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Abstract

The construction of bridges or viaduct structures represents major infrastructure works
of vital importance for human communities, and therefore they must be made to with-
stand both the traffic and the seismic events. Therefore, all necessary measures should be
taken so that these structures can remain functional even after the action of earthquakes
of considerable magnitude. A high level of safety for these structures can be ensured if
within the resistance structure some special mechanical systems are mounted, which will
be able to improve the building assembly behaviour when an earthquake occurs. This
kind of mechanical system capable of ensuring a high level of safety for the isolated struc-
ture is described in this paper. The isolation system assembly consists of a rolling pendu-
lum device combined with elastomeric system. This system was built and experimentally
tested at random vibrations. The experimental results are presented regarding motion pa-
rameters recorded at the pier and superstructure level. The combination between effects
of the two dissipating system types represents the optimum solution intended to achieve
an improved response of the isolated structure when subjected at dynamic actions. There-
fore, it represents a special system which can be successfully used in the endowment of
bridge or viaduct structural type.

Keywords: Dissipation system, rolling friction, anti-seismic device, experimental model-
ling

1. Introduction

Within a region infrastructure elements such as highways, roads and rails has strategic
importance because it determines the economic growth and the level of development for that
region. The bridge or viaduct structural types represent special structures that provide access
for crossing ariver course or a valley, assuring a vital connection between human communities.
Therefore, such structures must be kept in operation even when high-magnitude earthquakes
occur. Tobe able to withstand the demands in dynamicregime to which these special structures
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are subjected, the design engineers must consider the use of resistant materials and appropriate
dimensioning of the resistance structure. In addition to these methods, special protective
systems are being used that can provide structure isolation against destructive dynamic
actions. Such systems are successfully used for the endowment of bridges and viaducts
worldwide. These protective systems are mechanical systems capable of assuming some of the
earthquake energy aiming to dissipate and transform it into another form of energy. Usually,
the mounting solution for the dissipating energy devices is interposed between the structural
frames of the bridge or viaducts. Therefore, the total energy of the earthquake is not reaching
the superstructure being consumed at the isolation system level. An experimental model of
the hybrid isolation system is described in this paper. This model consists of a rolling pendu-
lum system combined with an elastomeric system. The idea of building such a system was to
achieve the combined effects of the two systems types represented by rolling dissipative
system and elastomeric system. This system has been experimentally tested on a reduced scale
structure and the results are shown in the following.

2. Dissipation device model assembly

The mounting principle of the dissipation system can be accomplished through attachment to
the structural frames of the isolated structure. It can be seen that it can be mounted between
the foundation and the superstructure of the bridge ensuring a disconnection between the two
structural elements. Therefore, the earthquake-induced efforts at the foundation level cannot
be fully transmitted to the superstructure because they are consumed by the composed
dissipation system. Figure 1 shows the mounting principle and mathematical model of
isolation system at the bridge structure.

Superstructure

— Elastomeric © “-Foundation
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Figure 1. Composed isolation system mathematical model [1, 2].
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The equation of motion with rolling system can be written as:
m, X, + F sign(x,) =-m X, (1)

where F, is the restoring force.

Also, the addition of elastomeric systems determines the following equations of motion:

()

{mz3 +cz,+kz,=0
mi, +c x, +kx,=0

3. Experimental test

An experimental bridge structure was built at a reduced scale to which a composed isolation
system, also built on a small scale, was added. The isolated structure assembly equipped with
the dissipation system is schematically shown in Figure 2. The rolling friction device is
composed of two main rolling plates (a flat and a spherical surface), a central spherical part
positioned between the two main rolling surfaces which moves by rolling ensuring relative
movement of the two main surfaces. Thus, a specific movement undertaken by the foundation
ground along with the bridge pier is filtered through the rolling friction and the elastomeric
isolation system, so that the request is not fully transmitted on vertical direction to the
superstructure which tends to remain in equilibrium position during any dynamic action.

