C(0) =(c1,c2,….,cK).
Partitioning X with respect to C(0) allows to identify K disjoint subsets X(0)k, such that: X(0)k =

{xs : ys ∈ ck}, with s=1,…..,N. In practice, X(0)k is the set of observations presenting the k-th
class of y. The algorithms works by aggregating the K classes in pairs and learns a classifier
to each subset of corresponding observations. The “best” aggregation (super-class) is chosen
as the one minimizing the generalization error estimated using V-fold cross-validation.

Suppose that, in the `-th iteration of the algorithm such a best aggregation is found for the

pair of classes ci* and cj* (with i*≠ j and i*, j* ∈ (1,….,K)) that allows to aggregate the subsets
Xi* and Xj*. Denoting with T(i*,j*) the decision tree minimizing the cross-validated

generalization error δ(`)cv, the heuristic for selecting the “best” decision tree can be formalized

as follows:

 () ()
()(){ },

(,)

*, * arg min |cv i ji j
i j

i j Tδ= ∩X X
`

 (12)

The SACCS algorithm is analytically described in Table 1. It proceeds by learning all the
possible decision trees obtainable by joining in pairs the K subgroups, and by retaining the

one satisfying the selection criteria introduced in (12). After the `-th aggregation, the

number of subgroups is reduced to K(`-1) - 1, since the subgroups of observations presenting

the response classes ci* and cj* are discarded from the original partition and replaced by the

subset X(`)(i*,j*) = X(i*) ∩ X(j*) identified by the super-class c(`) = (c(i*) ∩ c(j*)). The initial set of

classes C is replaced by C(`), the latter being composed of a reduced number of classes since

some of the original classes form the superclasses coming out from the ` aggregations.

Likewise, also X(`)k is formed by a lower number of subsets as a consequence of the `
aggregations.

The algorithm proceeds sequentially in the iteration `+1 by searching for the most accurate

decision tree over all the possible ones obtainable by joining in pairs the K(`) subgroups. The

sequential search is repeated until the number of subgroups reduces to one in the K-th

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

457

iteration. The decision tree learned on the last subgroup corresponds to the one obtainable
applying the recursive partitioning algorithm on the original dataset.
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees
(k = 1, ….., K − 1) on disjoint subgroups of observations whose response classes complete the
initial set of classes C(0): these response classes identify the super-classes relating to the sets
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is
also based on V-fold cross-validation and it is computed as a weighted average of the
generalization errors obtained from each of the K − k decision trees composing the set. In
accordance to the previously introduced notation, the overall generalization errors can be

denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees

composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv
increases since the number of super-classes associated to T(k) is also decreasing. This means
that a lower number of trees are learned on more heterogeneous subsets of observations,
since each of those subsets pertain to a relatively large number of response classes.

{ } ()
() () () { }

() { } ()
()()

() ()

()
()

(){ }
() { } ()

()

1 ; ; , 1, ,

00 0

1, , ; 1, ,

* * * **, *

1

1 2 1

1, , 1

1

, ,

; ; :

1

: | min

1

, ,

:

,

i j

K c c i j i j K

s s kk s N k K

i j cv i ji j

K

s s kk k K

C c c

C C K K y c

K

c c c T

K K

C c c c

y c

C

θ

∩ =∅ ≠ ∈

= =

−

− +

= −

=

= = = ∈

= ∩ ∩ =

= −

= =

= ∈

Input:

Set: X x

For: in to

X X

X x

end For

Output:

`

`

…

… …

` `

` `

` `

`
…

…

`

…

… ()
() ()

() ()1 1 1
1 1, ; , , ; , ,

K K
cv cvKC T T

− −
− Θ Θ … …

Table 1. The SASSC algorithm

Taking this inverse relationship into account, the analyst can be aware of the overall

prediction accuracy of the final model on the basis of the relative increase in Θ(k)cv when
moving from 1 to K−1. In this respect, he can select the suitable number of decision trees to
be included in the final classification model accordingly. Supposing that a final subset of g
decision trees has been selected (g<<K−1), the estimated classification model can be
represented as:

 () ()()
1

, 1

1 1

ˆ ˆ ˆ , ,
i

i

i

Mg

i k i p m

i m

f c I x x Rψ
−

= =

= ∈∑∑x … (13)

