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Abstract

Spatial analysis has been one of the most rapidly growing fields in ecology. It is related
directly  to  a  growing  awareness  among  researchers  that  a  spatial  structure  of
biosystems, e.g.,  forests,  is important in ecological thinking. The availability of the
specific software supports the use of spatial analyses in different fields of the science
and forestry science is only one example for this. Many data collected in the forests
have the spatial and temporal dimensions and it allows us to use spatial statistics to
quantitative description of the spatial structure of forest, which became an important
element of modern continuous cover forestry. In this chapter, key elements: data types,
null models, and summary statistics,  which can be applied in spatial analyses, are
briefly described. Real data sets collected from different forests were given to provide
examples of spatial analyses. The key elements of spatial analysis in ecology are data
type, the appropriate choice of summary statistics and null models. Selecting few of
them in  a  single  analysis  makes  the  statements  more  reliable  and realistic  in  the
changing world.

Keywords: spatial explicit indices, spatial functions, point pattern statistics, forest
structure diversity, forest dynamics

1. Introduction

Ecologists have been interested in spatial and temporal dimensions of ecological processes
in plant populations for a long time. While data collected in most ecological studies have
spatial and temporal aspects, the importance of spatio‐temporal analysis has been discovered
recently.  As stated in Reference [1],  until  the 1980s,  most  ecological  studies avoided the
explicit consideration of space and most of the field experiments were designed to remove
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spatial signals. Techniques such as randomization and block designs were especially common
in use.

During the 1980s, there was a fundamental shift in ecology toward spatial explicit consider‐
ation of relationships between organisms. Among factors favorable to use spatial analysis
in ecological studies one can distinguish the needs to include spatial structure of natural
systems in ecological theories, changes in landscapes altering ecosystems, and the needs to
evaluate their spatial heterogeneity and—which was most influential—to develop a mod‐
ern technology which increase possibilities in analyzing a large spatio‐temporal data sets
together with the development of specific statistical methods (e.g., point process statistics),
technology (e.g., LIDAR), and software dedicated to spatial analysis [2]. The third factor
allowed to analyze, model and visualize a complex spatial relationships between organ‐
isms even in rather complex biosystems, like tropical forests. Thus, at present, spatial anal‐
ysis has been one of the most rapidly growing fields in ecology and it is now related
directly to a growing awareness among researchers that spatial structure of populations
(e.g., forest trees) is important in ecological thinking.

An important concept related to biological structures includes self‐organization, structure
relations, and pattern recognition [3]. Self‐organization involves a variety of interactions be‐
tween individuals (e.g., competition, facilitation), which can modify their growing spaces
and spatial niches. Ecological processes leave signs in the form of spatial patterns but the
spatial structure of the system can determine its properties, as well. In a forest, for exam‐
ple, population structure affects the biomass production, biodiversity, and habitat func‐
tions. Pattern recognition plays thus an important role in forest ecology and usually helps
to identify and link spatial patterns with corresponding properties of population [1, 4–7].

The questions tried to be answered on the basis of spatial analysis often revolve around
identifying the potential causes, e.g., ecological processes and mechanisms, staying behind the
observed arrangement of individuals in the population [1, 8]. Historically, spatial analysis
based on point pattern statistics provided only the assessment whether the empirical pattern
of the studied population emerged by chance, which meant that individuals’ occurrence did
not depend on the presence of others, and the probability of the occurrence was the same across
the whole study area. This expectation is called complete spatial randomness (CSR). Two
alternatives to CSR are individuals that are distributed according to the specific mechanisms
promoting either their overdispersion (aggregations, clumping) or underdispersion (regular‐
ity) [1, 8]. Nowadays, modern spatial statistics, e.g., point pattern analysis, allows us to find
out more detailed information on spatial relationships between individuals in the investigated
population. Some complex null models, such as Cox and Gibbs processes, can be helpful for
that. In general, cluster models of Thomas, Neyman‐Scott, and Matern, being representatives
of Cox processes, provide detailed information on the average cluster size and the number of
clusters per unit area. On the other hand, the Gibbs class of point process models (e.g., Strauss
and Markov processes) can characterize inhibition mechanisms between individuals [8]. Point
process models, mentioned above, are important tools employed in spatial analyses. Their
importance results from their usefulness in determination weather there is any significant
spatial structure in empirical data, they can summarize the properties of the spatial structure
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and test ecological hypotheses concerning the mechanisms that may generate the observed
spatial structure in a data set [1].

Fundamental ecological questions arising in forestry concern the forest structure and its
influence on forest dynamics, forest productivity, and biodiversity [9–12]. This refers to the
way in which the attributes of trees (species, sizes) are distributed in the forest.

It affects most ecological processes running in the forest ecosystem, among which forest
regeneration, tree growth, surviving and mortality, seed dispersal, competition, or facilitation
between individuals are especially important (Figure 1). Moreover, most of biological proc‐
esses generate themselves the specific structures. Thus, the structure‐processes relations are
not independent. Forest dynamics depends thus to a large degree on the forest structure.

Figure 1. Feedback loop determining forest stand dynamics [9, modified].

This chapter is divided into the following subchapters:

1. Data types—what should be known before running the spatial analysis.

2. Patterns and processes—the mutual dependence causes some inferential problems.

3. Spatial indices—an easy way to describe population structure.

4. Functional spatial statistics—the most informative way to discover complex structures.

5. Conclusion

2. Data types—what should be known before running the spatial analysis

Generally, the aim of spatial analysis is to describe the structure of the pattern created by objects
distributed in space. Each object is usually treated as a point, regardless their real shapes and
point pattern statistics seem to be valuable tools in such analysis.

As mentioned above, most data collected in ecological studies can be characterized by spatial
dimensions. However, data can be of different types and selection of the appropriate statistical
method (the so‐called summary statistics) depends on two things: the data we want to analyze
and ecological questions we want to answer [8, 13]. Individuals being the subjects of spatial
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analysis are usually characterized by their location (x, y coordinates) and additionally by their
different attributes, quantitative, or qualitative ones (e.g., size, species, sex, quality, health
status, and age). It is also possible to use as a tree attribute any constructed mark [14].

