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Abstract

The  aim  of  this  chapter  is  to  introduce  to  the  use  and  possible  applications  of
polylactide‐based  composites.  Polylactides  are  biodegradable  aliphatic  polyesters,
which are widely used in medical and ecological‐friendly fields. First of all, a deep
description of main characteristics of polylactides is shown. This chapter summarizes
many concepts, which comprehend a general view of polylactide biopolymers such
as synthesis and structures, physical‐chemical and mechanical characterization and
possible applications of final products.  Then, an overview of composites based on
polylactides and their benefits compared with bare polylactides are described.

Keywords: Polylactide, poly(lactic acid), composite, biodegradable, biopolymer, poly‐
ester, biocompostable, bone repair, nanocomposite

1. Introduction

Polylactide or poly(lactic acid) (PLA) is the front runner in the emerging biopolymer market
with the best availability and the most attractive cost structure [1]. Although PLA existed for
several decades, its use has been limited to biomedical applications due its high cost. However,
in the new century processing of PLA has been developed in the industry in a large‐scale
production promoting its commercialization as a commodity plastic [2].

To date, PLA is one of the most used biodegradable polymers in the field of biomedical
applications and eco‐friendly industrial production. A clear advantage of this polymer is its
possibility of polymerization coming from renewable resources as starch, but it is not the only
one: stiffness of polylactides are similar to some commodity polymers as polyethylene,
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polypropylene and polystyrene [3] and products derived from its degradation process are
nontoxic for the human body and also do not leave any footprint in the landfills [4].

2. Synthesis

The monomer of PLA is lactic acid. Although this monomer can synthesize from petroleum,
almost all lactic acid available on the market is produced by fermentation. During fermentation
a suitable carbohydrate is converted to lactic acid by microorganisms without the presence of
oxygen, hence, under anaerobic conditions. Fermentation of sour whey resulted in the
discovery of lactic acid in 1780, when it was isolated by C. W. Scheele [5].

Lactic acid is the simplest α‐hydroxyacid that contains a chiral carbon atom and exists in the
following two enantiomeric forms: L‐lactic acid and D‐lactic acid. Monomer forms a stable
cycled dimer, that is, lactide. Consequently, dimer presents three different structures, namely
L‐lactide, D‐lactide and DL‐lactide. Isotactic, optically active and crystalline homopolymers
are obtained if either L‐ or D‐lactide dimers are polymerized. However, DL‐lactide or copoly‐
mers of L‐ and D‐dimers polymerize obtain atactic, nonactive optically and amorphous
polymers [6].

Polymerization of this lactic acid is carried out by polycondensation [7], instead of polymeri‐
zation of the dimer that occurs by ring opening polymerization [8]. Polymerization started
from lactide dimer allows to obtain high level of molecular mass due to a chain polymerization
mechanism and this is the mechanism that is normally used for production.

3. Polylactide characterization

3.1. Physical‐chemical and mechanical characterization

Polylactides have a glass transition (Tg) value around 60°C. This characteristic point refers to
a change in the mobility of amorphous chains. Hence, atactic homopolymer shows a value of
60°C, but crystalline homopolymers that have some restriction in the mobility of amorphous
phase could present Tg values up to 70°C depending on the thermal treatment used for
crystallization [9, 10].

Isotactic polylactides (pure PLLA and PDLA have same properties) crystallize forming a
homocrystal, which melts in the range of 160–190°C depending on the molecular mass and
shows a crystallinity fraction around 35% [9]. This value is calculated using one of the different
values for theoretic melting enthalpy extrapolated from experimental analysis by different
researches, being the most common values 93.6 [11] and 106 J/g [12].

Depending on the crystallization conditions, PLLA can crystallize in α, β or γ polymorphs [13,
14]. The most common form usually is the orthorhombic α crystal [15], while trigonal β form
is obtained under high drawing conditions and high temperatures [16, 17]. Besides, γ poly‐
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morph is obtained through epitaxial crystallization on special substrates with organic sol‐
vents [18]. Recently, the existence of a α’ crystal has been reported, which can be identified as
a disordered α form, with the same 103 helical conformation but different lateral packing [19].

