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Abstract

Topological  vortex  excitations  in  thin  magnetic  nanodisks  have  attracted  a  lot  of
attention because of their dynamic stability and various charge-like properties, which
make them suitable objects for data storage. They also have a natural gyrotropic orbital
motion that can be described rather well by an approximate Thiele gyrotropic equation
for the magnetization dynamics. The gyrotropic oscillation makes them available as a
basis for natural oscillators at close to gigahertz frequencies. This gyrotropic motion is
excited naturally even by thermal fluctuations. In addition, the gyrotropic oscillation
frequency can be affected by external perturbations, which allows possibilities for the
design of nanoscale detectors.  The vortex moves in an effective potential,  strongly
determined by the shape anisotropy of the magnetic disk, which then determines the
force appearing in the Thiele equation of motion. The motion of an individual vortex
within  a  disk  of  circular  or  elliptical  shape  is  considered  theoretically,  including
stochastic  thermal  effects  together  with  the  deterministic  gyrotropic  effects.  From
simulations of the motion at different parameter values, a picture of the typical vortex
position and velocity distribution within the disk is developed and compared with what
is expected from the Thiele equation.

Keywords: magnetic vortex, topological charge, vortex potential, magnetic resonance,
magnetic dots

1. Introduction: vortices in thin submicron magnetic disks

A cylindrically shaped thin disk of soft ferromagnetic material with a radius � on the order of
100 nm to a few microns and a thickness L ≪  �   on the order of 10–50 nm provides an
interesting system for the study of vortices [1, 2]. A magnetic configuration is described by its
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local magnetization �(�), which is the magnetic dipole moment per unit volume, at position�. A material is considered with saturation magnetization ��, which is the magnitude when
the medium is completely magnetized along some axis. Due to the demagnetization effect,
which  is  responsible  for  shape  anisotropy,  any  such  magnetic  system tends  to  avoid  the
formation of magnetic poles on the surfaces, if possible, which would raise the total energy.
For a thin circular disk, the local magnetization �(�) as a function of position � may tend to
do two things: (1) �(�) will have a strong tendency to point within the plane of the disk [3],
if possible; (2) �(�) may then follow the curved circular boundary at the disk edge, thereby
completely  avoiding the generation of  any poles  on the edge.  This  prevents  any strong
magnetic field lines from passing through the space surrounding the disk edge.

Within the disk, the forces of ferromagnetic exchange cause �(�) also to have a circular
structure and remain close to the disk plane. At the disk center, which is a singular point,

remaining in the disk plane is impossible, and �(�) then points perpendicular to the plane of
the disk, forming tiny north/south poles on opposite faces at the disk center. The resulting

circular form of �(�), together with its central poles in a core region, is a magnetic vortex. It
is a type of magnetic excitation that is topologically stable and acts in many ways like a particle,
when exposed to forces.

Figure 1. The magnetization field �(�) = ���(�) of a vortex centered in a nanodisk with principal axes � = 60 nm,� = 30 nm, thickness � = 10 nm, from the spin alignment relaxation scheme for the micromagnetics model, Section

2.4. The cell size is �cell = 2 nm. Arrows show only the in-plane projection, (���,���). Blue line (red open) arrows indi-

cate positive (negative) values of out-of-plane component ���. The core, where ��� is larger, appears as a hole in this

projection. Even though the system is elliptical, note that the core region remains close to circular.

One can also consider deviations from circular symmetry, such as in elliptic nanodisks, where
magnetic vortex dynamics has been studied by measuring their radio frequency oscillations
[4] and even by direct electrical contact [5] to a nanodisk. An example of a magnetic vortex
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centered in a thin elliptical nanodisk is shown in Figure 1. It has been obtained from a numerical

relaxation algorithm [6], see Section 2.4 below. Although there is a tendency for �(�) to follow
the boundary, one sees that the exchange forces are more dominating, and especially the core
structure of the vortex retains a circular shape. The locus where the perpendicular component�� changes sign is obvious as a circle in Figure 1.

1.1. Vortex charges

The magnetization profile �(�) of a vortex may point either in a counterclockwise (CCW) or
clockwise (CW) direction around the disk. This twofold degeneracy is associated with its
circulation charge � = ± 1, which is also referred to as chirality. It provides one topologically
stable geometric property that could be used for data storage in a vortex, if it can be reliably
controlled and detected.

In principle, a vortex profile �(�) also has a vorticity charge � = ± 1, which corresponds to the

direction of rotation of �(�) as one moves along a closed path encircling the core. The value� = + 1 holds for the vortices described here, which are controlled by demagnetization effects

(�  being forced to follow the boundary). The value � = − 1, known as an antivortex, would
only be energetically stable if demagnetization effects were not present. The limit of zero
thickness would eliminate the relevant demagnetization and make antivortices energetically
possible.

The magnetization at the vortex core can take one of two values, �(0) = ±��� = ���� , where� = ± 1 is the polarization charge. Because there is an energy barrier to flip the core polarization
from � = + 1 to � = − 1, it offers yet another charge that could be useful for data storage and
manipulation.