The parameter ψ is called “vehicle parameter”. It allows to assign a new observation to the
most suitable decision tree in the subset g. It is defined by a set of g−1 dummy variables.
Each of them equals 1 if the object belongs to the i-th decision tree (i = 1,…, g−1) and zero
otherwise. The Mi regions, corresponding to the number of terminal nodes of the decision

www.intechopen.com

 Advances in Evolutionary Algorithms

458

tree i, are created by splits on predictors (x1,….,xp). The classification tree i assigns a new

observation to the class ,ˆk ic of y according to the region
i
mR . I is an indicator function with

value 1 if an observation belongs to
i
mR and value 0 if not.

i
mR is defined by the inputs

used in the splits leading to that terminal node. The modal class of the observations in a

region
i
mR (also called the m-th terminal node of the i-th decision tree) is usually taken as an

estimate for ,ˆk ic . This notation is consistent with that used in Hastie et al. (2001).

The estimation of τi is based on the prediction accuracy of each decision tree in the final

subset g. A new observation is slipped into each of the g trees. The assigned class ,ˆk ic is

found with respect to the tree whose terminal node better classifies the new observation. In
other words, a new observation is assigned to the purest terminal node among all the g
decision trees.
Another option of the algorithm is the possibility to learn decision trees to select the suitable
pair of response classes satisfying (12) using alternative splitting criteria. As for CART, it is
possible to refer to both the Gini index and Twoing as alternative splitting rules. It is known
that, unlike Gini rule, Twoing searches for the two classes that make up together more than
50% of the data and allows us to build more balanced trees even if the resulting recursive
partitioning algorithm works slower. As an example, if the total number of classes is equal
to K, Twoing uses 2K−1 possible splits. Since it has been proved (Breiman et al., 1984, pag.95)
that the decision tree is insensitive to the choice of the splitting rule, it can be interesting to
see how it works in a framework characterized by the search of the most accurate decision
treers like the one introduced in SASSC.

5. Application on real and simulated datasets

Genetic Algorithm. The proposed GA has been applied on two datasets for which the
optimal best split could be calculated and for a more complex one, for which it is not
possible to proceed with such a brute force strategy.
The first test has been done on the “Mushroom” dataset, available from the UCI Machine
Learning Repository (source http://archive.ics.uci.edu/ml/). This dataset has a two-class
response variable (“is the mushroom poisonous?”) and set of categorical and numerical
predictors. One of them (gill colour) has 12 categories (attributes), which can be evaluated
exhaustively. The GA algorithm could find the global best solution (which was extracted by
using the Rpart package of the R software) in less than 10 iterations. The algorithm has then
been tested on a simulated dataset which was obtained by uniformly generating a response
variable with 26 modalities and a nominal unordered predictor with 16 modalities for 20,000
observations. By letting be 16 the number of modalities of the splitting predictor it was
possible, also in this case, to find the (global) best split by making use of the exhaustive
enumeration. Such experimental studies showed that the most efficient configuration of the
GA was the following:

• By randomly selecting the initial population (no other solutions have been tried, in fact).

• By setting the number of solutions building the population to be equal to the number of
necessary genes (the number of categories of the predictor).

• By setting a crossover proportion of 0.80.

• By setting a mutation probability equal to 0.10.

• By selecting the rank for choosing the solutions to be recombined.

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

459

For this kind of problem (20,000 units, 16 categories for the response variable and 26
categories for the splitting predictor) the global optimum was reached in less than 30
iterations.
When the complexity of the problem grows many iterations seems to be required, though
such number never appeared to grow exponentially.
The GA has been tested also on the “Adult” dataset available from the UCI Machine
Learning website. This dataset has been extracted from the US Census Bureau Database
(source: http://www.census.gov/) with the aim of predicting whether a person earns more
than 50,000 dollars per year. Such dataset has 325,614 observations and some categorical
unordered splitting predictors with many attributes. In particular, the native-country
predictor has 42 attributes.

