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1. Introduction     

Optimization in engineering design has always been of great importance and interest 
particularly in solving complex real-world design problems. Basically, the optimization 
process is defined as finding a set of values for a vector of design variables so that it leads to 
an optimum value of an objective or cost function. In such single-objective optimization 
problems, there may or may not exist some constraint functions on the design variables and 
they are respectively referred to as constrained or unconstrained optimization problems. 
There are many calculus-based methods including gradient approaches to search for mostly 
local optimum solutions and these are well documented in (Arora, 1989; Rao, 1996). 
However, some basic difficulties in the gradient methods such as their strong dependence 
on the initial guess can cause them to find a local optimum rather than a global one. This has 
led to other heuristic optimization methods, particularly Genetic Algorithms (GAs) being 
used extensively during the last decade. Such nature-inspired evolutionary algorithms 
(Goldberg, 1989; Back et al., 1997) differ from other traditional calculus based techniques. 
The main difference is that GAs work with a population of candidate solutions, not a single 
point in search space. This helps significantly to avoid being trapped in local optima 
(Renner & Ekart, 2003) as long as the diversity of the population is well preserved.  
In multi-objective optimization problems, there are several objective or cost functions (a 

vector of objectives) to be optimized (minimized or maximized) simultaneously. These 

objectives often conflict with each other so that as one objective function improves, another 

deteriorates. Therefore, there is no single optimal solution that is best with respect to all the 

objective functions. Instead, there is a set of optimal solutions, well known as Pareto optimal 

solutions (Srinivas & Deb, 1994; Fonseca & Fleming, 1993; Coello Coello & Christiansen, 

2000; Coello Coello & Van Veldhuizen, 2002), which distinguishes significantly the inherent 

natures between single-objective and multi-objective optimization problems. V. Pareto 

(1848-1923) was the French-Italian economist who first developed the concept of multi-

objective optimization in economics (Pareto, 1896). The concept of a Pareto front in the space 

of objective functions in multi-objective optimization problems (MOPs) stands for a set of 

solutions that are non-dominated to each other but are superior to the rest of solutions in the 

search space. Evidently, changing the vector of design variables in such a Pareto optimal O
pe
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solutions consisting of these non-dominated solutions would not lead to the improvement 

of all objectives simultaneously. Consequently, such change leads to a deterioration of at 

least one objective to an inferior one. Thus, each solution of the Pareto set includes at least 

one objective inferior to that of another solution in that Pareto set, although both are 

superior to others in the rest of search space.  

The inherent parallelism in evolutionary algorithms makes them suitably eligible for solving 
MOPs. The early use of evolutionary search is first reported in 1960s by Rosenberg 
(Rosenberg, 1967). Since then, there has been a growing interest in devising different 
evolutionary algorithms for MOPs. Basically, most of them are Pareto-based approaches and 
use the well-known non-dominated sorting procedure. In such Pareto-based approaches, the 
values of objective functions are used to distinguish the non-dominated solutions in the 
current population.  Among these methods, the Vector Evaluated Genetic Algorithm 
(VEGA) proposed by Schaffer (Schaffer, 1985), Fonseca and Fleming’s Genetic Algorithm 
(MOGA) (Fonseca & Fleming, 1993), Non-dominated Sorting Genetic Algorithm (NSGA) by 
Srinivas and Deb (Srinivas & Deb, 1994), and Strength Pareto Evolutionary Algorithm 
(SPEA) by Zitzler and Thiele (Zitzler & Thiele, 1998), and the Pareto Archived Evolution 
Strategy (PAES) by Knowles and Corne (Knowles & Corne, 1999) are the most important 
ones. A very good and comprehensive survey of these methods has been presented in 
(Coello Coello, 1999; Deb, 2001; Khare et al., 2003). Coello (Coello Coello, home page) has 
also presented an internet based collection of many papers as a very good and easily 
accessible literature resource. Basically, both NSGA and MOGA as Pareto-based approaches 
use the revolutionary non-dominated sorting procedure originally proposed by Goldberg 
(Goldberg, 1989). 
There are two important issues that have to be considered in such evolutionary multi-
objective optimization methods: driving the search towards the true Pareto-optimal set or 
front and preventing premature convergence or maintaining the genetic diversity within the 
population (Toffolo & Benini, 2003). The lack of elitism was also a motivation for 
modification of that algorithm to NSGA-II (Deb et al., 2002) in which a direct elitist 
mechanism, instead of a sharing mechanism, has been introduced to enhance the population 
diversity. This modified algorithm represents the state-of-the-art in evolutionary MOPs 
(Coello Coello & Becerra, 2003). A comparison study among SPEA and other evolutionary 
algorithms on several problems and test functions showed that SPEA clearly outperforms 
the other multi-objective EAs (Zitzler et al., 2000). Some further investigations reported in 
reference (Toffolo & Benini, 2003) demonstrated, however, that the elitist variant of NSGA 
(NSGA-II) equals the performance of SPEA. Despite its popularity and effectiveness, NSGA-
II is modified in this work to enhance its diversity preserving mechanism especially for 
problems with more than two objective functions. 
In this chapter, a new simple algorithm in conjunction with the original Pareto ranking of 