1.2. Vortex potential and forces

The above-described magnetic vortex will have its minimum energy when it is centered in the

disk. The location of the poles (where �  points perpendicular to the disk) defines the loca-
tion of the vortex core, which we denote by position vector � = (�,�), measured along the �,�
Cartesian axes within the disk plane. Because the system is assumed to be thin, only two
coordinates �, � are needed to locate the core. Further, the magnetization itself has little
dependence on the coordinate (�) perpendicular to the disk. We take � = (0, 0) for the vortex
at the center of the disk. It is possible to imagine that the vortex core becomes slightly displaced

from the disk center. In that case, a slight deformation of the vortex structure �(�) takes place,

while the demagnetization effects at the disk edge still try to maintain �(�) parallel to the edge.
The net result of the displacement is a slight increase in total energy. The vortex, as a quasi-
particle, lives in some effective potential �(�), which has something approximating a parabolic
form [6], with the minimum at the disk center,
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» FU kR R (1)

where �� is a force constant. This further implies an effective force � back towards the disk center,

according to the gradient of the potential,

= ( ) .-Ñ » -
r

FU kF R R (2)

For a circular disk, the potential is circularly symmetric, and then small displacements lead to
a circularly symmetric Hooke’s law type of force. It is also possible to consider magnetic
vortices in a cylindrical disk of elliptical shape [7], defined by principal axes � and � < �:

+
22

2 2
= 1.

yx

a b
(3)

This situation leads correspondingly to a modification of the potential also to an approximately
elliptic form [8],

( )2 21( ) .
2

» +x yU k X k YR (4)

The parabolic functional form now has separate force constants ��, �� along the two principal

axes. It gives a force,

= ( , ).- -x yk X k YF (5)

While a vortex in a nanodisk experiences a force directed roughly towards the disk center, its
motion tends to be in an orbital sense, which is the gyrotropic oscillation mode [9, 10]. This is
discussed further in Section 3 on dynamics. Before coming to that, we begin by a quantitative
description of the calculation of vortex structures.

2. Analysis of quasi-stationary vortices in a nanodisk

The theoretical analysis is based on the statics and dynamics of the magnetization field, which
is now assumed to keep a uniform magnitude ��, but a spatially varying direction, by writing�(�) = ���(�), where �(�) is a unit vector. From the energetics expressed in terms of �(�),
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equations for the vortex structure and motion can be developed. See Ref. [11] for a general
discussion of the calculation of magnetic vortex structures and properties.

2.1. Energetics of a continuum nanomagnet

The system is governed by ferromagnetic exchange energy and interactions of �  generally

with the demagnetization field �� (self-generated by �) and any possible externally applied

field � e��. A continuum Hamiltonian for the system is

H = dV A∇m · ∇m − µ0 Hext
+

1

2
HM

· M , (6)

where �0 is the permeability of free space, and � is the exchange stiffness. One commonly used

material is Permalloy-79 (Py, 79% nickel, 21% iron), with exchange stiffness about 13 pJ/m and
saturation magnetization �� = 860 kA/m [12]. The magnetization changes its direction over a

length scale �e� called the exchange length. Exchange energy of the order �/�e�2  competes with

demagnetization energy of the order 12�0��2. Equating these terms gives the definition of the

length scale,

e 2
0

2= .λ
μx

s

A
M (7)

For Py, �e� ≈ 5.3 nm. Exchange forces dominate over lengths less than �e�, but demagnetization

dominates over larger lengths, allowing the �(�) field to change its direction. At a boundary,

the exchange effects are much less present, and demagnetization helps �(�) to point parallel
to the boundary, if possible.

2.2. The demagnetization field �� in a thin magnetic film

The demagnetization field is determined by the global configuration of the magnetization of
the system; it is derived from considerations of magnetostatics (see Ref. [13] for the details of
the approach used here). In the absence of an external applied magnetic field, one has magnetic

induction � = �0(��+�). Gauss’ law, ∇ . � = 0, then becomes

∇ ⋅ −∇ ⋅
  

= .
M

H M (8)
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By assuming the demagnetization field comes from a scalar potential via �� = − ∇ Φ�, a

Poisson equation for the magnetostatics is obtained:

2 = , .ρ ρ-Ñ F º -Ñ ×
r r

M M M M (9)

Therefore, the magnetization �(�) produces an effective magnetic charge density ��, which

is the source in this Poisson equation. The solution for scalar potential Φ� can be obtained by

various numerical methods. Generally, we have used a scheme based on discretization of the
system (introduction of a spatial grid), together with appropriate Green’s functions for the
Poisson equation. In addition, it is extremely helpful to use the approximation that the disk is
very thin, � ≪ �, where � is the radius (or the semi-major axis for an elliptical disk). In this case,

both �  and �� do not depend on the vertical coordinate � along the disk axis. Then, the
problem can be solved by effective two-dimensional (2D) Green’s functions [14]. The compo-
nents α = �,�,� of the demagnetization field can be expressed as 2D convolution integrals,

2

= , ,
( ) = ( ) ( )M

x y z
H d G M¢ ¢ ¢-åòa ab b

b

r r r r r (10)

where ���(� − �′) represents a tensor Green’s function, and the integration is over 2D positions,

for example now � = (�,�). The evaluation of these integrals can be accelerated through the use
of fast Fourier transforms [15].

2.3. Discretization and micromagnetics for simulations

For numerical solutions of the magnetization field �(�) = ���(�), it is necessary to partition

the system into cells labeled by index � for positions ��. We use a square grid of cells of

individual size �cell × �cell × L, with �cell= 2.0 nm, and disk thickness L = 5 nm and L = 10 nm. At
the center of each cell is a unit direction vector ��, whose motion is to be followed. Each cell

contains a magnetic dipole moment � � of magnitude μ = L�cell2Ms and direction ��. This

micromagnetics approach [16, 17] then represents the original continuum system, but with a
discretized 2D micromagnetics Hamiltonian,

( )
2

ec 1
22

( , ) e

ˆ ˆ ˆ= ,
é ù

- × + + ×ê ú
ë û
å å % %xt Mell

i j i i i
i j ix

aJ m m H H mH
λ (11)

where the effective exchange constant and energy scale between nearest-neighbor cells is� = 2��, and magnetic fields have been brought to dimensionless forms,
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xt xt M M

i i s i i s
H H M H H M (12)

The presence of the factor �cell2/�e�2  gives the relative strength of demagnetization effects

compared with exchange effects. For the micromagnetics approach to be valid, this factor
should be much less than 1. The transverse cell size �cell should then be less than the exchange

length. The micromagnetics approach, with the assumption that only the direction of �  is
changing, makes the implicit assumption that demagnetization effects are a perturbation on
exchange effects. Obviously, the Green’s functions ���(� − �′) must also be brought to a discrete

form to carry out the calculation of ���.