As with other enantiomeric polymers occurs [20], polylactides also form thermally stable
crystals when 50–50 wt.% of PLLA and PDLA enantiomers are blended [21]. The formation of
stereocomplex crystals is favored with low molecular mass [22, 23] or isothermal treatments
above homocrystal melting [24, 25]. These crystals melt at 50°C above the homocrystals and
their formation is favored if a pretreatment at temperatures above the melting temperature of
α crystals is carried out. This pretreatment allows the formation of homocrystal nuclei and
increases the crystallization rate of stereocomplex during the isothermal crystallization step
[26].

In regard to the mechanical properties, PLAs display high tensile modulus (3 GPa [27]) and
yield strength (50–70 MPa [28]) but low elongation at break (5–7%) that result in a brittle
behavior of the material.

3.2. Biodegradability

Ester groups in polylactides allow hydrolytic degradation of polymer chains. The degradation
mechanism depends on factors, which can be assigned to two groups: (a) related to material
as molecular weight, crystallinity, comonomer structure, porosity, etc; and (b) related to the
media: temperature, pH, solute concentration, enzymes, etc. [29].

For bulky materials, there are three kinds of degradation mechanisms: surface erosion, bulk
erosion and core‐accelerated bulk erosion [30]. A surface erosion mechanism takes place when
the hydrolytic degradation rate of the material surface in contact with water (containing
catalytic substances as alkalis and enzymes) is much higher than the diffusion within the
material. In contrast, a bulk erosion mechanism occurs when hydrolytic degradation takes
place homogeneously, irrespective of the depth from the material surface. As it can be foreseen,
the hydrolytic degradation mechanism changes from the bulk to surface erosion when material
thickness becomes higher than the critical [31]. On the other hand, some authors report that
polylactides degradation mechanism proceeds via core‐accelerated bulk erosion, when the
material is thicker than 0.5–2 mm, due to the accelerated degradation sustained by oligomers
and monomers trapped and accumulated in the core part of the materials [32]. Hence,
depending of the thickness of the PLA piece, the degradation mechanism proceeds via bulk
(<0.5–2 mm), core accelerated (between 0.5–2 and 74 mm) and surface erosion (>7.4 cm). In
general, chains in the crystalline region are hydrolysis resistant compared to those in the
amorphous regions because the access of water molecules to the chains inside the rigid
crystalline regions is prohibited. Such crystalline regions are called “crystalline residues.”

Concerning to enzymatic degradation, no study of specific enzymes for the biodegradation of
polylactides has been reported [33]. Williams reported the enzymatic hydrolysis of polylacti‐
des in the presence of proteases as pronase, bromelain and proteinase K, being the latter a
protease with a strong activity in hydrolizing proteins, particularly keratin [34, 35].
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4. Strategies to changes polylactide properties

4.1. Blending

Easier strategy to change properties of a pure polymer is blending with other polymers. These
blends could be miscible or immiscible depending on solubility parameters and specific
interactions established between counterparts. Miscibility of blends is governed by thermo‐
dynamic law, in which the free energy of mixing in the blend must be negative [30]. Polylactide
is miscible with polyvinylphenol (PVPh) [36–39], poly(styrene‐co‐vinylphenol) [40, 41],
polyhydroxybutirate (PHB) [42], poly(methyl methacrylate) (PMMA) [43], poly(vinyl acetate)
[44] and poly(ethylene oxide) [45].

Phase separation induced by immiscible blends has been commonly used for improving fragile
commodity polymers as PS and PMMA with a rubber modification leading into HIPS [46] and
high impact PMMA [47]. However, the modifications in polylactides with biodegradable
polymers as polycaprolactone (PCL) are an efficient way to toughen polylactides [48].

4.2. Copolymerization

Modification in the synthesis process with other monomers is other way to tune the properties
of polylactides. Comonomers as etylenglycol or ethylene oxide [49, 50], propylene oxide [51]
and trimethylcarbonate [52] have been reported for polymerization with lactide units.
However, cyclic comonomers are suitable to polymerize by ring opening polymerization
(ROP) with lactide such as lactones or macrolactones. The most investigated systems are
poly(glycolide‐lactide) [53, 54] and poly(lactide‐co‐caprolactone) copolymers [55–57]. Recent‐
ly, some studies in search of more biodegradable copolymers are using macrolactones as γ‐
valerolactone [58].