Individuals described only by coordinates can be analyzed as the so‐called unmarked point
pattern, while data described by any mark are suitable to analyze as the marked point pat‐
tern [8, 15]. The appropriate summary statistics (indices and functions) that quantify the
statistical properties depend on the form of the data type one collected in the field. Anoth‐
er important issue associated with the point pattern analysis is the heterogeneity of envi‐
ronment conditions. In ecology, heterogeneity plays an important role and its
quantification seems to be a key task in spatial analysis. To do that, the information on
environmental covariates (soil quality, slope, aspect, etc.) should be incorporated in analy‐
sis [16].

In the unmarked point pattern analysis, one would like to characterize the spatial relation‐
ships between objects, e.g., trees in the forest. Moreover, the unmarked pattern may include
one or more types of individuals. The analysis of such point patterns concerns the follow‐
ing basic categories: univariate, bivariate, and multivariate point patterns [1, 15]. Univariate
point pattern analysis is focused only on one type of points, e.g., particular tree species.
The questions to be answered are about the understanding of the mechanisms (processes)
responsible for the distribution of the individuals within the study area. The fundamental
null model for the univariate analyses is the complete spatial randomness and it is called
the (homogeneous) Poisson model. According to CSR, points are distributed with equal
probability within the region of interest and each point is distributed independently of the
others. The alternatives to CSR are, either aggregated or hyperdispersed arrangement of
points. In the case of the bivariate point pattern, two types of points are the subjects of
analysis. It is important to keep in mind that these two types of points must be created by
two different processes [8]. Such points have the so‐called a priori properties [16]. Good
examples of bivariate point patterns in forest studies are analyses of spatial correlation be‐
tween two different tree species or live stages (adults and juveniles). In the case of the bi‐
variate pattern, the null model is spatial independence of two patterns and the alternatives
are spatial attraction (positive association) and spatial repulsion/segregation (negative asso‐
ciation). The main question is focused on the role of interactions between two types of
points. Bivariate analysis can support the theory of species coexistence in multispecies for‐
ests [17–22]. In multivariate point pattern analysis, several data types (e.g., tree species) are
involved and each of them is created by different processes. The relevant ecological ques‐
tions for such data types involve detecting and understanding spatial structures in diversi‐
ty, namely whether tree species tend to form intraspecific and interspecific structures or
different tree species tend to be well mixed over the study region. According to the hy‐
pothesis of spatial segregation in promoting the species coexistence, for example, intraspe‐
cific clusters for a certain species are responsible for the interspecific segregation [1, 16, 23].

In spatial analysis mentioned above, points of similar or different type were characterized only
by their location. If we describe each point additionally by any mark (e.g., tree diameter, tree
height, and health status), we obtained qualitatively or quantitatively marked patterns. Thus,
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summary statistics from the so‐called marked point pattern statistics should be used. Quali‐
tative marks are usually created by the a posteriori marking process over the given point
pattern. This situation is quite different from the case of the bivariate pattern, created by a
priori process. In the case of a qualitatively marked point pattern, one is interested in the
characteristics of the process distributing the marks over the pattern. The relevant null model
for qualitative marks is a random labeling (or independent marking) model, in which marks
are shuffled in a random way over the joined pattern [1, 15]. In the case of quantitative marks,
the relative ecological questions are about the spatial correlation of marks created a posteriori,
too [7, 24, 25]. Such analysis can reveal, for example, the importance of competition (or
cooperation) between trees in the dependence on the distance they are apart from each other.

Figure 2 presents major characteristic of the forest structure and its important variables.

Figure 2. Major characteristics of the forest structure and its measures.

3. Patterns and processes: complex mutual dependence

As mentioned above, the natural processes and mechanisms leave some traces in the spatial
pattern of individuals occupying a certain area [6]. These traces encompass different aspects
of population structure: species composition and species mixing, spatial arrangement of
individuals and spatial variation of their size [26, 27]. To understand the functional processes
it is needed to identify the structure and spatial scales at which processes operate. Spatial
patterns in plant populations, e.g., forests, determine their integrity, functionality as well as
stability to the large extent [1, 5, 9, 10, 16, 26, 28].
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In ecological studies, there are numerous examples of the attempts of inference the under‐
ling processes from the observed patterns (structures). Spatial patterns of any population
can be treated as an “ecological archive” in which the past ecological processes are con‐
served [16]. Decoding the signals from spatial patterns is still challenging due to the com‐
plex relationships between the pattern and the structure of plant population. Some potential
problems arise from the fact that different processes can generate the same spatial pattern or
they may interact. The processes may also be the result of the specific spatial patterns (spa‐
tial structures). Moreover, nonrandom processes can also generate random pattern [1, 6, 9,
27–31]. The inverse situations—that means a nonrandom process can create structured pat‐
terns—can be true either. Different processes do not have to interact simultaneously and a
single process can generate exactly a single pattern [32].

The appropriate use of null models in spatial analyses, as well as complete description of the
properties of the observed spatial pattern, allows us to minimize the problems stated above.
One possibility to solve them is the use of several summary statistics simultaneously. The more
structured population, the more number of summary statistics should be used in description
of the pattern [33]. However, the use of a single or two summary statistics are the most common
in the literature [16]. Historically, only a single null model, namely CSR, was used to state if
the population is randomly distributed or not. Now, there are much more null models available
for better analysis [8, 34–37].

In forests, spatial patterns revealed by trees are usually the result of three main biological
processes: tree growth, mutual interactions, and mortality [14]. All these factors influence
the forest dynamics and also its structure at the subsequent forest development stages. Tree
growth can be impeded or “accelerated” due to different ecological processes and the neigh‐
borhood effect is among others [32]. Competition processes are difficult to measure directly;
however, its effect on the tree growth and survival can be studied by spatial pattern analy‐
sis. Distance‐dependent mortality of trees has been quite frequently referred to as a conse‐
quence of density‐dependent competition, and this process frequently leads in crowded
population to a more regular distribution of surviving trees [4, 38–40]. The relationships be‐
tween small and large trees may be more complex. Small trees may tend toward aggrega‐
tion around large trees because of better moisture conditions around larger trees or they
tend to be segregated from large individuals because of poor light regimes for their growth
and development [41]. In multispecies forests, interspecific competition may be reflected by
spatial segregation of different tree species, and it is extremely important for weaker com‐
petitors allowing them to survive [42]. Thus, heterospecific segregation promotes species co‐
existence in mixed forests [1].