The Hamiltonian can be used to define the net magnetic inductions that act on each cell’s
magnetic dipole � �, according to

= = ,δ
δμ μ

-
rr

ri i
i

JB bH
(13)

where the dimensionless magnetic inductions are

( )
2

ec
2

( ) e

ˆ= .
λÎ

+ +å
r % %xt Mell
i j i i

j z i x

ab m H H (14)

The first term involves a sum over the nearest neighbors �(�) of cell �; it is the exchange field.
The second term represents the combination of external and demagnetization fields. The
effective strength of magnetic inductions is indicated by the unit we use for simulations,

B0 ≡ J/µ = µ0Msλ
2

ex
/a2

cell
. (15)

In the results presented here with �cell= 2.0 nm, and Py parameters, one has �0��2 ≈ 1.08 T and�0 ≈ 7.59 T. �0 gives the order of magnitude of the exchange fields; the demagnetization fields

are considerably weaker.

2.4. Static vortex configurations from a relaxation scheme

Static vortex configurations are derived as the stationary solutions of the dynamic equations
of motion. At zero temperature, the undamped dynamic equation of motion is a simple torque
equation for each magnetic dipole, which interacts with its local net field:
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= .
μ μγ ´
r rri

i i
d B
dt

(16)

Note that this holds because � �/� = � � is the spin angular momentum of the cell, whose time

derivative is the torque, � � × � �. The equation can be written in terms of the dimensionless

quantities, also defining a dimensionless time �,
0

ˆ ˆ= , .t
t

´ º
r

i
i i

dm m b B t
d

γ (17)

The unit of time used for simulations is �0 ≡ (��0)−1. For Py parameters, it takes the value�0 ≈ 0.75 ps. Its reciprocal also defines a simulation frequency unit, �0 ≡ ��0 ≈ 1.336 THz.

For static configurations, however, the time derivatives in Eq. (17) are zero. This implies that

each dipole � � or its unit vector �� must align with the local field in that cell, � �.
Thus, an algorithm that iteratively points each �� along its current value of � � will tend to

move the system towards a static configuration. We call this approach a spin alignment
relaxation scheme [18]. To carry it out, some initial state must be chosen from which to begin
the iteration. Assume that the direction vectors are defined in terms of spherical planar angles(��,��), according to

θ f θ f θˆ = (cos cos , cos sin , sin ).
i i i i i i
m (18)

In this notation, �� is referred to as the in-plane angle and �� is the out-of-plane angle, which can

be positive or negative. The approximate in-plane structure of a vortex located at position� = (�,�) in a disk can be expressed using the vorticity � = + 1 as

1
0tan i

i
i

y Yq
x X

f f- æ ö-
= +ç ÷

-è ø
(19)

where (xi, yi) is the 2D location of micromagnetics cell �, and �0 = ��2  depends on the vortex

circulation charge. There is not a corresponding analytic form for the out-of-plane component.
Instead, one can start with all �� = 0, that is, a planar vortex. However, the iteration will be

such that all �� will remain zero, unless some small nonzero deviation is included. Therefore,

small random values of �� can be used for the initial state. A nonzero out-of-plane component
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will then grow naturally as the system relaxes into a vortex state. The process is repeated until

the changes in the �� become insignificant (less than about one part in 108).

For a circular or elliptic disk, if the vortex is initiated away from the center, as the spin alignment
relaxation proceeds, the vortex will be found to both develop an out-of-plane component and
also move to the disk center. Spin relaxation is an energy minimization algorithm; the system
moves to its nearest minimum energy state, which is that configuration centered in the disk.
A profile of a vortex obtained this way in an elliptic disk is shown in Figure 2. The projection
of the dipoles onto the disk plane is shown. Note that there is a core region with a radius of

the order of �e� (region where �  has significant out-of-plane components, appearing as a hole

in the diagram). Interestingly, the core tends to keep a reasonably circular form, as seen by the

locus of points where the sign of �� reverses.

Figure 2. Vortex structures for an elliptical nanodisk with �= 60 nm, � = 30 nm, � = 10 nm, using cell size �cell= 2.0 nm in the spin alignment relaxation scheme, including a Lagrange constraint on position. (a) Vortex is held at� = 16 nm, � = 0, resulting in total energy � = 15.244� after 2000 iterations. (b) Vortex is held at � = 0, � = 16
nm, resulting in total energy � = 16.001� after 3500 iterations. Compare Figure 1, where � = � = 0 and the energy
is lower.
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2.5. Effective potentials of a vortex in a nanodisk

Spin alignment relaxation can also be used to estimate the effective potential �(�) for the
vortex, by including a constraint on the vortex position � = (�, �). The effective potential is the
system energy ℋ less any constraint energy, for a chosen vortex position. A constraint on vortex
position can be enforced with the use of Lagrange’s undetermined multipliers [6]. Physically,
a vortex can be shifted away from the disk center, by the application of a magnetic field within

the disk plane. A uniform field � e�� along ±� will displace the vortex along ±�, and vice versa,
with the sign determined by the vortex chirality. Buchanan et al. [8] were able to map out the
vortex potential energy numerically using the field to move the vortex to different equilibrium
positions. This gives one way to obtain the effective force constants �� and ��.