Moreover, starting the polymerization of lactide or lactic acid with polymer containing
hydroxyl groups leads into graft copolymers. This strategy is welcomed to increase the
miscibility with other polymers and hydrophobicity as it occurs with poly(vinyl alcohol) [59].

5. Polylactide‐based composites

Composites combine two (or more) different components: a continuous phase, called matrix,
acts as binder and distributs homogeneously the forces through whole composite; and a
discontinuous phase, called reinforcement, fundamentally is used to carry the applied load.
Depending on the form of the reinforcements, they are arranged in different groups, of which
two most important are fibers and particles. Normally, the aim of the reinforcements is to
enhance the stiffness and tensile strength of the matrix, although sometimes fillers are used to
reduce the price of the final product or modify the physical, rheological, optical or other
properties. However, more important is the interface between both components to assure good
transmission among constituents of the composite.
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Efforts made for advancing in technology lead to the scientific community to introduce
nanoscale in material science and consequently in polymer science. It must pay special
attention in nanocomposites, because it is foreseen remarkable improvement in properties with
less quantity of reinforcement than micro or macroscale composites.

Different families of reinforcements can be classified into function of their chemical nature and
it is analyzed the effect that induces in polylactides.

5.1. Organic reinforcements

5.1.1. Natural fibers

These composites are very attractive because both matrix and reinforcement are obtained from
renewable resources. But comparing to synthetic ones they have some characteristics to take
into account [60]:

• Natural fibers degrade at low temperatures (<200°C). Hence, processing of polylactide/
natural fibers composite must be made carefully.

• Natural fibers are hydrophilic and absorb moisture easily. Polylactides can degrade faster
and wettability of fibers produces swelling and distorsion in the interface due to a lack in
dimensional stability.

• Natural fibers have low microbial resistance. Long‐time storages are not ideal for these
composites.

Environmental friendly materials with a full degradation capability promote the interest of
these composites, especially in the automotive industry. Different natural plant fibers have
been used to obtain polylactide‐based composites: agricultural natural fibers as jute, kenaf,
sisal and flax and also inexpensive agricultural residues as wheat straw, corn stover, soy stalks
and their hybrids [61].

• Jute/polylactide [62]: Alkali‐, permanganate‐ and peroxide‐treated composites exhibit lower
thermal stability, whereas silane‐treated composites show a higher thermal stability when
compared to untreated composites. However, a better fiber matrix adhesion improves the
abrasive wear resistance of the jute fiber‐reinforced composites.

• Kenaf/polylactide [63]: The effects of the silane‐coupling agent on composite properties is
highly beneficial leading to increased moduli and heat deflection temperatures as well as
reduced water swelling. Moreover, an optimal formulation comprised of 50% kenaf and 50%
PLA fibers with three parts of silane‐coupling agent represents an optimal formulation to
manufacture automotive headliners.

• Sisal/polylactide [64]: Mechanical properties of PLLA/sisal fiber composites (improved with
caustic soda treatment) confer high strength, high modulus sisal‐PLLA composites, because
of effective stress transfer at well‐bonded fiber to matrix interfaces.

• Flax/polylactide [65]: Mechanical properties of polylactide and its composites with flax are
greater than those of related polypropylene/flax fiber composites and concretely the specific
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tensile strength and modulus have demonstrating to be very close to values obtained in glass
fiber polyester composites.

Moreover, micro‐ and nanoscale improve the mechanical properties of natural fiber‐based
composites; hence, cellulose microfibrils (CMF), cellulose nanofibrils (CNF) and cellulose
nanocrystals (CNC) are the new tendencies.

Composites of polylactide with silane‐modified cellulose microfibrils (CMFs) coming from
sisal fiber (SF) showed a maximum impact strength which was 24% higher than that of virgin
PLA [66].

However, the most important feature of using nanofibrils is the dispersion in the matrix,
because fibrils are hydrophilic and the matrix hydrophobic. To overcome this, feature some
researches disperse CNF in polylactides by a new method obtaining increments in the modulus
and strength (up to 58 and 210%, respectively) demonstrated the load‐bearing capability of the
CNF network in the composites [67].