State Goes to State Goes to

United-States Left Cuba Left

Jamaica Right India Left

Unknown Country Left Mexico Right

South Left Puerto-Rico Right

Honduras Right England Left

Canada Left Germany Left

Iran Left Philippines Left

Italy Left Poland Left

Columbia Right Cambodia Left

Thailand Left Ecuador Right

Laos Right Taiwan Left

Haiti Right Portugal Right

Dominican-Republic Right El-Salvador Right

France Left Guatemala Right

China Left Japan Left

Yugoslavia Left Peru Right

Outlying-US Right Scotland Left

Trinadad-Tobago Right Greece Left

Nicaragua Right Vietnam Right

Hong Left Ireland Left

Hungary Left Holland-Netherlands Right

Table 2. The split provided by the GA for the native-country in the Adult dataset

The GA has been run with the aim of trying to find a good split by making use of the native-
country splitting predictor that both R and SPSS, for instance, refused to process. As
previously mentioned, 30 iterations seemed to be not enough because, in many runs of the
algorithm, the “probably best” solution appeared after iteration 80. The solution provided
by the algorithm is shown in Table 2. It gives an idea of the complexity of the problem.
The corresponding decrease in the node impurity is 0.3628465. The algorithm has been
tested over many simulated dataset and the number of required iterations for the algorithm
to reach convergence has been shown to linearly grow as a function of the number of
attributes of the splitting predictor (the number of observations in the dataset appeared to
be uninfluential).

www.intechopen.com

 Advances in Evolutionary Algorithms

460

Ant System. The strong complexity of the decision tree growing procedure (Hyafil & Rivest,
1976) does not allow to exhaustively enumerate and evaluate all the possible generable
trees, even from very small datasets. In this respect, it is not possible to check whether the
chosen heuristic is able to find the global optimum (in the same manner as it has been
previously done for the genetic algorithm).
In the first experiment the algorithm has been tested on a simulated dataset of 500
observations with 11 nominal unordered predictors (with a number of attributes that ranges
between 2 and 9) and 2 numeric (continuous) predictors. It could be seen that, when the
required tree depth increases, the differences between the global impurity of the tree
obtained by the CART greedy heuristic and the one obtained by the Ant System tend to
increase. Table 3 reports such results.

Tree Depth CART Ant System

4 0.158119 0.153846

5 0.147435 0.121794

6 0.100427 0.085477

7 0.079059 0.059829

8 0.044871 0.029911

Table 3.Global impurity of the decision trees extracted by the proposed algorithm on a
simulated dataset

Figure 2 shows the result obtained on the “Credit” dataset that can be found in the SPAD
software (source: www.spadsoft.com). This dataset has 468 observations on which 11
nominal variables have been observed together with a two-class response variable. The aim
would be to predict such response variable (“is a customer good or bad?).
The first decision tree is the one found by the CART heuristic and the second one has been
extracted after 200 iterations of the Ant System algorithm.
Table 4 shows the global impurity of the trees extracted by the CART and Ant heuristics.

Fig. 2. Decision Trees for the Credit dataset obtained using the CART heuristic (left panel)
and after 200 iterations of the Ant System algorithm (right panel).

The algorithms presented here are in an early stage of development. In these examples, an
Ant System has been proposed to attack the problem of finding the best exploratory
decision tree and it came out that the Ant System-based decision trees performed better than
the ones found by the CART greedy heuristic. Even if the improvements weren’t too large

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

461

(from 2% to 5% in all of the simulation studies) such algorithm could be still useful for the
situations in which high accuracy is required from the decision tree would. Ant System, on
the other hand, is the simplest (yet less efficient) ACO technique, so that the use of more
powerful ACO algorithms (which is currently under development) would reasonably bring
better results. It is well known that ACO algorithms reach their maximum efficiency when
coupled with local search techniques or can improve their efficiency by making use of
candidate lists.