non-dominated optimal solutions is proposed and tested for MOPs including some test 

functions and engineering problems in power and energy conversion. In the Multi-objective 

Uniform-diversity Genetic Algorithm (MUGA), a є-elimination diversity approach is used 

such that all the clones and/or є-similar individuals based on normalized Euclidean norm of 

two vectors are recognized and simply eliminated from the current population. The 

superiority of MUGA is shown in comparison with NSGA-II in terms of diversity of 

population and Pareto fronts both for bi-objective and multi-objective optimization 

problems. 
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2. Multi-objective optimization 

Multi-objective optimization which is also called multicriteria optimization or vector 
optimization has been defined as finding a vector of decision variables satisfying constraints 
to give optimal values to all objective functions (Coello Coello & Christiansen, 2000; 
Homaifar et al., 1994) . In general, it can be mathematically defined as: 

find the vector T
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subject to m inequality constraints: 

 m    to1i      ,    0)( =≤X
i
g   (2) 

and p equality constraints: 

 p    to1j     ,     0)( ==Xjh   (3) 

where nX ℜ∈*  is the vector of decision or design variables, and kXF ℜ∈)(  is the vector of 

objective functions. Without loss of generality, it is assumed that all objective functions are 
to be minimized. Such multi-objective minimization based on the Pareto approach can be 
conducted using some definitions: 
Definition of Pareto dominance 

A vector k
k
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 (denoted by VU ≺  

) if and only if }{ ki ,...,2,1∈∀ , i
v

i
u ≤  ∧ }{ kj ,...,2,1∈∃  : ju < jv . It means that there is at least 

one ju  which is smaller than jv  whilst the rest u ’s are either smaller or equal to 

corresponding v ’s. 

Definition of Pareto optimality 

A point Ω∈*X  ( Ω  is a feasible region in nℜ  satisfying equations (2) and (3)) is said to be 

Pareto optimal (minimal) with respect to all Ω∈X  if and only if )()*( XFXF ≺ . 

Alternatively, it can be readily restated as }{ ki ,...,2,1∈∀  , }*{XX −Ω∈∀  )()*( XifXif ≤  ∧ 

}{ kj ,...,2,1∈∃  : )()*( XjfXjf < . It means that the solution *X  is said to be Pareto optimal 

(minimal) if no other solution can be found to dominate *X  using the definition of Pareto 
dominance. 
Definition of Pareto Set 

For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the 

Pareto optimal vectors, Ƥ٭ |{ Ω∈= X ∄ )}()(: XFXFX ≺′Ω∈′ . In other words, there is no 

other X ′  in Ω that dominates any X ∈Ƥ٭.  
Definition of Pareto front 

For a given MOP, the Pareto front ƤŦ٭ is a set of vectors of objective functions which are 

obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is, 
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ƤŦ٭ ∈== XX
k
fXfXfXF :))(....,),(