Although crystallinity degree of polylactide/CNC nanocomposites remain similar to that of
neat homopolymer, the crystallization rate has been notably increased (1.7–5 times) boosted
by the presence of CNC, which act as nucleating agents during the crystallization process. In
addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53 and
27% with the addition of CNC [68].

5.1.2. Synthetic fibers, nanofibers and nanotubes

5.1.2.1. Carbon‐based reinforcements

Carbon fiber (CF) is made from organic polymers, where hexagonal carbon structures acquired
a fibrillate form. Helped by their excellent specific properties supported by low weight (high
stiffness, tensile strength, chemical resistance, thermal stability and low thermal expansion)
carbon fibers have a widespread application in different sectors such as aerospace, civil
engineering, military and competition sports. However, still remain to overcome the price
because they are relatively expensive when correlated with natural fibers, glass fibers or
polymeric fibers. However, most futurist than carbon fiber composites are these with nano‐
fibers, nanotubes or graphene.

• Carbon nanotubes (CNT)

Since the discovery by Iijima in 1991 [69], carbon nanotubes have been investigated as their
unique properties [70, 71, 72] make them interesting fillers to develop polymer nanocom‐
posites. CNTs influence in the physical‐chemical properties, as well as in the mechanical,
electrical and biocompatible properties of polylactides.

It has been reported that CNT influence in the crystallinity without changes in dimension
of the crystal assisting in the disorder‐to‐order (alpha’‐to‐alpha) transition. However, results
obtained from Hoffman‐Weeks plot reveal that equilibrium melting temperature increase
with CNT content, while thickness of crystal layer and amorphous layer of PLLA both
decreased with increasing CNT contents of polylactide matrix [73]. Moreover, structural
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aspects as physical aging [74] and thermal degradation [75] of polylactide matrix is notably
affected by the presence of these CNTs.

However, compatibilization of CNTs increment the efficiency of the composites [76]. Pyrene‐
end‐polylactide has been founded as a good interface stabilizer in polylactide/CNT com‐
posites. Therefore, modified CNT influence in polylactides in much greater manner than
comparing results obtained without modification of CNTs [77].

Besides, polylactide stereocomplexation is clearly favored by CNT content [78]. The addition
of small amounts of MWCNTs combined with a mild thermal treatment extends the
processing window for the preparation of polylactides exclusively crystallized in the
stereocomplex form, instead of the homocrystal formation.

With other point of view, conductivity of polymer matrices with nanofiller addition has been
increased even with very low percentages of conductive carbon nanotubes composites [79].

In the biomedical field, also, polylactide/MWCNT composites have been carefully analyzed
due to the possible cytocompatibility of the CNTs when polylactide matrix degrades [80,
81]. Instead of nanocomposite system shows adequate biocompatibility, degradation
products may induce adverse effects on cell metabolism and proliferation, paying special
attention in lactic acid presence and the quality of the MWCNT suspension [82]. However,
an extensive in vitro evaluation including final degradation products is needed to enable a
comprehensive prediction of the overall success or failure of newly developed degradable
nanocomposites.

• Graphene

Graphene is a single‐atom thick graphite sheet. It is structurally very similar to silicate layers
and chemically analogous to carbon nanotubes, due to its huge specific surface area is
considered as ideal reinforcing nanofiller in the fabrication of multifunctional polymer
nanocomposites, superior mechanical strength, remarkable electronic and thermal proper‐
ties [83]. As it could be expected to achieve its maximal reinforcing efficiency, graphene
sheets must be homogeneously dispersed in the polymer matrix to prompt the interfacial
stress transfer between graphene and polymer matrix [84].

An effective nanofiller has been found when graphene is functionallizated with octadecyl‐
amine (ODAG) in well‐exfoliated solution/casting process. Due to the good hydrophobic
compatibility between organic counterparts, interfacial adhesion and consequently crystal‐
lization, mechanical properties and thermal stability are improved [85].

5.1.2.2. Other organic reinforcements

Slit die extrusion, hot stretching and quenching is proposed as a new technique to construct
well‐aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first
time [86]. The high strength, modulus and ductility are unprecedented for PLA and are in great
potential need for packaging applications. However, this technique opens a new way for the
development of new composite materials based on polymeric fibers.
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5.1.3. Inorganic reinforcements

Bioresorbable polymers play great relevance in biomedical field. Due to its excellent mechan‐
ical properties related to stiffness and tensile strength, polylactides are proposed for using in
implants with safety‐critical applications [87]. Hence, fixation and bone reconstruction are
compulsory for a good health and reconstruction of the damaged zone. Most of implants based
on polylactide polymer are focused on bone repair; however, radiopacity and other properties
are too of great interest.