Rather than using a uniform applied field, it is possible to imagine the application of a spatially
varying field, which primarily acts on the core region of the vortex. These fictitious extra fields
are the undetermined Lagrange multipliers; they are determined through course of the
calculation. Simultaneously, another constraint is applied that ensures unit length for the
direction vectors ��. The fictitious fields exert torques on the cells in the core region, which

hold the vortex in the desired location, without significantly changing the overall vortex
structure. Thus, a quasi-static vortex structure can be obtained numerically, for whatever
position is desired, within reason. The approach works best for a vortex near the disk center.
For the same elliptical disk of Figure 1, the vortex has been relaxed by this scheme to positions
16 nm from the center, in Figure 2. Note that the energy is higher for a displacement along the
shorter axis of the ellipse [8].

The work here considers stable vortex states. It should be kept in mind that for some parameters
or disk sizes, the vortex could become unstable towards the formation of a lower energy quasi-

single-domain state (nearly uniform �(�)), or some other multi-domain state without a vortex.
This is especially likely in the case of elliptic disks with a high aspect ratio (� ≪ �), where

demagnetization will strongly favor �  aligning with the longer axis [7]. The vortex state will
also become unstable in a circular disk if it is too thin, which minimizes the demagnetization
forces from the circular edge, which usually stabilize a vortex. Also, if the disk is too thick

(� ≫ �), again, demagnetization will cause �  to approximately align with the long axis and
a vortex will not be stable.

Typical vortex potentials obtained from Lagrange-constrained spin alignment for circular
nanodisks are shown in Figure 3, for various radii with fixed thickness � = 4.0 nm. The
minimum energy region is close to parabolic form; however, as the vortex is placed closer to
the edge, a lack of stability (downward curvature) appears. Using the interior region of the
potential, the effective force constants �� for circular disks or even �� and �� for elliptical disks

can be estimated quite accurately. In the example of Figure 3, one can observe that �� becomes

smaller for the larger radii disks. See Refs. [6, 7] for further details.

In elliptical disks [4, 7, 8], the force constant for displacement along the longer disk axis is
found to be weaker than that along the shorter disk axis; see Figures 1 and 2. Thus, the potential

Vortex Structures in Fluid Dynamic Problems156



acquires an elliptical shape that is determined by the original geometrical shape of the disk.
For a disk with semi-major axes � and � with � < �, we have found that for adequately large
nanodisks and � of sufficient size to stabilize the vortex, the ratio of force constants asymptot-
ically approaches the relation,

≈/ / .
x y
k k b a (20)

This has the correct limit for a circular disk, �� = ��. The relation is summarized by saying

that the geometric ellipticity, b/�, directly determines an energetic ellipticity, ��/��. The energetic

ellipticity can be seen to determine the shape of the elliptical vortex orbits at constant energy
in the phase space.

Figure 3. Numerically determined vortex potentials, in units of the effective cell exchange constant � = 2��, for circu-
lar Py nanodisks of thickness � = 4.0 nm and indicated radii, as found from the Lagrange-constrained spin alignment
relaxation. The vortex becomes unstable towards escaping from the disk in the regions of downward curvature.

3. Magnetic dynamics and the Landau-Lifshitz-Gilbert-Langevin
equations

The dynamics described by Eq. (16) or its dimensionless form in Eq. (17) is not completely
realistic, because it does not include the effects of damping nor of temperature and its statistical
fluctuations. Both the damping and thermal effects could be quite large on a vortex. When only
damping with a dimensionless parameter � is included, the well-known Landau-Lifshitz-

Gilbert (LLG) dynamic equation [19, 20] is obtained [Eq. (21) but with all � �,� = 0]. Here, we
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take that one step further and also include stochastic magnetic fields � �,�(�) that represent the

effects of temperature. This leads to a Langevin equation derived from the LLG equation [21],
for an individual micromagnetics cell,

( ) ( )a
t

 ´ + - ´ ´ + 
   

, ,

ˆ
ˆ ˆ ˆ= .i

i i s i i i i s i

dm
m b b m m b b

d
(21)

The changes in �� are a superposition of deterministic effects (from � �) and stochastic effects

(from � �,�). The stochastic fields act to bring the system to thermal equilibrium. That takes

place provided their correlations follow the fluctuation–dissipation (FD) theorem, which can
be written for this problem in the dimensionless quantities as (site index � is suppressed)

( ) ( ) = 2 ( ).b bt t a d d t t¢
¢¢ ¢á ñ -l l

llTs s (22)

Here, δλλ′ is a Kronecker delta and the indices λ,λ′ refer to any of the Cartesian coordinates;�(� − �′) is a Dirac delta function. The dimensionless temperature  is thermal energy scaled
by �,

,
2

kT kT
J AL

º =T (23)

where � is Boltzmann’s constant and � is the absolute temperature. The FD relation indicates
how the stochastic magnetic fields move energy into and out of the system, in random
processes that nevertheless can be quantitatively measured. The stochastic fields are included
only when a study of temperature effects in real time is desired. They can be set to zero if the
zero-temperature dynamics is of interest, producing the LLG equation. Below we use solutions
of Eq. (21) obtained appropriately for the type of system under study, be it � = 0 or � > 0.