2
),(

1
()({ Ƥ٭}. Therefore, the Pareto front ƤŦ٭ is a set of the 

vectors of objective functions mapped from Ƥ٭.  
Evolutionary algorithms have been widely used for multi-objective optimization because of 
their natural properties suited for these types of problems. This is mostly because of their 
parallel or population-based search approach. Therefore, most difficulties and deficiencies 
within the classical methods in solving multi-objective optimization problems are 
eliminated. For example, there is no need for either several runs to find the Pareto front or 
quantification of the importance of each objective using numerical weights. It is very 
important in evolutionary algorithms that the genetic diversity within the population be 
preserved sufficiently. This main issue in MOPs has been addressed by much related 
research work (Toffolo & Benini, 2003). Consequently, the premature convergence of 
MOEAs is prevented and the solutions are directed and distributed along the true Pareto 
front if such genetic diversity is well provided. The Pareto-based approach of NSGA-II (Deb 
et al., 2002) has been recently used in a wide range of engineering MOPs because of its 
simple yet efficient non-dominance ranking procedure in yielding different levels of Pareto 
frontiers. However, the crowding approach in such a state-of-the-art MOEA (Coello Coello 
& Becerra, 2003) works efficiently for two-objective optimization problems as a diversity-
preserving operator which is not the case for problems with more than two objective 
functions. The reason is that the sorting procedure of individuals based on each objective in 
this algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding 
distance of an individual computed in this way may not exactly reflect the true measure of 
diversity or crowding property. In order to show this issue more clearly, some basics of 
NSGA-II are now represented. The entire population Rt is simply the current parent 
population Pt plus its offspring population Qt which is created from the parent population Pt 
by using usual genetic operators. The selection is based on non-dominated sorting 
procedure which is used to classify the entire population Rt according to increasing order of 
dominance (Deb et al., 2002). Thereafter, the best Pareto fronts from the top of the sorted list 
is transferred to create the new parent population Pt+1 which is half the size of the entire 
population Rt. Therefore, it should be noted that all the individuals of a certain front cannot 
be accommodated in the new parent population because of space. In order to choose exact 
number of individuals of that particular front, a crowded comparison operator is used in 
NSGA-II to find the best solutions to fill the rest of the new parent population slots. The 
crowded comparison procedure is based on density estimation of solutions surrounding a 
particular solution in a population or front. In this way, the solutions of a Pareto front are 
first sorted in each objective direction in the ascending order of that objective value. The 
crowding distance is then assigned equal to the half of the perimeter of the enclosing hyper-
box (a rectangular in bi-objective optimization problems). The sorting procedure is then 
repeated for other objectives and the overall crowding distance is calculated as the sum of 
the crowding distances from all objectives. The less crowded non-dominated individuals of 
that particular Pareto front are then selected to fill the new parent population. It must be 
noted that, in a two-objective Pareto optimization, if the solutions of a Pareto front are 
sorted in a decreasing order of importance to one objective, these solutions are then 
automatically ordered in an increasing order of importance to the second objective. Thus, 
the hyper-boxes surrounding an individual solution remain unchanged in the objective-wise 
sorting procedure of the crowding distance of NSGA-II in the two-objective Pareto 
optimization problem. However, in multi-objective Pareto optimization problems with more 
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than two objectives, such sorting procedure of individuals based on each objective in this 
algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding distance of 
an individual computed in this way may not exactly reflect the true measure of diversity or 
crowding property for the multi-objective Pareto optimization problems with more than 
two objectives. 
In our work, a new method is presented to modify NSGA-II so that it can be safely used for 
any number of objective functions (particularly for more than two objectives) in MOPs. Such 
a modified MOEA is then used for four-objective thermodynamic optimization of subsonic 
turbojet engines. 

3. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)  

The multi-objective uniform-diversity genetic algorithm (MUGA) uses non-dominated 
sorting mechanism together with a ε-elimination diversity preserving algorithm to get 
Pareto optimal solutions of MOPs more precisely and uniformly.  