5.1.3.1. Bone repair

In this context, inorganic reinforcements play the most important role, because the natural
bone is formed up to 70 wt. % by calcium phosphate very similar to hydroxyapatite (HA) [88].
HA is an inorganic compound, which helps the differentiation of osteoblasts in regeneration
of the bone structure [89]. For this reason, incorporation of HA into PLA matrices has been
widely reported [90, 91, 92, 93].

Tricalcium phosphate (β‐TCP) has been also widely used due its bioactivity and biodegrada‐
bility. Its degradation rate is incremented 3–12 times compared with HA [94] and this favors
bonding of bone to the bioceremic [95]. However, combination of β‐TCP and HA in denomi‐
nated biphasic calcium phosphates (BCP) shows the advantages of both components: reactivity
of β‐TCP and stability of HA. BCP with 60–40% of HA‐TCP incubed in simulated body fluid
produces the precipitation of needle‐shaped apatite crystals [96], allowing polylactide/BCP
composites for fracture fixation plates [97].

Furthermore, discovery of bioactive glasses by L. L. Hench in 1969 catapults the use of these
inorganic particles in tissue engineering due to their excellent biocompatibility and the ability
of bone bonding [98]. A common characteristic of bioactive glasses and ceramics is a time‐
dependent kinetic modification of the surface that occurs upon implantation [99]. Bioactive
glasses originate a superficial layer of calcium deficient carbonate, which permits a chemical
adhesion to bone. This adhesion is appealed as bioactivity and is associated with the formation
of carbonated hydrocyapatite (HCA) when glass is implanted or in contact with simulated
body fluids [100, 101]. The HCA layers formed on a scaffold made of 45S5Bioglass® immersed
in SBF takes a “cauliflower” typical morphology [99] and allows osteogenic formation [102].

Some researches of PLA/bioactive glass composites have been reported [103, 104]. However,
melt processing of bioglass with polylactides affects the thermal stability of the composite
[105], and to overcome this handicap, protection of bioactive ceramic with and acrylic plasma
treatment has been proposed [106]. An easier treatment than plasma has been proposed by A.
Larrañaga by covering these particles with a mussel inspired polydopamine coating, which
results in a bioactive composite [107].

5.1.3.2. Radiopacity

Although alternative radiopacifiers have been proposed in bibliography [108, 109], barium
sulfate (BaSO4) is still the gold standard for medical applications [110]. Incorporation of BaSO4

Composites from Renewable and Sustainable Materials140



particles to polymer matrices enables surgeons to accurately place and to monitor any
migration of the implant over time.

Singularly, barium sulfate submicron particles added to polylactide matrix enhance deforma‐
tion at rupture and confer high toughness to fragile polylactides [111]. Consequently, the
addition of these submicron barium sulfate particles enables a radiopaque and tough poly‐
lactide composite.

5.1.3.3. Nucleating effect

The influence of the nature of the filler on the mechanical properties of PLA has been reported
for two silicated clays, both having a platelet‐like shape [112]. Talc is a more efficient filler
regarding mechanical reinforcement of PLA as compared to kaolin. This better reinforcing
effect in the case of talc is ascribed to its higher affinity with the PLA. It was also evidenced
that talc has a nucleating effect on the PLA crystallization [113], while kaolin has no or very
limited effect on the crystallization behavior of PLA. In conclusion, the existence of crystallo‐
graphic relationships between the structures of the filler and the polymer crystals is also a key
parameter for the observation of a nucleating effect.

6. Future trends and perspectives

Although polylactide has been researched for various decades, still remain being the gold
standard in biodegradable polymers. In fact, development of new techniques as 3D printing
includes in its commercial version polylactide material. It seems as if polylactides will be
investigated for long years and could carve out a place in commodity plastics.

7. Conclusions

Polylactide composites broaden the possibilities of application of neat polylactides. Biode‐
gradable matrix allows validity for ecological packaging and biomedical applications and their
composites improve the potential use of these materials.
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