4. Spatial indices: an easy way to describe population structure

Spatial explicit indices can be divided into three main groups: quadrat counts, distance‐
based, and angle‐based indices. Great advantage of the use of spatial indices is related to the
fact that they are easy to calculate and results can be interpreted easily. However, the use of
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indices usually does not allow to draw conclusions on the spatial pattern of individuals at
different spatial scales, but results can be interpreted only at a single scale, e.g., nearest
neighborhood [3].

4.1. Quadrat counts

A quadrat counts method is based on counting points in subareas (quadrats) located in the
particular region of interest [8, 43, 44]. This method is the oldest and the simplest measure
of the pattern and intensity of population. The simplicity results from the fact that only the
number of objects (trees) in a quadrat is obtained and there is no need to know the exact
position of them. However, it limits the statistical analysis. The disadvantage of quadrat
counts method is that the dispersion of the objects may depend on the scale of the study and
the size of the sample unit [37, 43].

4.1.1. Variance‐mean index (VM)

The most common index that can be applied to quadrat counts is the index of dispersion, also
called the variance‐mean ratio, and being based on the Poisson distribution. For the random
distribution of points (followed the Poisson distribution), the index VM = 1. If points are
aggregated then VM > 1 and if they are evenly scattered, thus regularly distributed, the index
VM < 1 [43, 45–47]. In the first case, the variability in the process is stronger than in the Poisson
process, and in the second case—the variability is smaller. For statistical inferences about the
significance of the deviation from 1 (randomness), χ2 test for n − 1 degrees of freedom can be
used (n is the number of quadrats).

4.1.2. Morisita index (IM)

Another easy‐to‐calculate index related to the quadrat counts method is Morisita's index, IM,
calculated from the number of objects on the squares, the number of squares and the total
numbers of individuals [9, 43]. The standardized index takes the values from IMϵ{−1, 1} using
either of two values calculated from χ2 test with n − 1 degrees of freedom. If IM < 0 then points
within the population are distributed regularly, while IM > 0 indicates the aggregated spatial
structure [43]. Random distribution of individuals is for IM = 0. The standardized index is
assumed to be a very good measure of the spatial pattern because it is not affected by the
population density and sample size. This index was applied in References [48–51].

Example 1

To illustrate the application of the Morisita index, data sets from an old‐growth oak‐dominat‐
ed (Quercus robur L.) forest, located in western Poland will be used. Figure 3 presents the stem
map of the forest. Only hornbeam (Carpinus betulus L.) was taken into consideration for IM
calculations.

The dependence of the spatial point pattern on the spatial scale on the basis of the Morisita
index is presented in Figure 4. The pattern was divided into 2·2 quadrats, then 3·3, 4·4, etc., IM

index was calculated for each quadrat.
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Results indicated that trees belonging to this species were distributed in clumps (IM > 1),
especially at small spatial scale. The larger spatial scale, the lower clumping intensity was
observed.

Figure 3. Stem map generated for oak‐dominated (Quercus robur L.) old‐growth forests (Example 1), the plot size: 50 m
× 70 m. In the left panel: all live trees; red circles: pedunculated oak; green circles: hornbeam (Carpinus betulus L.). In
the right panel: the size of circles corresponds to the diameter of each tree.

Figure 4. Values of Morisita index calculated for hornbeams in an old‐growth oak‐dominated forest and its depend‐
ence on the spatial scale. The point pattern is divided into quadrats of different size, and the Morisita index is comput‐
ed each time. This plot discerns different scales of dependence in the point pattern data.

4.2. Point pattern statistics

Spatial point pattern analysis is based on the data sets consisted of objects with known
locations. Modern ecological analyses are mainly based on point pattern (process) statistics
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and objects being the subjects of analysis are represented by points and marks describing them.
In this subchapter, the most common and powerful methods are briefly described and they
are supported by examples based on the real data sets from forest ecosystems. For the readers
convenience, mathematical concepts are omitted in this chapter but they can be found in many
textbooks on spatial statistics, e.g., in Refs. [1, 8, 37, 44, 52, 53].

4.2.1. Spatial arrangement

4.2.1.1. Distance‐based indices

Spatial structure of a forest is largely determined by the relationships between close neighbors,
thus, the neighborhood scale seems to be very important. A group of methods called the nearest
neighbor statistics are based on the relative positions of individuals in the population [27].
Different indices from this group can provide the information on the different aspects of spatial
structure: spatial arrangement of trees, spatial differentiation of their sizes, spatial mingling
of tree species, etc. Some of them require an exact position of each tree in the population and
the others require the position of only a sample trees. Distance within this group can be
measured between the sample point to the nearest tree and from tree to its nearest neighbor
[54].

4.2.1.1.1. Clumping index of Clark‐Evans with Donnelly's modification (CE)

This index was introduced by Clark and Evans in 1954 and then it was modified using an edge
correction formulae [55]. This index has been historically the most commonly used in spatial
pattern analysis due to its simplicity and easy interpretation. The index is based on the
distances between the nearest neighbors, measured for each tree within the population under
investigation. It is a measure of the extent to which the population being analyze deviates from
the random one. For randomly dispersed population CE = 1. If individuals are distributed in
clumps then CE < 1, if they are dispersed regularly then CE > 1 [56] and for two alternative
pattern type it is CE > 1 (regularity) and CE < 1 (aggregated). The maximum value of CE index
is CE∼2.15 for a hexagonal distribution of individuals [55–58]. The significance of the depar‐
tures from 1 can be obtained by using a standard, normally distributed test value [59]. This
author argued that the special attention with the application of the CE index should be drawn
in populations where clustering is likely to be present. Then, other indices are assumed to
provide more reliable results. Another weakness of the CE index is that it assumes that the
process generating tree location is homogeneous and in the case of spatial variations of point
density this index will show the virtual aggregation [37].

4.2.1.1.2. Hopkins‐Skellam index of dispersion (HS)

This index, unlike CE, takes the nearest neighbor distances between the randomly sampled
points and the random object of the pattern (e.g., tree). The pattern is random when points are
independently distributed from each other and the distance from the data point to its nearest
neighbor should have the same probability distribution as the distance from a fixed spatial
location to the nearest point of the pattern [43, 37]. This index, similarly to the CE index, is

Structural Diversity of Plant Populations: Insight from Spatial Analyses
http://dx.doi.org/10.5772/65320

103



dimensionless. For random population HS = 1, for aggregated structure HS < 1 and for regularly
spaced individuals, HS > 1. The HS test compares the value of the index to the F‐distribution.
Hopkins‐Skelam index is less sensitive than CE due to edge effect bias and spatial inhomoge‐
neity [37].