Tree Depth CART Ant System

2 0.2948 0.2734

3 0.2435 0.2301

4 0.2029 0.1816

5 0.1773 0.1517

6 0.1645 0.1539

Table 4. Global impurity of the decision trees extracted by the proposed algorithm on the
Credit dataset

SASSC algorithm. In the following, the SASSC algorithm is applied on the “Letter
Recognition” dataset from the UCI Machine Learning Repository (source
http://archive.ics.uci.edu/ml/). This dataset is originally analyzed in Frey & Slate (1991),
who did not achieve a good performance since the correct classified observations did never
exceed 85%. Later on, the same dataset is analyzed in Fogarty(1992) using nearest
neighbours classification. Obtained results give over 95.4% accuracy compared to the best
result of 82.7% reached in Frey & Slate(1991). Nevertheless, no information about the
interpretability of the nearest neighbour classification model is provided and the
computational inefficiency of such a procedure is deliberately admitted by the authors.
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-white rectangular
pixel displays into one of the 26 letters in the English alphabet. The character images are
based on 20 different fonts and each letter within these 20 fonts was randomly distorted to
produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical
attributes that have to be submitted to a decision tree. Dealing with K = 26 response classes,
SASSC provides 25 sequential aggregations. Classification trees aggregated at each single
step were chosen according to 10-fold cross validation. A tree was aggregated to the
sequence if it provided the lowest cross validated generalization error with respect to the
other trees obtainable from different aggregations of (subgroups of) response classes.
The results of the SASSC algorithm are summarized in Figure 3. It compares the
performance of the SASSC model formed by g=2 up to g=6 superclasses with that of CART
using, in all cases, either Gini or Twoing as splitting rules. Bagging (Brieman, 1996) and
Random Forest (Breiman, 2001) are used as benchmarking methods as well. Computations
have been carried out using the R software for statistical computing.
The SASSC model using 2 superclasses consistently improves the results of CART using the
Gini (Twoing) splitting rule since the generalization error reduces to 0.49 (0.34) from 0.52
(0.49). As expected, the choice of the splitting rule (Gini or Twoing) is relevant when the
number of superclasses g is relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for

higher values of g (results for g ≥ 5 are almost identical). Focusing on the Gini splitting
criterion, the SASSC’s generalization error further reduces to 0.11 when the number of
subsets increases to 6. For comparative purposes, Bagging and Random Forest have been

www.intechopen.com

 Advances in Evolutionary Algorithms

462

trained using 6 and 10 classifiers respectively and, in these cases, obtained generalization
errors are worse than those deriving from SASSC with g = 6. As for Bagging and Random
Forest, increasing the number of trees used to classify each subset of randomly drawn
objects improves the performance of these two methods in terms of prediction accuracy. The
reason is that their predictions derive form (“in-sample”) independent bootstrap
replications. Instead, cross-validation predictions in SASSC derives from aggregations of
classifications made on “out-of-sample” observations that are excluded from the tree
growing procedure. Thus, it is natural to expect that cross-validation predictions are more
inaccurate than bagged ones. Of course, increasing the number of subsets of the response
classes in SASSC reduces the cross-validated generalization error but, at the same time,
increases the complexity of the final classification model. In spite of a relatively lower
accuracy, interpretability of the results in SASSC with g = 6 is strictly preserved.

Figure 3. The generalization errors for the Letter Recognition dataset provided by
alternative approaches: as for SASSC, subscript G(T) indicates the Gini (Twoing) splitting
rule, whereas apex g indicates the number of superclasses (i.e., decision trees) identified by
the algorithm. The subscript for Bagging and Random Forest indicates the number of trees
used to obtain the classification by majority voting.

6. Discussion and conclusions

In the last two decades, computational enhancements highly contributed to the increase in
popularity of DTI algorithms. This cause the successful use of Decision Tree Induction (DTI)
using recursive partitioning algorithms in many diverse areas such as radar signal
classification, character recognition, remote sensing, medical diagnosis, expert systems, and
speech recognition, to name only a few. But recursive partitioning and DTI are two faces of

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

463

the same medal. While the computational time has been rapidly reducing, the statistician is
making more use of computationally intensive methods to find out unbiased and accurate
classification rules for unlabelled objects. Nevertheless, DTI cannot result in finding out
simply a number (the misclassification error), but also an accurate and interpretable model.
Software enhancements based on interactive user interface and customized routines should
empower the effectiveness of trees with respect to interpretability, identification and
robustness. The latter considerations have been the inspiration for the algorithms presented
in this chapter aimed at the improvement of DTI effectiveness. They lead to easily
interpretable solutions for rather complicated data analysis problems and can be fruitfully
used in different fields of Knowledge Discovery from Databases (KDD) and data mining
such as, for example, web mining and Customer Relationship Management (CRM).
A Genetic Algorithm for multi-attribute predictor splitting is proposed in this chapter. It can

be said that the proposed GA works very well in presence of treatable splitting predictors,

for which the exhaustive enumeration is affordable. The algorithm always reaches the global

optimum very quickly. This makes possible to think positively, even if nothing can be said,

of course, about the case in which the number of attributes gets too large for the exhaustive

enumeration and evaluation. Obtained results can be considered definitely useful in those

cases where there are no other ways to attack the problem. Future research directions will

include exhaustive enumerations on bigger datasets on a grid computing infrastructure.