3.1 The non-dominated sorting method 

The basic idea of sorting of non-dominated solutions originally proposed by Goldberg 
(Goldberg, 1989) used in different evolutionary multi-objective optimization algorithms 
such as in NSGA-II by Deb (Deb et al., 2002) has been adopted here. The algorithm simply 
compares each individual in the population with others to determine its non-dominancy. 
Once the first front has been found, all its non-dominated individuals are removed from the 
main population and the procedure is repeated for the subsequent fronts until the entire 
population is sorted and non-dominately divided into different fronts.  
A sorting procedure to constitute a front could be simply accomplished by comparing all the 
individuals of the population and including the non-dominated individuals in the front. 
Such procedure can be simply represented as following steps: 
 

 1-Get the population (pop) 
 2-Include the first individual {ind(1)} in the front P* as P*(1), let P*_size=1; 
               3-Compare other individuals {ind (j), j=2, Pop_size)} of the pop with { P*(K), K=1,  P*_size}  
               of the P*; 
 If ind(j)<P*(K) replace the P*(K) with ind(j) 
 If P*(K)<ind(K), j=j+1, continue comparison; 
 Else include ind(j) in P*, P*_size= P*_size+1, j=j+1, continue comparison; 
 4-End of front P*; 
 

It can be easily seen that the number of non-dominated solutions in P* grows until no 
further one is found. At this stage, all the non-dominated individuals so far  found in P* are 
removed from the main population and the whole procedure of finding another front may 
be accomplished again. This procedure is repeated until the whole population is divided 
into different ranked fronts. It should be noted that the first rank front of the final 
generation constitute the final Pareto optimal solution of the multi-objective optimization 
problem.  

3.2 The ε-elimination diversity preserving approach 

In the ε-elimination diversity approach that is used to replaced the crowding distance 
assignment approach in NSGA-II (Deb et al., 2002), all the clones and ε-similar individuals 
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are recognized and simply eliminated from the current population. Therefore, based on a 
value of ε as the elimination threshold, all the individuals in a front within this limit of a 
particular individual are eliminated. It should be noted that such ε-similarity must exist both 
in the space of objectives and in the space of the associated design variables. This will ensure 
that very different individuals in the space of design variables having ε-similarity in the 
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in Fig. 1. Evidently, the clones and ε-similar individuals 
are replaced from the population by the same number of new randomly generated 
individuals. Meanwhile, this will additionally help to explore the search space of the given 
MOP more effectively. It is clear that such replacement does not appear when a front rather 
than the entire population is truncated for ε-similar individual.  
 

 

Fig. 1. The ε-elimination diversity preserving pseudo-code 

3.3 The main algorithm of MUGA 

It is now possible to present the main algorithm of MUGA which uses both non-dominated 
sorting procedure and ε-elimination diversity preserving approach which is given in Fig.2. It 
first initiates a population randomly. Using genetic operators, another same size population 
is then created. Based on the ε-elimination algorithm, the whole population is then reduced 
by removing ε-similar individuals. At this stage, the population is re-filled by randomly 
generated individuals which helps to explore the search space more effectively. The whole 
population is then sorted using non-dominated sorting procedure. The obtained fronts are 

ε-elim= ε-elimination(pop) // pop includes design variables and 
objective function 

i=1; j=1; 
get K (K=1 for the first front); 
While i,j <pop_size 

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ϵ P*k Ụ PF*k  //finding mean value of ε 

within pop.  
end 
ε=mean(e); 
i=1; 
until i+1<pop_size; 
j=i+1 
 until j<pop_size 
 if e(i,j)<ε 
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual 
 j=j+1 

end 
i=i+1 
end 
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then used to constitute the main population. It must be noted that the front which must be 
truncated to match the size of the population is also evaluated by ε-elimination procedure to 
identify the ε-similar individuals. Such procedure is only performed to match the size of 
population within ±10 percent deviation to prevent excessive computational effort to 
population size adjustment. Finally, unless the number of individuals in the first rank front 
is changing in certain number of generations, randomly created individuals are inserted in 
the main population occasionally (e.g. every 20 generations of having non-varying first rank 
front). 
 