4.2.1.2. Angle‐based indices

Both indices described above require the measurement of the distances that is rather time
consuming and laborious. For this reasons, two indices based on angles between nearest
neighbors, namely, contagion index and mean directional index, have been introduced by
Corral‐Rivas et al. [60] and Aguirre et al. [61], respectively. Their basic idea is to characterize
the spatial pattern of trees at the neighborhood scale by the directions under which the n
neighbors of the so‐called reference point were visible. Each point of the pattern takes a role
of reference point.

4.2.1.2.1. Uniform angle index (also known as contagion index) (UAI)

This index is based on the classification of the angles αij (i refers to the reference tree and j to
its neighbors) between two neighbors. It compares these angles with an appropriate reference
angle, α0, which is selected so that it yields 360°/n [10]. The contagion is defined as the
proportion of angles αij between the four neighbors, which are smaller than α0, and the index
takes the values between 0 (regularity) and 1 (clumping). In the case of four neighbors, UAI
can take five values: 0.0, 0.25, 0.5, 0.75, and 1.0. Mean values for a stand are an arithmetic mean
of all UAI values calculated for each trees. Mean values of UAI > 0.6 indicate clumped
distribution and UAI < 0.5—regularity [9, 10, 62]. More informative than the stand average
value is the distribution of UAI that provides detailed information how many trees are
arranged in clumps and how many trees are distributed randomly or regularly. As stated
above, this index is a suitable tool when the number of points exceeds 100 individuals [61].

4.2.1.2.2. Mean directional index (MDI)

This index is more conventional that the previous one and more accurate angle measurements
are necessary, but still no distances should be measured. Usually, values obtained by MDI index
correspond well with values obtained by the UAI index. If trees are distributed in regular
manner MDI = 0 and if they are distributed in clumps—MDI takes larger values. The mean
MDI index for the stand can be also calculated. The value of the MDI index for a random
population is exact 1.7999 (∼1.8). Thus, values MDI > 1.8 indicate aggregated structure and
MDI < 1.8—regular distribution of individuals. This index is suitable in the case of the
populations with the number of individuals exceeding 50 objects [61, 63].

Example 2

The application of spatial indices is supported by real data set collected from old‐growth oak‐
dominated (Quercus robur L.) forest, located in western Poland. Figure 3 presents the stem map
of trees in the forest located in the nature reserve in Poland. This forest has been excluded from
any human interventions since the last 50 years. The main tree species is pedunculated oak
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(overstory), and hornbeam (Carpinus betulus L.) in the understory. The age of oaks was
approximately 160 years and hornbeam ca. 70–90 years. Each tree was described by its
coordinates and marks: diameter at the breast height (dbh in cm) and the total tree height (h in
m). Table 1 presents the values for nearest‐neighbors indices (CE, HS, UAI and MDI) for all
trees and for each tree species, separately.

Spatial measure All trees Pedunculate oak Hornbeam

CE 0.90* 1.10 0.90*

HS 0.65* 0.89 0.56*

UAI 0.51 0.50 0.51

MDI 1.89* 1.99* 1.88*

*Significant departures from CSR at the α = 0.05.

Table 1. Average values of spatial indices calculated for all trees in old‐growth oak‐dominated forest.

Both distance‐based indices, CE and HS, clearly indicated clustering of all living trees. In the
case of angle‐based indices, only MDI was consistent with results obtained by distance‐based
ones. The UAI showed random distribution of living trees. Oaks showed random distribution
and it was confirmed by CE, HS, and UAI indices but not by MDI. The latter showed their
clumped distribution. The spatial pattern of hornbeam was also clumped and most indices
confirmed that, except UAI. On the basis of obtained results, one can state that the spatial
pattern of trees in the forest density of hornbeam, easily regenerated from sprouts.

4.2.2. Spatial variation in size: spatially explicit size differentiation indices

Apart from the spatial arrangement of trees, tree size differentiation is assumed to be an
important characteristic describing population diversity. Two commonly applied spatial
indices seem to be interesting: size differentiation index and (relative) dominance index.

4.2.2.1. Size differentiation index (T)

This index describes the similarity or dissimilarity of size of individuals being the nearest
neighbors. The neighborhood of the reference tree consists of three or four neighbors of a
reference tree. The T index is a single value calculated for each tree within the population and
an arithmetic mean gives the information on the average size differentiation of trees in the
forest. In extremely high structured population the value of T = 1, whereas in population where
individuals are quite similar it is close to T = 0. The arithmetic mean provides the general insight
into structural diversity of the forest, at the stand level. However, more informative is the share
of trees belonging to the particular differentiation classes: 0–0.30, very small differentiation;
0.30–0.50, moderate differentiation; 0.50–0.70, high differentiation; 0.70–1.00, very high
differentiation [10]. To find out if the departures from the expected value of T under the random
conditions are statistically significant, a permutation procedure can be applied.
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4.2.2.2. Size dominance index (D)

This index aims at the description of the relative dominance of a given tree to its nearest
neighbors. It can be defined as the proportion of the n neighbors of a reference tree, which are
smaller in size than the reference tree [62, 64]. If four neighbors are taken into consideration,
D index can take again five values corresponding to different biosocial categories according to
Kraft's crown classification: 0.00, very suppressed (all neighbors are smaller than the reference
tree); 0.25, moderately suppressed; 0.50, codominant; 0.75, dominant; 1.00, strongly dominant
(none of neighbors are smaller than the reference tree).

Example 3

Figure 5 presents the location of trees in a managed old‐growth beech‐dominated (Fagus
sylvatica L.) forest. The main tree species was European beech and silver fir (Abies alba L.) was
admixture species. Both tree species occurred in the overstory. The average age of the forest
was 145 years. Up to the year of measurements, the forest stand has been managed according
to Polish standards for beech stands. Apart from the location of each live tree in the stand (x,
y coordinates), diameter at the breast height (dbh, in cm) and the total tree height (h, in m)
were measured and tree species were reported.

Figure 5. In the left panel there is a stem map generated for old‐growth beech (Fagus sylvatica L.) forest (Example 3),
the plot size: 70 m × 50 m. green circles: Fagus sylvatica trees; red circles: Abies alba trees. In the right panel the same
pattern but the size of circles refers to the diameter of each tree.