In addition an Ant Colony Optimization algorithm is also proposed for exploratory tree

growing. Such algorithm could be useful for the situations in which high accuracy is

required from the decision tree would. Ant System, on the other hand, is the simplest (yet

less efficient) ACO technique, so that the use of more powerful ACO algorithms (which is

currently under development) would reasonably bring better results. It is well known that

ACO algorithms reach their maximum efficiency when coupled with local search techniques

or can improve their efficiency by making use of candidate lists.

Finally, a sequential search algorithm for modelling multi-attribute response through DTI

has also been introduced. The motivation underlying the formalization of the SASSC

algorithm derives from the following intuition: basically, since standard classification trees

unavoidably lead to prediction inaccuracy in the presence of multi-class response, it would

be favourable to look for a relatively reduced number of decision trees each one relating to a

subset of classes of the response variable, the so called super-classes. Reducing the number

of response classes for each of those trees naturally leads to improve the overall prediction

accuracy. To further enforce this guess, an appropriate criterion to derive the correct number

of super-classes and the most parsimonious tree structure for each of them has to be found.

In this respect, a sequential approach that automatically proceeds through subsequent

aggregations of the response classes might be a natural starting point.

The analysis of the Letter Recognition dataset demonstrated that the SASSC algorithm can

be applied pursuing two complementary goals: 1) a content-related goal, resulting in the

specification of a classification model that provides a good interpretation of the results

without disregarding accuracy; 2) a performance-related goal, dealing with the development

of a model resulting effective in terms of predictive accuracy without neglecting

interpretability. Taking these considerations into account, SASSC appears as a valuable

alternative to evaluate whether a restricted number of independent classifiers improves the

generalization error of a classification model.

www.intechopen.com

 Advances in Evolutionary Algorithms

464

7. References

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone C.J. (1984) Classification and Regression
Trees, Wadsworth, Belmont CA.

Breiman, L. (1996) Bagging Predictors, Machine Learning, 24, 123-140.
Breiman,, L. (2001). Random Forests, Machine Learning, 45, 5-32.
Cappelli, C., Mola, F., & Siciliano, R. (2002), A Statistical Approach to Growing a Reliable

Honest Tree, Computational Statistics and Data Analysis, 38, 285-299.
Chan, K. Y. & Loh, W. Y. (2004). LOTUS: An algorithm for building accurate and

comprehensible logistic regression trees. Journal of Computational and Graphical
Statistics, 13, 826–852.

Choi, Y., Ahn, H. & Chen, J.J. (2005). Regression trees for analysis of count data with extra
Poisson variation. Computational Statistics and Data Analysis, 49, 893–915.

Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., & Trubian, M. (1996).
Heuristics from nature for hard combinatorial problems. International Transactions
in Operational Research, March, 1-21.

Conversano, C. (2002) Bagged mixture of classifiers using Model Scoring Criteria. Patterns
Analysis & Applications, 5, 4, 351-362.

Dietterich, T.G. (2000) Ensemble methods in machine learning. In J.Kittler and F.Roli, (Eds.),
Multiple Classifier System. First International Workshop, MCS 2000, Cagliari, vol.
1857 of Lecture notes in computer science. Springer-Verlag.

Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization. The MIT Press, London. 1-15
Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di

Milano, Italy.
Fogarty, T. (1992) First Nearest Neighbor Classification on Frey and Slate’s Letter

Recognition Problem (Technical Note). Machine Learning, 9, 387-388 .
Fogel, L. J. (1997). A retrospective view and outlook on evolutionary algorithms. In Fuzzy

Days, 337–342.
Fogel, D. B. & Fogel, L. (1993). Evolutionary computation. IEEE Transactions on Neural

Networks, 5(1):1–2.
Freund, Y., & Schapire, R. (1996), Experiments with a new boosting algorithm, Machine

Learning: Proceedings of the Thirteenth International Conference, 148-156.
Frey, P.W. & Slate, D.J. Letter Recognition Using Holland-style Adaptive Classifiers. Machine

Learning, 6, 161-182.
Gama, J. (2004), Functional trees, Machine Learning, 55, 219–250.
Hastie, T., Friedman, J. H., & Tibshirani, R., (2001). The Elements of Statistical Learning: Data

Mining, Inference and Prediction, Springer.
Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional

inference framework, Journal of Computational and Graphical Statistics, 15, 651–674.
Hyafil & Rivest (1976). Constructing optimal binary decision trees is NPcomplete. IPL:

Information Processing Letters, 15-17.
Klaschka, J., Siciliano, R., & Antoch, J. (1998): Computational Enhancements in Tree-

Growing Methods, in: Rizzi, A., Vichi, M. & Bock, H.H. (Eds.), Advances in Data
Science and Classification: Proceedings of the 6th Conference of the International
Federation of Classification Society, Springer-Verlag, Berlin Heidelberg. 295-302

Loh, W.Y. (2002). Regression trees with unbiased variable selection and interaction
detection. Statistica Sinica, 12, 361-386.

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

465

Mehta, M., Agrawal, R. & Rissanen J. (1996). SLIQ. A Fast Scalable Classifier for Data
Mining. In Proceedings of the International Conference on Extending Database
Technology EDBT, 18-32.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, third edition.

Miele, R., Mola, F., Siciliano, R. (2005). J-Fast: An Interactive Software for Classification and
Regression Trees. In Proceedings of the Classification and Data Analysis Group
(CLADAG) of the Italian Statistical Society. Parma, Italy, 437-440

Miele, R. (2007). Nature Inspired Optimization Algorithms for Classification and Regression
Trees. Ph.D. Thesis. Univeristy of Naples “Federico II”.

Mola, F., & Conversano, C. (2008) Sequential Automatic Search of a Subset of Classifiers in
Multiclass Learning, in: Brito P. & Aluja-Banet T. (Eds.) COMPSTAT 2008
Proceedings in Computational Statistics, Physica-Verlag, to appear.

Mola, F., & Siciliano, R. (1997). A fast splitting algorithm for classification trees. Statistics and
Computing, 7, 209–216.

Oliver, J.J., & Hand, D. J. (1995). On Pruning and Averaging Decision Trees, in Machine
Learning: Proceedings of the 12th International Workshop,430-437.

Quinlan, J.R., (1983). Learning Efficient Classification Procedures and Their Application to
Chess and Games. In Michalski R.S., Carbonell J.G. & Mitchell T.M. (ed.): Machine
Learning: An Artificial Intelligence Approach, 1, Tioga Publishing, 463-482.

Quinlan, J.R., (1987). Simplifying decision tree. International Journal of Man-Machine Studies,
27, 221–234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann.
Siciliano, R., (1998). Exploratory versus decision trees. In: Payne, R., Green, P. (Eds.),

COMPSTAT 1998 Proceedings in Computational Statistics. Physica-Verlag, 113–124.
Siciliano, R. & Mola, F. (2000). Multivariate Data Analysis through Classification and

Regression Trees, Computational Statistics and Data Analysis, 32, 285-301, Elsevier
Science, 2000.

Su, X., Wang, M. & Fan, J. (2004). Maximum likelihood regression trees. Journal of
Computational and Graphical Statistics, 13, 586–598.

Vose, M. D. (1999). The simple genetic algorithm: foundations and theory. MIT Press,
Cambridge, MA.