Superstructure
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Figure 2. Schematic representation for the isolation system model assembly [3].

The bridge model has four isolation systems positioned at the ends of the beam or superstruc-
ture. Tri-axial accelerometers have been mounted in the bridge pier and beam. The excitation
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is provided with a special device that provides a set of random vibrations at the pier level.
Because of the excitation force of random value, at the isolation system level, the spherical steel
parts are rolling on the main steel spherical surface, while the friction coefficient is in the range
of 0.15-0.18 (Coulomb friction without lubrication) [4, 5].

The experimental results recorded are presented for the main transversal and longitudinal
directions of movement at the level of support pier and the isolated superstructure. Figure 3
presents the values recorded at the pier support on the transversal direction of motion.
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Figure 3. Experimental results obtained for pier transversal direction of motion. (a) Acceleration values vs. time. (b)
Acceleration amplitude values vs. time. (c) Spectrogram of frequency values vs. time.
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Figure 4. Experimental results obtained for superstructure transversal direction of motion. (a) Acceleration values vs.
time. (b) Acceleration amplitude vs. frequency. (c) Spectrogram of frequency vs. time values.

The results obtained are presented in order to highlight the differences between the values
obtained at the support pier and at the superstructure level. Figure 4 presents the recorded
values at the superstructure level on the transversal direction of motion. Figure 5 presents the
values obtained at the support pier for the longitudinal direction of movement.
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Figure 5. Experimental results obtained for pier longitudinal direction of motion. (a) Acceleration values vs. time. (b)
Acceleration amplitude vs. frequency values. (c) Spectrogram of frequency values vs. time.

Figure 6 presents the obtained result values at the superstructure level for the longitudinal
direction of movement.
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Figure 6. Experimental values obtained for superstructure longitudinal direction of motion. (a) Acceleration values vs.
time. (b) Acceleration amplitude values vs. frequency. (c) Spectrogram of frequency values vs. time.

The values obtained for acceleration amplitude at the level of pier and superstructure are
presented in Table 1 for both transversal and longitudinal directions. The differences between
the values obtained at the support pier and the superstructure for both directions of movement
can be observed due to isolation system action.
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Values for transversal direction of motion

Pier Superstructure
Acceleration Acc. amplit. Acceleration Acc. amplit
[m/s2]x107° [m/s?2]x107° [m/s?]x107° [m/s?]x107°
9.97 2.362 4.718 3.03
7412 7.95 7.751 2.712
1.107 1.895

Values for longitudinal direction of motion

Pier Superstructure
Acc Acc amplit Acc Acc amplit
[m/s?1x107° [m/s?1x107° [m/s21x107° [m/s21x107°
8.741 3.059 2.359 2.32
13.11 8.023 3.707 3.848
13.11 4.241 3.707 3.848

Table 1. Numerical values obtained for both transversal and longitudinal directions of movement
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Figure 7. Graphical representation for the recorded values on the transversal and longitudinal directions of motion. (a)
Transversal direction of motion. (b) Longitudinal direction of motion.
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Figure 7 presents the graphical representation of numerical results obtained on transversal
and longitudinal directions of movement.

On the graphs, representations of the values obtained and the motion mitigation trend at the
isolated superstructure level can be observed due to action of the hybrid isolation system
mounted.

4. Conclusions

A composed isolation system has been described and experimentally tested in this paper. For
the presentation of experimental results obtained the spectral analysis was used. The images
obtained by decomposing of the waves produced as a result of the application of excitation on
the structural model were recorded and arranged by wavelength and frequency. The values
obtained are presented taking into account the isolated structural element and the recording
on main directions of movement. The main maximum values recorded for the motion ampli-
tude at the level of support pier and superstructure were highlighted. The general trend is of
motion mitigation for the superstructure as can be seen in the both transversal and longitudinal
direction of movement. A set of random vibrations was chosen in order to move the structure
because it simulates the action of a real earthquake.
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