The average diameter and height differentiation index was Tdbh = 0.33 and Th = 0.20, respectively.
Results indicated that the diameter of living trees was more differentiated between close
neighbors than was observed for tree height. The distribution of trees in the particular
differentiation classes showed that the neighbors of ca. 43% of trees were only slightly different
in dbh, and 50% of trees was surrounded more differentiated individuals. In the case of tree
height, the trend is similar but the differences between nearest neighbors are much less
stressed (Figure 6).

The average spatial differentiation index calculated for diameter for beech and silver fir was
Tdbh = 0.32 and Tdbh=0.37, respectively. In the case of tree height, these indices were Th = 0.19
and Th= 0.26 for beech and fir, respectively. Figure 7 shows the distribution of trees in the
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particular size differentiation classes. Trees of both species showed more or less similar
distribution in particular size differentiation classes in the case of both tree attributes.

Figure 6. Distribution of live trees in size differentiation classes for diameter (dbh) and total tree height in an old‐
growth Fagus sylvatica forest (Example 3).

Figure 7. Distribution of trees of different species in size differentiation classes for dbh (left panel) and total tree height
(right panel) in an old‐growth Fagus sylvatica forest (Example 3).

Figure 8. Dominance distribution of European beech (Bk) and silver fir (Jd) in an old‐growth beech‐dominated forest.
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Trees showed small to moderate diameter differentiation in the neighborhood scale (ca. 90%
of trees). At the same time, height differentiation of nearest neighbors was clearly lower and
most trees showed small differentiation around (ca. 83% of trees) (Figure 6). In general, the
diameter was more differentiated than the tree height for both tree species in the forest.

Dominance criterion is useful for describing the relative dominance of different tree species,
for example European beech and silver fir from example data set presented here. The distri‐
bution of beech is left‐skewed meaning that the majority of trees of this tree species are
surrounded by at least three bigger neighbors. However, there are few dominant beech trees.
Similar constellation was observed in the case of silver fir (Figure 8).

4.2.3. Spatial mixing of species

The third aspect of spatial structure is attributed to the relative mingling of different species
in plant community. Two indices can be taken into consideration: species mingling index
introduced by von Gadow and species segregation index introduced by Pielou [65].

4.2.3.1. Species mingling index (MI)

This index describes the spatial distribution of different tree species around the reference tree
[10, 27, 64, 66]. It is determined for each individual (reference tree) within the population and
it gives the proportion on the nearest neighbors (e.g., 4), which are not of the same species as
reference tree is. The index takes values between 0 and 1 and if four neighbors are taken into
account, five values of MI can be obtained: 0.0 (all neighbors are of the same species as reference
tree), 0.25, 0.50, 0.75, and 1.0 (all neighbors are of different tree species as reference tree).
Similarly to previously describe indices, the distribution of MI provides a more detailed insight
into species composition of the forest. To find out whether departures from the random mixing
are statistically significant, a permutation procedure can be applied.

4.2.3.2. Species segregation index (SSI)

This index describes the relative mixing of only two species regardless of their spatial pattern.
If there are more than two species in the population, each pair of species should be analyzed
separately. The SSI index is based on the comparison of the observed number of mixed species
pairs and the expected number if the two species would be distributed independently of each
other [9, 59, 67]. The SSI values can lie between −1 and 1. Two species are associated together
(aggregated) if SSI < 0 and they are segregated if SSI > 0. They are randomly distributed from
one another if SSI = 0 [59]. Aχ2 test may be applied to judge the significance of the departures
from random mixing of both species.

Example 4

Let's go back to the oak‐dominated old‐growth forests introduced earlier (see Example 1). Two
tree species are present in the stand. The average value for the mingling index (MI) is small,
MI = 0.13, suggesting that tree species are distributed in a homogeneous patches. In the case
of oak, MI = 0.40 indicating that they are distributed in heterogeneous clumps, while horn‐
beams are distributed in homogeneous patches (MI = 0.06).
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As shown in Figure 9, the trees form mostly homogeneous patches. About 70% of trees are
surrounded by the same tree species. It is caused mostly due to the hornbeam. About 80% of
individuals of this tree species are surrounded by conspecifics. The surroundings of oaks are
mostly heterogeneous and three of four neighbors of this tree species (70% of oaks) are of
different species.

Figure 9. Distribution of species mingling index (MI) for all live tree, oaks and hornbeams in the oak‐dominated old‐
growth forest.

Applying the Pielou's segregation index (SSI), we obtained only limited information on the
probability to find individuals of one species in the neighborhood of the individuals of the
other species. In the example, the SSI index showed random mixing of oak and hornbeam (SSI
= 0.25, p‐value = 0.25).

5. Functional spatial statistics: the most informative way to discover
complex structures

A great advantage of the use of simple indices described above is their simplicity in calculation
and easy interpretation. However, the modern point processes statistics functions, which
depend on the distances between all points of the pattern or distances between the nearest
neighbors, are commonly used at present. Thus, functional summary statistics characterize a
pattern as a function of scale. Depending on the data type, ecological questions to be answered
and hypotheses to be tested, different functional summary statistics can be selected.

5.1. Nearest‐neighbor distance‐based distribution functions

There are a few functions that are able to quantify the spatial distribution of individuals as
random, regular, or clumped. This is an important aspect of spatial structure of any population.
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5.1.1. Nearest‐neighbor distance distribution function (G‐function)

The G‐function is based on the distances from a point of the pattern (e.g., tree) to its nearest
neighbor. The values of the G‐function are nondecreasing as a function of distance r, starting
from G(r) = 0. The nearest‐neighbor distribution function for CSR is easy to calculate and it is
equal to G(r)=1‐exp(‐λπr2). The empirical G‐function is plotted against the theoretical expect‐
ation and it indicates how the individuals are spaced in the population. Clustered arrangement
can be stated if Gobs > Gcsr, and thus the nearest‐neighbor distances between neighbors are
smaller than it would be expected under randomness. In the case of regular pattern Gobs < Gcsr,
that is, the distances between nearest neighbors are larger than under random distribution [37,
68, 69].