Appendix: The J-FAST software

The algorithms presented in this chapter have been implemented in the Java language. In
order to make it possible to test them on real datasets a Java segmentation framework, called
J-FAST, has been developed. The first aim of this software is to take care of all the necessary
operations to perform before and after running the recursive partitioning algorithm. These
can be summarized as follows: reading data from text files and spreadsheets; processing
data before carrying out the tree growing process; specifying the type of recursive
partitioning algorithm to be applied (i.e., classification or regression tree) ; interpretation of
the results.
The J-FAST program is a Java-based recursive partitioning software, which is particularly
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform
application for building classification and regression trees using any kind of heuristic in the
tree growing process (like the CART greedy algorithm or the FAST branch and bound

www.intechopen.com

 Advances in Evolutionary Algorithms

466

heuristic or any other one written by the user). It also allows to interactively visualize and
compare the results. J-FAST divides the recursive partitioning procedure into three main
sections. The data-importing Graphical User Interface (see Figure 4) allows to read data
from Excel-like spreadsheets and plain text files and automatically recognises the nature of
the variables by distinguishing the categorical, numerical or alphanumerical columns of a
data matrix. J-Fast also allows the user to specify the Decision Tree Induction model by
choosing the response variable, as well as which predictor(s) should be treated as ordinal,
nominal or as excluded from the analysis.

Fig. 4. J-Fast data importing Graphical User Interface

A second GUI visualizes some information about the chosen DTI model and provides some
descriptive statistics about the analyzing data. It also allows the user to specify which are
the features of the DTI model under specification, such as the learning sample rate, the
stopping conditions, the possibility of obtaining a verbose output. It also asks the user to
choose between all the recursive partitioning heuristics that are present into the class path.
Then, the software starts the tree growing procedure.
The third component of the J-FAST software is the results navigator. It allows the user to
interactively display and navigate into the results of the analysis.
The results navigator GUI (see Figure 5) consists of two windows. The first one is the main
results window. It visualises the obtained decision tree, charts the misclassification rates and
the selected node’s information panel (there is a button for visualizing the splitting rule to
reach the node, the misclassification rate for the node, etc.). The second component is the
Tree Console Window (Figure 6). It contains buttons that allow the user to navigate through
the pruning sequence and access directly the best, the trivial and the maximal tree. For each
tree in the pruning sequence, the node that is going to be pruned is highlighted. By clicking

www.intechopen.com

Evolutionary Algorithms in Decision Tree Induction

467

on the node, the interface allows to get the data units which fall in that node and to write
them into a file in order to continue the analysis of such units using another software. It is
also possible, from the second step GUI, to simultaneously start more than one analysis in
order to obtain different tree navigators simultaneously on the screen. This feature is
particularly useful for comparing trees grown from different datasets or on the same dataset
but with using different DTI specifications.

Fig. 5. J-Fast data results navigator Graphical User Interface

J-FAST is more than a simple recursive partitioning software. Because of the fact that it has
been mainly designed to support the research activity, it offers many useful functions like
the possibility of saving created objects (trees, datasets, nodes, etc.) via the Java serialization
mechanism in order to better analyze using other ad-hoc written Java programs (some of
them have already been implemented, like a different tree interface called “TreeSurfer”).
Interactivity with the R statistical software is also provided: by right-clicking on a node it is
possible to send the corresponding data to R in order to continue the analysis. This is
particularly useful if another statistical analysis (i.e. a logit model) has to be made on a
particular segment (node) extracted from the obtained decision tree.
J-FAST has to be also considered as a Java objects Library (or API - Application Program
Interface), for building Classification and Regression Trees. Any researcher which is able to
program in Java could use the classes from the J-FAST API in order to get trees without
having to write all the necessary code. In addition, the J-FAST platform offers many useful
objects. The most important ones are:

• Statistics: it provides univariate and bivariate descriptive statistics.

• DataSet: it stores data for recursive partitioning purposes (response variable, predictors,
etc.).

• Split: it specifies the type of split (binary, ternary,etc.)

www.intechopen.com

 Advances in Evolutionary Algorithms

468

• TreeGrower: it is a class for growing decision trees

• Pruner: it is class that for decision tree pruning

• TreeViewer: it is a interactive interface class

• Utility: it encompasses many useful function like reading data from plain text files,
Excel-like spreadsheets, etc.

• TreeBuild interface: it defines all the rules to follow for the programmer to write his
own heuristic.

Fig. 6. J-Fast tree console window Graphical User Interface

www.intechopen.com

Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Francesco Mola, Raffaele Miele and Claudio Conversano (2008). Evolutionary Algorithms in Decision Tree

Induction, Advances in Evolutionary Algorithms, Xiong Zhihui (Ed.), ISBN: 978-953-7619-11-4, InTech,

Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/evolutionary_algorithms_in_decision_

tree_induction

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