 

Fig. 2. The pseudo-code of the main algorithm of MUGA 

4. Numerical results of MUGA using test functions 

In this section four test functions which have been widely used in literature (Deb et al., 2002) 
are adopted here to test and compare the effectiveness of MUGA with that of NSGA-II. 
These test functions are all bi-objective and have no constraint. A generation number of 250 
with a population size of 100 have been used in all experiments. The probabilities of 
crossover and mutation have been chosen as 0.9 and 0.1, respectively. Each test function has 

Get N         //population size 
t=1 ;    //set generation number 
Random_N(Pt);  //generate the first population (P1) randomly 
Qt=Recomb(Pt)  //generate population Qt from Pt by genetic operators 
Rt=Pt Ụ Qt  //union of both parent and offspring population 
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt 
Rt′′= Rt′ Ụ  Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N 
 
Do non-dominate sorting procedure (Rt′′)     //Rt′′=P*1Ụ P*2Ụ…ỤP*k   where k is total        

number of fronts 
i=1 

Pt+1=Θ 
While not Pt+1_size>N  //includes fronts into new population 
  Pt+1= Pt+1Ụ P*i 
  i=i+1 
end 
N′=N- Pt+1_size 
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within 

the tolerance of  ±10 percent 
       Ғ′=ε-elimination (P*i-1) 
           If Ғ′_size< N′ 

e=1.1*e 
else 
e=0.9 * e //adjust the value of threshold to get the right population 

size of the last front 
end 

end 
t=t+1    //Start next generation 
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been run for 5 times to compute the mean and variance of the metric of non-uniformity of 
the solutions obtained in the final Pareto front. 

In order to evaluate the diversity of the obtained Pareto front, a metric, Δ, has been adopted 
here to measure the spread and uniformity of the achieved non-dominated solutions along a 
Pareto front (Deb et al., 2002). Such metric basically calculates the relative Euclidean 

distance of consecutive solutions from their average value. Hence, a lower value of Δ (zero 
in ideal case) indicates a better uniformly spread non-dominated solutions. It is therefore 
possible to simply compare the performance of MUGA with that of NSGA-II in term of 
uniformity using the same metric. 
Four different functions which have been used to test and compare the results of MUGA 
with those of NSGA-II are as follows: 
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Figure 3 depicts the Pareto fronts obtained for test functions 1 and 2 using MUGA. Figure 4 

depicts the same for test functions 3 and 4. The uniformity of the well spread-out of the non-

dominated solutions is evident from these figures. 

In order to compare the uniformity of the results of this work (MUGA) with those of NSGA-

II, Table 1 shows the means and variances of metric Δ of both methods for multiple runs 
(Deb et al., 2002). 
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Fig. 3. Pareto fronts obtained by MUGA: (a) Test function 1 (b):Test function 2 
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Fig. 4. Pareto fronts obtained by MUGA: (a) Test function 3 (b):Test function 4 

 

Methods Test function 1 Test function 2 Test function 3 Test function 4 

0.449265 0.463292 0.435112 0.442195 
NSGA-II 

0.002062 0.041622 0.024607 0.001498 

1.021110 0.784525 0.755148 0.852490 
SPEA 

0.004372 0.004440 0.004521 0.002619 

1.063288 1.229794 1.165942 1.079838 
PAES 

0.002868 0.004839 0.007682 0.013772 

0.162595 0.273347 0.225211 0.402798 
MUGA (this work) 

2.9E-06 0.000261 2.1E-07 0.0 

Table 1. Comparison of mean and variance of metric Δ of different methods (Deb et al., 2002) 
with those of MUGA (shaded rows are mean values and un-shaded rows are variances) 
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It is very evident from Table 1 that the performance of MUGA is better than that of other 

methods in achieving lower Δ in obtaining more uniform non-dominated solutions for these 

test functions. Further, the very small value of variances of that metric obtained in multiple 

runs simply demonstrates the robustness of finding uniform Pareto fronts in MOPs using 

MUGA. 

5. Multi-objective thermodynamic optimization of turbojet engines with two 
design variables 

Turbojet engines use air as the working fluid and produce thrust based on the variation of 

kinetic energy of burnt gases after combustion. The study of the thermodynamic cycle of a 

turbojet engine involves different thermo-mechanical aspects such as specific thrust, thermal 

and propulsive efficiencies, and thrust-specific fuel consumption (Atashkari, et al., 2005). A 

detailed description of the thermodynamic analysis and equations (Mattingly, 1996) of ideal 

turbojet engines is given in Appendix A (Atashkari, et al., 2005). This elementary 

thermodynamic model is sufficient to capture the principles of behaviour and interactions 

among different input and output parameters in a multi-objective optimal sense. 