5.1.2. Empty‐space function (F‐function)

The F‐function characterizes the empty space in a pattern, and it is also known in the literature
as the spherical contact distribution function. The function is based on the distribution of all
distances between arbitrary selected points, but not the location of any point of the pattern,
and its nearest neighbor [1]. The empty‐space function characterizes the point pattern on the
basis of the distances from the so‐called test point to its nearest neighbors. This statistics is
closely related to the G‐function but its interpretation is opposite to that. The value of the F‐
function for CSR is the same as for G: F(r)=1‐exp(‐λπr2). The empirical F‐function is again
plotted against the theoretical values. Clumped distribution is assumed if the values of Fobs >
Fcsr. That is, the distances from an arbitrary point to its nearest neighbor of the pattern will be
larger (on average) than under the CSR because the clustered pattern contains larger gaps than
the random distribution. In the case of regular pattern, Fobs > Fcsr, that is, the gaps are smaller
and the distance from any point to its nearest neighbor will be smaller.

It is worth noting that both functions have their inhomogeneous versions, which can be applied
in cases when the spatial pattern of individuals within the population is not homogeneous.

Example 5

Figure 10 presents the stem map generated from the data set collected in the 30‐year old Scots
pine (Pinus sylvestris L.) monoculture. The stand was planted artificially at the initial spacing
1.5 m × 1.5 m and it has not been managed so far. For each tree, the diameter at the breast height
(dbh) was measured as well as location coordinates (x, y) were reported.

The nearest‐neighbor distribution G‐function (G) was calculated for the data, and the empirical
function was plotted against the function for complete spatial randomness. Both functions are
presented on the left panel in Figure 11. The graph of the G‐function for the data set is clearly
below the expectation indicating the regularity in trees distribution. Up to the distance of 1.8
m, G(r) = 0. This distance may be interpreted as the minimum distance between the nearest
individuals and it is due to the hard‐core process. This is the simplest kind of interaction
between individuals.
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Figure 10. Stem map (left panel) of living trees in the 30‐year old Scots pine (Pinus sylvestris L.) monoculture. In the
right panel the size of circles corresponds to the diameter at the breast height.

Figure 11. Nearest distance distribution G‐function (left panel) and empty‐space F‐function (right panel) calculated for
the data collected from the Scots pine monoculture. The solid line represents the empirical function for the data, the
dashed line represents the function for CSR process, and the shadowed area represents the 95% pointwise confidence
intervals calculated from 199 Monte Carlo simulations.

The empty‐space F‐function (F) is presented in the right panel in Figure 11. It confirms
regularity in the spatial pattern of pines stated on the basis of the nearest‐neighbor function.

Figure 12 presents the graphs of the G‐ and F‐functions (left and right panels, respectively)
calculated for hornbeams from an old‐growth oak‐dominated forest. Both functions confirmed
the aggregated pattern of this tree species that is inconsistence with results obtained by spatial
indices.
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Figure 12. Nearest distance distribution G‐function (left panel) and empty‐space F‐function (right panel) calculated for
the data (hornbeam trees only) collected from an old‐growth oak‐dominated forest. Explanations: see Figure 11.

5.2. Second‐order summary functions

Second‐order statistics rely on the spatial relationships of pairs of trees, not only on nearest
neighbor distances [37].

5.2.1. Second‐order functions to discover the spatial arrangement of points

5.2.1.1. Univariate (unmarked) point pattern analysis

It refers to the pattern of points (e.g., trees in the forest) described only by their position
(coordinates). Information on additional point attributes (e.g., size, sex, etc.) is not provided.

5.2.1.1.1. Ripley's function (K(r))

It appears to be the most common second‐order summary function [1, 16, 44, 69]. This function
is based on the measurements of distances between all individuals of the point pattern. It
determines the expected number (λ) of points present within the distance r of typical point of
the pattern. The expectation for the CSR is that there should be λπr2 individuals within the
distance r of the typical point of the pattern. Under CSR the function yields K(r) = πr2. For
clustered pattern K(r) > πr2 and for regular pattern K(r) < πr2. Usually, the K‐function is plotted
—together with its expectation—against the different distances r (spatial scales). Its shape
provides valuable information on the point pattern distribution. If the empirical K(r) > πr2 it
means that the distribution of the individuals within the population is consistent with

Applications of Spatial Statistics112



clustering at the certain r distance. Opposite, the pattern is consistent with regularity if K(r) <
πr2. Because of the K‐function increases at the rate of r2 under the CSR expectation, it is better
to use its transformation, the L‐function, which stabilizes its variance and transforms K(r) to
the straight line L(r) = r [37]. The interpretation of the L‐function is quite easy. For regular
distribution L(r) < r, and in the case of aggregated pattern—L(r) > r. To infer the scale of spatial
interaction in a point pattern, it is obvious to estimate it by reading off the position where the
function for the observed data set lies further away from the expectation under the CSR. It is
not always correct because of its cumulative nature and effects at smaller distances obscure
the effects at larger scales.

5.2.1.1.2. Pair correlation function (g(r))

The alternative to the K‐function is the pair correlation function, a noncumulative summary
statistics. This function is closely related to the K‐function and is recommended by [1, 8]. It
contains the contributions only from interpoint distances equal to the distance r. The advant‐
age of the g(r)‐function is that under CSR it is equal 1 and independent of the intensity of the
pattern. The tendency toward clustering means, that there will be more (on average) individ‐
uals at smaller distances r than expected under CSR and g(r) > 1. Conversely, for regular
arrangement of individuals, there will be, on average, fewer individuals at the smaller
distances than under CSR, and g(r) < 1 [1, 37].

5.2.1.2. Bivariate point pattern analysis

Both, Ripley's function and pair correlation function can be extended to discover spatial
relationships between the points of two types. For example, bivariate point pattern analysis is
a suitable tool to discover the spatial relationships between two different tree species mixed
in the forest.

5.2.1.2.1. Bivariate Ripley's function (K12(r))

Ripley's function can be extended to the bivariate form and for more details on the suitable
estimator, see Refs. [1, 8, 37]. The ecological questions here concern the detecting possible
interactions between two types of objects (e.g., tree species in the forest). The fundamental
benchmark is spatial independence separating two alternatives: association and repulsion
(small scale) or segregation (large scale) of both types. Bivariate L12(r) is an analog of univariate
L(r)‐function. In case of the spatial independence of type 1 and type 2 of points L12(r) = r. If
L12(r) > r then two types of objects show spatial association at the certain distance r and if L12(r)
< r—points of different types show spatial repulsion (separation).