3.1. The Thiele equation for vortex core motion

Magnetic excitations such as domain walls and vortices do not obey Newtonian dynamics.
Instead, it can be shown from magnetic torque considerations (i.e., analysis of the � = 0 LLG
equations) that the steady-state dynamics of the core velocity � = �̇ is described by a Thiele
equation [22],

= 0.+ ´F G V (24)

The motion is governed by the gyrovector �, which for vortices is a vector that points perpen-
dicular to the disk plane, in a direction determined by the magnetization at the vortex core.
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Consider a material with saturation magnetization ��. In terms of the magnetization per unit

area, �0 ≡ ���, and the gyromagnetic ratio � = − 1.76 × 1011 T−1 s−1 of an electron (its magnetic

moment divided by its angular momentum), the gyrovector of a vortex is

0ˆ ˆ= = 2 / .π γGz pqm zG (25)

For the vortices in a disk, � = + 1, while there are two core polarizations � = ± 1 possible. The
gyrovector points perpendicular to the disk in two possible directions. A solution of the Thiele
equation then gives a description of the motion of a vortex, provided it remains as a particle-
like stable object under the dynamic environment it is found in. A general review of vortex
motion obeying a Thiele equation, even including an intrinsic mass, is given in [11].

Here, we suppose that a vortex is moving within a nanodisk of elliptical shape, at position� = (�,�), with the force in Eq. (5) acting on it. One finds that it makes an elliptical orbital
motion, whose gyrotropic frequency can be estimated from the Thiele equation [7]. A solution
for the vortex velocity is obtained quickly by taking the cross product of � = ��  with the Thiele
equation,

( ) = 0.´ + ´ ´G F G G V (26)

A vector identity is useful,

( ) = ( ) ( ) .´ ´ × - ×G G V G V G G G V (27)

The vortex velocity points in the plane of the disk, but � is perpendicular to that plane, so� ⋅ � = 0. This gives the velocity as

( )2

1= = , .´
-y xk Y k X

G G
G FV (28)

With � = (�̇,�̇), this is a pair of first-order differential equations, which can be directly
integrated, starting from some initial vortex position �(0) = (�0,�0). An elementary calculation

gives elliptical motion, with instantaneous coordinates

0 0

0 0

( ) = cos sin

( ) = cos sin

ω ω
ω

ω ω
ω

+

-

y
G G

G

x
G G

G

k
X t X t Y t

G
kY t Y t X t
G

(29)
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where the gyrotropic frequency is determined by the geometric mean of the force constants,� ≡ ����:

= = .ω - -x y
G

k k k
G G

(30)

The negative square root is used, because a vortex with � along +�  and a centrally directed
force will move in the clockwise (or negative) direction in the �� plane. This result applies even
when the vortex equilibrium position is displaced from the disk center by an applied magnetic
field, using the effective force constants at that displaced location [8]. Buchanan et al. [8] found
that the experimentally measured vortex oscillation frequency can be controlled by the

application of an in-plane field, � e��; especially, � e�� along the short (or hard) axis of the ellipse
displaces the vortex on the long axis, where its frequency increases substantially due to
position-dependent increases in both force constants with �.

With � e�� = 0, one can find the shape of the elliptical orbit and compare with the shape of the
nanodisk. The vortex in undamped motion must move along an equipotential centered in the
disk. The orbital energy � is found to be

( ) ( )+ +
2

2 21 1

0 02 2
= = .

x y x y
U k X k Y k X k Y (31)

Dividing through by the constant, �, this is the standard equation of an ellipse, with the semi-
major and minor axes �max, �max, given by

max max
2 2, .
x y

U UX Y
k k

= = (32)

Their ratio is then

max

max

.x

y

Y k b
X k a

= » (33)

The last approximate result in terms of the disk axes �,� was obtained by using relation (20),
valid only in the limit of larger ellipses. Thus, the shape of the vortex orbit is nearly the same
as the shape of the nanodisk. The energetic ellipticity (not to be confused with the eccentricity),
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determines the ratio of the orbital axes. Indeed, the potential can be brought to a circular form,
with a new coordinate � :

21
2

1( ) = , , .ρ ρ ρ æ öº ç ÷
è ø

r r rU k eX Y
e

(35)

Then, it is possible to show that the velocity follows a typical expression for circular motion,

( )= , = .ρ ρ ρ ω ρ´r r r& & &x y G (36)

where �� = ��� . This equivalent circular coordinate �  is useful for the analysis of vortex

position statistics in elliptical disks.

3.2. Numerical methods for magnetization dynamics

The analysis of vortex motion via the Thiele equation is expected to be approximate. Numerical
simulations can be used to give a more complete and reliable description of the dynamics. We
require the time evolution from Eq. (21) solved either for zero temperature or finite tempera-
ture. These results are generated for Py parameters, based on the exchange length of �e� = 5.3
nm, together with a micromagnetics cell size of �cell= 2.0 nm.

3.2.1. Zero temperature: fourth-order Runge-Kutta

At zero temperature, a stable integration scheme is the well-known fourth-order Runge-Kutta
(RK4) scheme, which we have used. A time step in dimensionless simulation units of Δτ = 0.04
is sufficient to insure good energy conserving dynamics (at zero damping), resulting in energy

conservation to one part in 1012 over as many as 5.0 × 105 time steps, in systems with up to
4000 cells. To insure this high precision control of the energy, it is essential to evaluate the
demagnetization field continuously during every substep of the RK4 algorithm. In the zero
temperature simulations used to estimate gyrotropic frequencies, the initial state of the
dynamics is a vortex obtained by spin alignment relaxation to a desired position. It is also
helpful to run the time evolution initially with some weak damping (� ≈ 0.02) for a limited
time, followed by energy conserving dynamics (� = 0). The inclusion of damping for a short
interval helps to remove any spin wave oscillations that may be generated by a less than perfect
initial vortex state. The subsequent energy conserving dynamics then gives precise estimates
of the frequencies ��.