Furthermore, this provides a suitable real-world engineering benchmark for comparing 

purpose between MOEA using the new diversity preserving mechanism of this work. 

The input parameters involved in such thermodynamic analysis in an ideal turbojet engine 

given in Appendix A are flight Mach number (M0), input air temperature (T0, K), specific 

heat ratio (γ ), heating value of fuel (hpr, kJ/kg), exit burner total temperature (Tt4, K), and 

pressure ratio, πc. The output parameters involved in the thermodynamic analysis in the 

ideal turbojet engine given in Appendix A are, specific thrust, (ST, N/kg/s), fuel-to-air ratio 

(f), thrust-specific fuel consumption (TSFC, kg/s/N), thermal efficiency (ηt), and propulsive 

efficiency (ηp). However, in the multi-objective optimization study, some input parameters 

are already known or assumed as, T0 = 216.6 K, γ =1.4, hpr =48000 kJ/kg, and Tt4 = 1666 K. 

The input flight Mach number 0 < M0 ≤ 1 and the compressor pressure ratio 1 ≤ πc ≤ 40 are 

considered as design variables to be optimally found based on multi-objective optimization 

of 4 output parameters, namely, ST, TSFC, ηt, and ηp. 

5.2 Two-objective thermodynamic optimization of turbojet engines 

In order to investigate the optimal thermodynamic behaviour of subsonic turbojet engines, 5 

different sets, each including two objectives of the output parameters, are considered 

individually. Such pairs of objectives to be optimized separately have been chosen as (ηp, 

TSFCx105), (ηp, ST), (ηt, TSFCx105), (ηt, ST), and (ηp, ηt). Evidently, it can be observed that 

ηp, ηt, and ST are maximized whilst TSFC is minimized in those sets of objective functions.  

A population size of 100 has been chosen in all runs with crossover probability Pc and 

mutation probability Pm as 0.8 and 0.1, respectively.  

The results of the two-objective optimizations considering those 5 different combinations of 

objectives are summarized in Table 2. Some Pareto fronts of each pair of two objectives have 

been shown through figures (5-6) using both the approach of this work and that of NSGA-II. 
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Pairs of objectives in two-objective optimizations 

(ηp, TSFC) (ηt, TSFC) (ηp, ST) (ηt, ST) (ηp, ηt) 
 

0 <ηp≤0.39 
 

2.1≤TSFC≤2.43

0.4<ηp ≤0.55
 

3.16≤TSFC≤6.8

.65≤ηt ≤ 0.7 
 

2.1≤TSFC≤2.43

0.41<ηp≤0.5
 

515≤ST≤817

0 < ηp 0.39
 

906≤ST≤1169

0.64≤ηt 0.7 
 

890≤ST≤1169 

0.4≤ηp≤0.56 
 

0.16≤ηt≤0.55 

M0 0 < Mo ≤1 1 0 < Mo ≤1 0.85≤Mo≤1 0<Mo≤1 0<Mo≤1 1 

πc πc = 40 1.0 ≤πc ≤ 8.25 πc = 40 1.2≤πc≤4.28 13.5≤πc≤39.3 37.3≤πc≤40 1≤πc≤ 8.78 

Table 2. Values of decision variables and objective functions in various two-objective 
optimizations (Atashkari, et al., 2005) 

It is clear from these figures that choosing appropriate values for the decision variables, 
namely flight Mach number (M0) and pressure ratio (πc), to obtain a better value of one 
objective would normally cause a worse value of another objective. However, if the set of 
decision variables is selected based on each of a Pareto front, it will lead to the best possible 
combination of that pair of objectives. In other words, if any other pair of decision variables 
M0 and πc is chosen, the corresponding values of the particular pair of objectives will locate a 
point inferior to that Pareto front. The inferior area in the space of objective functions (plane 
in these cases) for figures (5-6) are in fact bottom/left sides. A better diversity of results 
obtained using the approach of this work than those of NSGA-II can also observed in these 
figures. Evidently, figures (5-6) reveal some important and interesting optimal relationships 
among the thermodynamic parameters in the ideal thermodynamic cycle of turbojet engines 
that may not have been found without a multi-objective optimization approach. Such 
relationships have been called a worthwhile task for a designer by Deb in (Deb, 2003). These 
figures and the associated values of the decision variables and the objective functions given 
in Table 1 simply covers all the 4 objectives studied in the two-objective Pareto optimization. 
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 (a) (b) 
Fig. 5. Pareto front of thermal efficiency and specific thrust in 2-objective optimization: (a) 
MUGA (b) NSGA-II 
However, other pairs of objective functions in the two-objective Pareto optimization 
together with their associated values of the decision variables have been shown in Table 1. A 
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careful investigation of these Pareto optimization results reveals some interesting and 