5.2.1.2.2. Bivariate pair correlation function (g12(r))

Similarly to the L‐function, the g(r)‐function can be easily extended to bivariate forms, g12(r),
to discover correlations between two types of objects. Then, g12(r) = 1 indicates the spatial
independence of two types of points being at the distance r apart. If g12(r) > 1 then spatial
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association of both types of objects can be stated and if g12(r) < 1—they are spatially segregated
at the distance r.

Both functions, Ripley's function and pair correlation function, can also be calculated for
inhomogeneous point patterns, thus in the case of spatial variation in the intensity of the pattern
[37].

Example 6

To present different shapes of univariate L‐ and g‐functions for regular and aggregated
patterns, data sets from Scots pine stand and old‐growth oak‐dominated forest, described
previously, were used. Both functions for the empirical data sets are presented in Figure 13.

Figure 13. The L‐function and g‐function for 30‐years old pine (P. sylvestris L.) stand (left panel) and hornbeam (C. betu‐
lus L.; right panel) in the old‐growth oak‐dominated forest. Dashed line represents the expected values of simulated
pattern for complete spatial randomness (CSR), solid line represents empirical g(r) function. Shaded area represents
95% pointwise confidence intervals based on 199 Monte Carlo simulations.

In the left panel, both functions calculated for live trees in pine stand showed clear evidence
for regularity. Functions lie below the expectation referred to CSR and the departures from the
expectation were significant at the distance up to 1.8 m (g‐function) and 2 m (L‐function). Up
to these distances both functions are equal 0. It indicates the minimum distance between trees.
Moreover, the shape of the pair correlation function is typical for plantations, where trees have
been planted in rows that are also reflected by the wave‐like shape of the function. Thus, the
spatial pattern of trees can provide important information about the history of establishment
of the forest.

In the right panel in Figure 13, there is an example of clustering of trees. Both functions lie
above the expectation for CSR. Because the L‐function has cumulative character it is rather
hardly to make statements on the distance at which aggregations of trees can be observed. In
the case of pair correlation function, this distance is clearly visible. The maximum value of the
g‐function at the certain distance is equal to the average cluster size of trees. In case of
hornbeams it was about 0.5 m. Such small spatial aggregations of hornbeams are typical for
regeneration from sprouts, which is quite frequently observed in the case of this tree species.
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Spatial correlation between oak (subscript: db) and hornbeam (gb) —an example of bivariate
analysis—is presented in Figure 14. Bivariate pair correlation function indicated spatial
negative association (spatial repulsion) between these two tree species in the old‐growth oak‐
dominated forest. It means that both trees are spatially separated. In virgin forests, spatial
segregation is assumed to decrease the interspecific competition, and it is supported by
different mechanisms, e.g., different niche requirements of tree species. Thanks to spatial
separation of tree species they can coexist together in a multispecies forest.

Figure 14. Bivariate pair correlation functions for oak (subscript: db) and hornbeam (gb) in an old‐growth oak domi‐
nated forest. Solid line: empirical function; dashed line: expected value of the function for spatial independence of both
species; shaded area: confidence region of null model acceptation calculated on the base of 199 Monte Carlo simula‐
tions.

In oak‐dominated forest, the correlation range between oak and hornbeam was about r = 11
m, thus g12(r) < 1 up to this distance. The negative association of both species results more likely
from the extremely different abundance of oak and hornbeam as well as their different life
stages. Clumped pattern of hornbeam may results from sprouting while random distribution
of oak is typical for old, large trees. In plant populations, low intraspecific competition and
higher interspecific competition favor species coexistence in multispecies forests.

5.2.2. Inhomogeneous point pattern analysis

Inhomogeneous point pattern analysis should be used in cases when point density differs
significantly with their location. Such cases are frequently observed in the natural forests, e.g.,
due to the forest site variation, seed dispersion, etc. Incorrect use of the second‐order summary
function leads to misinterpretation of the results, the so‐called virtual aggregation. To avoid
it, one can use inhomogeneous versions of the summary functions mentioned above or special
function introduced by Schiffers et al. [70].
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5.2.2.1. K2‐function

This function was developed as an extension of g(r) that can be used to discover the regular or
clumped patterns despite the presence of the spatial variation in the point intensity across the
study region [70]. Unlike the L‐ and g‐functions, the K2‐function relates the intensities at a
given scale to the intensities at the adjacent scales [70]. It allows to interpret scales of significant
deviations from the expectations at distances where transitions from low (or high) to high (low)
intensities occur. The negative values of the K2‐function indicate clustering because the
neighborhood density decreases with increasing distance. It has the positive values for regular
pattern due to the steep increase of neighborhood density at a certain distance.

Example 7

Figure 15 presents stem map generated for European yew (Taxus baccata L.) located in the
Kórnik Arboretum, western Poland [71]. The population of yew developed spontaneously
during last decades. The map represents the location of male individuals only.

Figure 15. Stem map for males of yew (Taxus baccata L.). Trees are represented by points irrespectively of their diame‐
ter.

Visual inspection provides information that the density of males across the study plot was
inhomogeneous, and there is a density gradient from the south (bottom) to the north (top) of
the plot. Inhomogeneity in the tree density can be clearly seen on the graph with pair corre‐
lation function that lies completely above the value 1 indicating the so‐called virtual aggrega‐
tion due to the heterogeneity in tree density because the pair correlation function is related to
the global intensity in the surrounding of a tree.

Thus, pair correlation function would lead to misinterpretation about the aggregated structure
of males. The dependence in global intensity restriction is circumvented by the K2‐function.
In the right panel of Figure 16, the estimated K2‐function lies completely within the confidence
region under the CSR expectation. There are only weak deviations (statistically insignificant)
at the smallest spatial scale toward clumping of males. Thus, the distribution of males did not
differ from the randomness.
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Figure 16. Pair correlation function (left panel) and K2‐function (right panel) calculated for males of European yew (T.
baccata L.). Solid lines represent empirical functions and dashed line represents expectation under the CSR process.
Dashed region (left panel) and dotted lines (right panel) represent confidence region of the null model (CSR) accepta‐
tion calculated on the base of 199 Monte Carlo simulations.

5.2.3. Marked point pattern analysis: spatial diversity of different plant attributes

Marked point pattern carries different marks (attributes) of points. Marks can be qualitative
and quantitative. In this section, methods suitable to analyze the correlations among plant's
attributes. (e.g., sizes, health status, etc.) are provided with real data examples.