Statistics of Gyrotropic Vortex Dynamics in Submicron Magnetic Disks
http://dx.doi.org/10.5772/64849

161



3.2.2. Finite temperature: Langevin dynamics via second-order Heun method

For finite temperatures, the Eq. (21) has been solved effectively by a second-order Heun method
(H2) [21, 23]. This scheme is equivalent to a two-stage predictor-corrector algorithm, where
the predictor stage is an Euler step and the corrector stage is the trapezoid rule. Both stages

use the same random fields � �,�, which are produced by a random number generator. Any of

the Cartesian components of these fields are to be random deviates with a zero mean value
and a variance that must depend on both the dimensionless time step and temperature
according to

= 2 .s DTσ α τ (37)

This is a result of the FD theorem Eq. (22), and it is used to replace the stochastic fields
integrated over a time step, by the relation

, ( ) .
τ τ

στ
+D

®ò
r rn
s i s i

n
d b w

t
t (38)

The vectors � � are triplets of random deviates with zero mean and unit variance, for each site�. In usual programming, there are standard random number generators, which return a
uniform deviate from 0 to 1, with a variance found to be 1/ 12. These can be shifted into the
range from −0.5 to +0.5 and then rescaled by 12�� to get stochastic field components of the

correct mean and variance (it does not need to be a Gaussian distribution) [13, 7].

4. Vortex gyrotropic motion at zero temperature

In a circular nanodisk at zero temperature, with a radial force � as in Eq. (2), the analysis from
the Thiele equation (24) shows that the vortex velocity always points along the azimuthal
direction:

2

ˆ ˆ= = .
2π

γ´
- F

s

Gz k R
G pqLM

fFV (39)

The minus sign indicates that a vortex with positive gyrovector (along � ) will move in the
clockwise or negative sense, in uniform circular motion, and oppositely for those with negative
gyrovector. More generally, for elliptic nanodisks, the predicted gyrotropic frequency obtained
from the Thiele equation is
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where � is the geometric mean of the force constants along the principal axes. For a circular
system, � ��. These results depend strongly on the force constants, which can be estimated

from the static vortex configurations. It has been found [9, 24, 13] that for sufficiently large
circular disks far from any stability limits of the vortex, the force constants are very roughly

proportional to �2/�, that is,

2 2
2

02
c

1 0.878 .
4

μ» »F s
ell

L A Lk M
R a R (41)

The frequency unit �0 = �0−1 = ��0 used in the simulations depends on the cell size, which is

inconvenient for comparison with experiment. Thus, it is important to convert the results to a
commonly used frequency unit,

0
0 .

4
m
p

º sMω γ (42)

This is �0 = ��� in the centimeter-gram-second (CGS) system of units. With the help of

definition (7) for the exchange length, expression (40) for gyrotropic frequency can be written,

0 e e= .
4
μ
π

λ λω γæ öæ öæ ö- ç ÷ç ÷ç ÷è øè øè ø
x x

G sp M k
A L

(43)

With vorticity � = + 1 assumed, the sign of �� is determined by the core polarization �. This

expression suggests using �0 ≡ �/�e� as the unit of force constant and �e� as the unit of length.

Simulations can verify the frequency predictions from the Thiele equation. As shown below
in some examples, the dimensionless periods �� of gyrotropic motion can be estimated

precisely, in simulation time units (� = �/�0). Dimensionless angular frequencies are then2�/��, which are given physical values by multiplying by �0 = ��0. Using Eq. (15), these can

then be converted into units of �0 as follows:

2 2
e e

0 0 02 2
c c
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τ τ
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We use this below to convert the raw numerical data (��) into frequencies in �0 units.

Of course, to get precise estimates of the frequency, the vortex must be instantaneously located
to high precision. That is a two step process. The first step is to use the singularity in the in-
plane magnetization angle �, to locate the four cells nearest to the vorticity center, ��, defined

implicitly according to the relation

ˆ( ) = 2 ( ).π δÑ´Ñ -
r r

vr zf r R (45)

For the micromagnetics square grid, the vorticity center falls between the four cells that have
a net 2� circulation in �. This gives the location � ≈ �� only to a precision equal to the cell size.

It can be greatly improved by making a weighted average of the cell locations ��, using their

squared out-of-plane components, which are largest in the vortex core, as the weighting
function:

2
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For better efficiency, the sum is restricted to cells within four exchange lengths of the vorticity
center. This avoids using useless data from the core of interest (e.g., spin wave oscillations near
the edge of the disk should be ignored). As the vortex moves, the resulting estimate for �
changes smoothly. This algorithm even works very well for vortices moving in response to
thermal fluctuations.

4.1. Circular nanodisks simulations

Some typical vortex motions in circular nanodisks of radius �= 120 nm are presented in Figure
4, as obtained from integration of the LLG equations by the RK4 scheme. The initial states came
from Lagrange-constrained spin alignment to the initial position � = (4.0,0) nm. A weak
damping with parameter � = 0.02 was included but turned off at dimensionless time� = 1000. The remaining evolution was used to estimate the periods, ��, which are then

converted using Eq. (44).

For the motions displayed in Figure 4, the dimensionless periods for L = 5 nm, 10 nm, and 20
nm are �� ≈ 5800, 3270, and 1872, respectively. From statics calculations of the effective

potentials as described earlier, the corresponding raw force constants are kf �cell/� ≈ 0.033863, 0.120192 and 0.419143, respectively, using �cell = 2.0 nm. Rescaling by a factor
λex/�cell = 5.3/2.0 converts them into ���e�/�, which appears in the Thiele theory expression (43).

For these and other similar vortex motion simulations with � ranging from 2.0 to 20 nm, one
can compare to the Thiele prediction by plotting the frequency �� versus ��/� with units as
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suggested from Eq. (43) (see Figure 5). Note that for a given radius �, the disk with the smallest� has the largest frequency. The result is that ��, obtained from dynamics simulations, is very

close to linearly related to ��/�, obtained from static simulations, with a unit slope for these

units. This gives a strong verification of the Thiele equation being applicable to vortex motion
in nanodisks where the vortex is stable. Note that all simulations here used a reasonably small
vortex orbital radius of about 4.0 nm, avoiding having the vortex core approach the disk edge,
which would tend to destabilize the vortex.