informative design aspects. It can be observed that a small value of pressure ratio (πc <8.7) is 

required in large value of Mach number (0.85<M0 <1) when high value of ηp is important to 

the designer (0.4 <ηp <0.55). In this case both ST and TSFC get their worse values (ST 

becomes smaller and TSFC becomes larger), whilst ηt varies between small and medium 

values (0.16<ηt<0.55) depending on the value of flight Mach number. However, with high 

value of pressure ratio (37<πc<40) in a wide range of flight Mach number (0<M0 <1), TSFC, 

ST, and ηt improve whilst ηp cannot be better than 0.4. The specific values of these objectives 
depend on the exact value of flight Mach number which have been given in Table 1. 
However, such important and worthwhile information can be simply discovered using a 
four-objective Pareto optimization, which will be presented in the next section.  
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 (a)                                                             (b) 

Fig. 6. Pareto front of propulsive efficiency and thermal efficiency in 2-objective 
optimization: (a) MUGA  (b) NSGA-II 

Moreover, figures (5-6) also reveal some important and interesting optimal relationships of 
such objective functions in ideal thermodynamic cycle of turbojet engines that may have not 
been known without a multi-objective optimization approach. For example, figure (3) 
demonstrates that the optimal behaviours of ηt with respect to ST can be readily represented 
by 

 ηt ∝ (ST)2  (4) 

Figure (4) represents a non-linear optimal relationship of ηt and ηp in the form of 

 ηt ∝ (ηp)2    (5) 

 It should be noted that these relationships, which have been obtained from the two-
objective Pareto optimization results, are valid when the corresponding two-objective 
optimization of such functions is of importance to the designer and, in fact, demonstrates 
the optimal compromise of such pairs of objectives. 

5.3 Four-objective thermodynamic optimization of turbojet engines 

A multi-objective thermodynamic optimization including all four objectives simultaneously 

can offer more choices for a designer. Moreover, such 4-objective optimization can subsume 
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all the 2-objective optimization results presented in the previous section. Therefore, in this 

section, four objectives, namely, TSFC, ST, ηp, and ηt, are chosen for multi-objective 

optimization in which ST, ηp, and ηt are maximized whilst TSFC is minimized 

simultaneously. A population size of 200 has been chosen with crossover probability Pc and 

mutation probability Pm as 0.8 and 0.02, respectively. 

Figure (7) depicts the non-dominated individuals in both 4-objective and previously 

obtained 2-objective optimization in the plane of (ηt-ST). Such non-dominated individuals in 

both 4 and 2-objective optimization have alternatively been shown in the plane of (ηp-ηt) in 

figure (8). It should be noted that there is a single set of individuals as a result of 4-objective 

optimization of TSFC, ST, ηp, and ηt that are shown in different planes together with the 

corresponding 2-objective optimization results. Therefore, there are some points in each 

plane that may dominate others in the same plane in the case of 4-objective optimization. 

However, these individuals are all non-dominated when considering all four objectives 

simultaneously. By careful investigation of the results of 4-objective optimization in each 

plane, the Pareto fronts of the corresponding two-objective optimization can now be 

observed in these figures. It can be readily observed that the results of such 4-objective 

optimization include the Pareto fronts of each 2-objective optimization and provide, 

therefore, more optimal choices for the designer.  
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Fig. 7. Thermal efficiency variation with specific thrust in both 4-objective  & 2-objective 
optimisation 

The non-dominated individuals obtained in 4-objective optimization demonstrate some 

interesting behaviours in terms of design variables. Two different parts can be easily 

observed in figures (7-8). One of these parts which is less populated corresponds to high 

value of pressure ratio (0.4<ηp<0.55), unlike the rest of objective functions which all together 

degrades in their values simultaneously, that is, 3<TSFCx105<6.3, 515<ST<890, 0.2<ηt<0.52. 