5.2.3.1. Qualitative marks

Marked point pattern analysis for qualitative marks describes the points in a different way
than in the case of bivariate pattern analysis (like in Section 5.2.1.2). Here, the mark is produced
by the process acting a posteriori over the univariate pattern, and it is a fundamental difference
to the bivariate pattern in which plant's attributes are generated a priori by two different
processes (e.g., plant species) [72]. It means that qualitative marks are defined as something
created conditional on a given pattern [1].

5.2.3.1.1. Mark connection function (p12)

This  function  is  the  conditional  probability,  given  that  there  is  a  point  of  the  process
at  the location m  and the second point  at  the location n  and they are separated by the
distance  r  such  that  the  first  individual  is  of  type  1  and  the  second  one  is  of  type  2
[8,  37].  If  the  marks  attached  to  the  points  (e.g.,  trees)  of  the  pattern  are  independent
and  identically  distributed,  then  p12(r)  =  p1p2,  where  p1  and  p2  denote  the  probability
that  a  point  is  of  type 1 or  2,  respectively.  Values larger than this,  p12(r)  >  p1p2,  indicate
positive  association  between  the  two  types,  while  p12(r)  <  p1p2  indicates  the  negative
association.
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Example 8

The mark connection function was applied to test whether there was any spatial correlation
between trees of different health status of European yew (T. baccata L.). The study plot
(Figure 17) was established in the Kniazdwor Nature Reserve, western Ukraine [73]. Yew
occurred under the canopy of European beech (Fagus sylvatica L.) and silver fir (Abies alba L.).
All individuals of the height h > 0.5 m were classified according to the simple general classifi‐
cation: 1, good health status; 2, poor health status. Details on the classification can be found in
Ref. [71].

Figure 17. Stem map generated from the data set collected in the Kniazdwor Nature Reserve, Ukraine. Points represent
yew (T. baccata L.) trees with different health status. Green dots: yews of good health status; red dots: yews of poor
health status.

Figure 18. Mark connection function for health status—good vs. poor—of yew trees in the Kniazdwor Nature Reserve,
Ukraine. Dashed lines: the reference values of p12(r)‐function (red), p11(r) (green), and p22(black) for random allocations
of marks; solid line: estimated p12(r)‐function for the data set.
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Trees of poor health status showed neither the negative nor the positive association, that is,
the function p22(r) ≈ p2p2 (black solid line, Figure 18). Because trees of good health status showed
highly clustered structure at small spatial scale, the probability of finding two healthy trees
close to each other was higher than expected (p11(r) > p1p1). Healthy trees have—over the same
spatial scale—a lower than expected probability of having trees of poor health status as its
neighbor, that is, p12(r) < p1p2 (Figure 18).

Healthy tree have—over the same spatial scale—a lower than expected probability of having
trees of poor health status as its neighbor, that is, p12(r) < p1p2 (Figure 18).

5.2.3.2. Quantitative marks

Quantitative marks additionally describe each tree and they are numerical values (e.g.,
stem diameter, tree height, etc.). One can be interested in finding out whether the sizes of
trees growing at the distance r from each other show any spatial correlation, conditional
on the their location (unmarked pattern). An appropriate summary statistics for quantita‐
tive data types are different mark correlation functions depending on the so‐called test
function used in calculation [1, 7, 14, 16, 40, 74]. Two correlation functions seem to be
especially important in the structural analysis of the population: mark correlation function
and mark variogram.

5.2.3.2.1. Mark correlation function (kf(r))

This function is a measure if the dependence between marks of two individuals of the
pattern is separated by the distance r [8]. The test function with two marks, m1 and m2, is
a nonnegative number and the test function is of the following form: t(m1, m2) = m1m2. The
normalized kf for a random assignment of marks (lack of spatial correlation among marks)
over the pattern is equal to 1. Values of kf(r) < 1 for the distance r mean that both individ‐
uals have smaller marks than the average for the population. At the small distances it
means that there is an inhibition between both individuals due to their close distance. If
kf(r) > 1 it means that two individuals growing at the distance r show larger marks than
the average. At small distances it means that they benefit from being close to one another
[8]. Moreover, it offers another characteristic of the pattern, namely, correlation range. It is
the distance r at which the function approaches the value 1. Using this form of correlation
function, one is interested in finding out whether the marks of two plants show any cor‐
relation in space.

5.2.3.2.2. Mark variogram (γ(r))

In this form of correlation function the test function is t(m1, m2) = 0.5(m1−m2)2. It characterizes
the squared differences between marks of pairs of individuals with the distances of r. If
individuals growing at the distance r apart have similar mark, then mark variogram has smaller
(than under random condition) values. Large values of γ(r) indicate that marks of both
individuals tend to be different at a certain distance r. Similarly to the kf(r) function, the
correlation range can be stated [8, 37, 40].
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Example 9

Figure 19 presents the mark correlation function for diameter of trees in the oak‐dominated
old‐growth forest from Example 1. Analysis of kf(r) indicated that pairs of trees growing at the
distance up to 9 m (correlation range) tended to have smaller diameters than the average for
the stand. In ecological meaning it can be interpreted as the mutual growth inhibition of the
neighboring trees. Mark variogram showed another interesting point of view providing details
on similarity of dissimilarity of pairs of trees in the dependence on the distance r between them.
In the oak‐dominated forest, live trees being close to one another tended to have similar
diameters and the interaction range was about 12 m.

Figure 19. Mark correlation function (left panel) and mark variogram (right panel) for diameters of live trees in the old‐
growth oak‐dominated forest. Dashed line represents the function for random allocation of marks of trees meaning
their lack of spatial correlation.

6. Conclusion

Spatial analyses have now largely been incorporated in ecological studies due to the realistic
assumption of spatial dependence between individuals constituting plant populations.
Population structure is one of the most important traits of each biosystem and its description
allows deeper insight into mechanisms and processes responsible for population dynamics.
To understand these natural processes, modifying the structure and dynamics of plant
populations is important from ecological (scientific) and practical (managing of natural
resources) point of view. As indicated, depending on the ecological questions stated, different
methods of spatial point pattern analysis can be applied. All of them are suitable to extract the
hidden and detailed information on the current state of any population and allow us to make
the assumptions concerning their future development. It is important to remember that the
key elements of spatial analysis in ecology are data type, the appropriate choice of summary
statistics, and null models. Selecting few of them in a single analysis makes the statements
more reliable and realistic in the changing world.
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