Figure 4. Motions for one component of vortex position in circular nanodisks from RK4 integration of the LLG equa-
tions (shifted for clarity). The damping � = 0.02 was turned off after dimensionless time � = 1000. The periods can
be calculated accurately from the undamped motion. Graphs of �(�) are of the same amplitudes and frequencies but
shifted a quarter of a period.

Figure 5. Vortex gyrotropic frequency magnitudes from RK4 (dynamics) simulations for circular nanodisks, with thick-
nesses ranging from L = 2.0–20 nm, and indicated disk radii, versus force constants scaled by disk thickness, obtained
from Lagrange-constrained spin alignment (static) simulations. The dashed line is the theoretical result (43) from the
Thiele equation.
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Figure 6. Effective potential force constants versus geometric ellipticity �/�, for elliptic nanodisks of semi-major axis �= 120 nm, and thickness � = 10 nm. Results were found by Lagrange-constrained spin alignment relaxation.

Figure 7. Gyrotropic frequency magnitudes versus geometric ellipticity �/�, for elliptic nanodisks of semi-major axis�= 120 nm, and thicknesses L = 5.0 and 10 nm. Results were found by simulations of the LLG equations using RK4
integration. For L = 10 nm, compare the similar shape of the curve of  in Figure 6, as expected from �� ∝  in

Eq. (43).

4.2. Elliptical nanodisk simulations

Simulations for elliptic nanodisks [7] offer an even wider range of possibilities, because the
variations with geometric ellipticity �/� can be studied. For instance, the variation of the
effective potential force constants has a behavior like that in Figure 6, for the particular case �= 120 nm and � = 10 nm. Both �� and �� were determined from the potentials derived by spin

alignment with a position constraint. Their geometric mean �, which determines gyrotropic
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frequencies, is also shown. The curves for these force constants do not go below a minimum
value of �/�, where the vortex becomes unstable.

The corresponding gyrotropic frequencies �� for � = 10 nm and also for � = 5.0 nm are shown
in Figure 7, versus �/�. These were obtained from simulations the same as those described for
circular nanodisks. Note that the shapes of these curves are very similar to the curves of � in
Figure 6, which is to be expected if the Thiele theory (43) is valid. The additional results for� = 5.0 nm are included to demonstrate the dependence on disk thickness. With thicker disks

having a greater restoring force and � ∝ �2, due to the extra area on the disk edges, the
dependence of � ∝ � results is gyrotropic frequencies increasing roughly linearly in �. The
results can be presented in another view in Figure 8, showing ��/� versus ellipticity for
different �. One again gets a clear and quantitative verification of the Thiele theory result (43),
seeing that ��/� ∝ �e�/� with the correct constant of proportionality.

Figure 8. Gyrotropic frequency magnitudes (from dynamics) scaled by mean force constants (from statics), versus geo-
metric ellipticity �/�, for elliptic nanodisks with �= 120 nm and two different thicknesses. The results confirm the
predictions from the Thiele theory, dashed lines from Eq. (43), using exchange length �e� = 5.3 nm, with no adjusta-

ble parameters.

5. Spontaneous gyrotropic motion from thermal fluctuations

Now we consider the effects of temperature on a vortex. Specifically, the temperature effec-
tively acts as a bath of random magnetic fields that exchange torques and energy with the
vortex. Even though that exchange is somewhat random, one sees that it is able to spontane-
ously initiate the organized gyrotropic motion of the vortex. That motion proceeds over a noisy
background of spin waves. Even so, it is readily apparent and persistent. Here, we show typical
time evolutions, and then later discuss statistical properties.
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5.1. Simulation of a vortex initially at disk center

A vortex that has been relaxed to its minimum energy configuration (e.g., by the spin alignment
scheme) is situated in the disk center, whether it be circular or elliptical. This assumes that a
quasi-single-domain state is not lower in energy. Then, in the absence of any external forces or
forces due to a thermal environment, it would statically remain centered in the disk and exhibit
no dynamics. However, Machado et al. [25] noticed that finite temperature micromagnetics
simulations demonstrate the spontaneous motion of the vortex, even if it starts in it minimum
energy location. This is rather surprising, although it is really not much different than any spin
wave mode from being excited thermally in an equilibrium system with temperature. From
the point of view of statistical mechanics, any excitable modes (i.e., independent degrees of
freedom) should share equally in available thermal energy, and because the energy present in
the vortex gyrotropic motion is quite small, rather large orbital motions can develop solely due
to the effects of temperature.

In the numerical solution [13] of the magnetic Langevin equation (21), the dimensionless
temperature is required. For the simulation units being used, � = 2�� determines the energy
scale and depends on the disk thickness. As an example, we consider a disk with �= 60 nm,� = 30 nm, and thickness � = 5.0 nm, at temperature � = 300 K. For Py parameters (� = 13 pJ/
m), the energy unit is � = 130 zJ, while the thermal energy scale is �� = 4.14 zJ, which gives
the dimensionless temperature,

= = 0.032, for = 300 , = 5.0 nm.
2
kT T K L
AL

T (47)

This was used to determine the variance of the random magnetic fields, Eq. (37), together with
a damping parameter � = 0.02. A dimensionless time step �� = 0.01 for the second-order Heun
method was used. The resulting vortex core coordinates (�(�), �(�)) are displayed in Figure
9, out to a time of � = 50,000. From Figure 9, a clockwise orbital motion takes place, together
with a noisy background, and there are about 15 complete orbits for � < 50,000 (period�� ≈ 3300). The period is somewhat longer than that found at zero temperature, �� ≈ 2970.