The corresponding values of objectives for the second part can be given as, 0<ηp<0.4, 

2<TSFCx105<3, 900<ST<1169, 0.6<ηt<0.71 which can be appropriately chosen by the 
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designer. Such facts would be very important to the designer to switch from one optimal 

solution to another for achieving different trade-off requirements of the objectives (Deb, 

2003). 
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Fig. 8. Propulsive efficiency variation with thermal efficiency in both 4-objective & 2-
objective optimization  

Additionally, there are some more profound optimal design relationships among the 

objective functions and the decision variables which have been discovered by the four-

objective thermodynamic Pareto optimization of ideal turbojet engines. Such important 

optimal design facts could not have been found without the multi-objective Pareto 

optimization. Firstly, figure (9) shows the variation of 4 optimized objective functions ST, 

TSFC, ηp, and ηt with the pressure ratio. It can be seen that for pressure ratio less than 14, 

three objectives ST, TSFC, and ηt become worse, unlike ηp which gradually starts getting 

better. The slope of such degradation for ST, TSFC, and ηt becomes faster especially in TSFC 

and ηt when the pressure ratio becomes smaller than 6. However, for high pressure ratios, 

the variation of optimal values of TSFC and ηt are small whilst there are a wide range of 

selections for ηp ≈ 0.4. Secondly, figure (10) demonstrates the behaviours of ST and ηp with 

respect to flight Mach number in high pressure ratios. It can be readily seen that the optimal 

values of ST changes linearly with M0, that is 

 ST = -264.75 M0 + 1164.5  (7)  

with a R-squared value of 0.999. The optimal relationship of ηp with M0 is non-linear and is 
represented as 

 ηp=-0.0977 (M0)2 +0.491 M0 +0.0013  (8) 

with a R-squared value of 0.998.  
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Therefore, such multi-objective optimization of ST, TSFC, ηp, and ηt provide optimal choices 
of design variables based on Pareto non-dominated points.  
 

 

Fig. 9. Variation of four objective functions with pressure ratio in 4-objective optimization  

6. Conclusion 

A new multi-objective uniform-diversity genetic algorithm (MUGA) has been proposed and 
successfully used for some test functions and for thermodynamic cycle optimization of ideal 
turbojet engines. It has been shown that the performance of this algorithm is superior to that  
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Fig. 10. Relationships of specific thrust & propulsive efficiency with flight Mach No. in 4-
objective optimization (Atashkari, et al., 2005) 

of NSGA-II in terms of diversity and the uniformity of Pareto front obtained for both 2-

objective and 4-objective optimization processes. The robustness of uniform Pareto fronts 

obtained using MUGA has been shown by the very small values of variance of the metric Δ 

in multiple runs in comparisons with that of other methods. Further, such multi-objective 

optimization led to the discovering of important relationships and useful optimal design 

principles in thermodynamic optimization of ideal turbojet engines both in the space of 

objective functions and decision variables. The evolutionary multi-objective optimization 

process has helped to discover important relationships with relatively few efforts of 

modeling preparation that would otherwise have required at least a very through 

mathematical analysis. If the underlying objective modeling becomes more complex (like 

deviating from the ideality of components behaviour) evolutionary multi-objective 

optimization process may even be expected to become the sole present-time means of 

attaining respective solutions. 
 

Appendix A 

Thermodynamic model of ideal turbojet engine  

Assumptions: Inlet diffuser, compressor, turbine and exit nozzle, all operate isentropically. 

No pressure loss in the burner. 

f =(fuel/air)<<1, eP (turbojet exit pressure)= 0P (ambient pressure), PC =1.004 (kJ/kg.K) 

K216.6 
0

T = , 1.4=γ , 
kg
kJ  48000

PR
h = , K1666 

t4
T = (in 2 design variables), gc=1            

(kg-m/(N-s2)) 
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