This softening of the mode with temperature is to be expected. In addition, the amplitudes of� and � motions are not equal, as expected from the elliptical disk shape. The gyrotropic orbital

motion continues indefinitely; it was followed out to � = 2.5 × 105 to get vortex statistics.

For comparison, an identical simulation but with the disk thickness increased by a factor of 2
to � = 10 nm in shown in Figure 10, again starting the vortex from the disk center. The greater
thickness approximately quadruples �, but also doubles the gyrovector, thereby resulting in
the frequency being double that for � = 5.0 nm. It is also clearly apparent that the amplitude
of the thermally induced motion is reduced in the thicker nanodisk (the graphs have different
vertical scales). These differences then are primarily driven by the modifications to the force
constants and to �.
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Figure 9. Spontaneous vortex core motion caused by thermal fluctuations, as found by H2 integration of the LLG-Lan-
gevin equations (21) for a nanodisk with thickness � = 5.0 nm. The vortex was initiated at the disk center,� = � = 0. This graph shows only 1/5 of the total data generated and used subsequently for analysis of vortex statis-
tics, corresponding to hundreds of gyrotropic periods.

Figure 10. Spontaneous vortex core motion caused by thermal fluctuations, for a nanodisk simulation identical to that
in Figure 9, but with double the thickness, � = 10 nm. Note the considerably smaller amplitude of gyrotropic oscilla-
tions, and the much higher frequency.

5.2. Thermal vortex motion as described by the Thiele equation

Next, we consider the statistical mechanics of the vortex core position � = (�,�), based on an
effective Lagrangian and Hamiltonian that give back the Thiele equation. The analysis [7]
makes use of the general elliptic potential �(�) in Eq. (4). It is straightforward to check that a
Lagrangian whose Euler-Lagrange variations gives back the Thiele equation is [13]

( )− − − +  2 21 1
= ( )

2 2
x y

L G XY YX k X k Y (48)

This is a particular choice of gauge and this Lagrangian is not unique (see Ref. [26] for a different
choice). To transform to the associated Hamiltonian, one finds the canonical momentum for
this symmetric gauge,
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This shows that the Lagrangian can be expressed as � = � ⋅ � − �. As P is determined by � and�, without any time derivatives, one can interpret this as a pair of constraint relations between
components of � and �. It means that of four original coordinates plus momenta, only two are
independent.

The Hamiltonian is obtained in the usual way,

( )2 2 21
2

1= = = = .
2

× - +x yH L U k X k Y kP V r (50)

Curiously, this has no momenta present. This strange situation seems to imply that there is no
dynamics, because the Hamilton equations of motion are

= , = .H H¶ ¶
-
¶ ¶

P R
R P

& & (51)

That would give � = �̇ = 0, which is clearly wrong. This singular situation comes about
because of the constraint (49) between momentum and position components. In order to get a
true dynamics, one needs to rewrite the Hamiltonian half as a potential part and half as a kinetic
part, that is,
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+ + + 
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x y x y y x
H k X k Y k P k P

G
(52)

This is exactly equal to � in Eq. (50), but now it does give back the Thiele equation when its
time dynamics is found from Eq. (51). Because of the constraint, the vortex motion depends
on only two independent coordinates, or degrees of freedom, rather than four. For the purposes
of statistical mechanics, then, the thermalized vortex motion contains an average energy,� = 2 × 12��.

5.3. Thermalized vortex probability distributions from the Thiele equation

One can assume that any of the coordinates, �,�,��,��, as well as effective circular coordinate� = (��,��), obey a Boltzmann distribution, whose parameters are determined by the average

energy,
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〈 〉 = .H kT (53)

This directly gives the mean squared effective circular radius for an elliptic disk,

2 = 2 / = 2 / .ρ〈 〉 〈 〉H k kT k (54)

This becomes the usual mean squared radius, �2 �2 , in the limit of a circular disk. Using
expression (50) for �, with the energy shared equally between � and � motions (equipartition
theorem for quadratic degrees of freedom) implies that each coordinate has a mean square
value,

〈 〉 〈 〉2 2
= / , = / .

x y
X kT k Y kT k (55)

For the systems we study, with b < a and �� < ��, this implies a wider range of motion for the� coordinate, as could obviously be expected. These relations for the mean square values
indicate the importance of the force constants for describing the statistical distribution of vortex
position.

Now consider determining the probability distributions for the vortex core location. The
Hamiltonian is circularly symmetric when expressed in terms of the square of the effective
circular coordinate � . We can suppose that each possible location has a probability determined

from a Boltzmann factor, e−��, where � = (��)−1. Employing the circular symmetry for this
coordinate, the probability �(�)�� of finding the vortex core within some range �� centered at
radius � is proportional to the area 2�� �� in a ring of radius �, and the Boltzmann factore−��:

1 2
2( ) 2 e = 2 e .
β ρ

ρ ρ πρ ρ πρ ρ
--µ

kHp d d db (56)

By including a normalization constant, the unit normalized probability distribution function
is easily found to be

1 2
2( ) = e .
k

p k
- β ρ

ρ β ρ (57)

The root-mean-square radius  implied from relation (54) can be verified with
this probability function. One can also get the mean radius and the most probable radius:
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m2= / , = / .ρ π ρá ñ axkT k kT k (58)

For the simulations shown in Figures 9 and 10, with �= 60 nm, � = 30 nm, � = 300 K, position

data out to � = 2.5 × 105 was used to find histograms of vortex core position, and thereby get
the radial probability distribution to compare with Eq. (57). The results are shown in Figure
11. To compare with theory, the force constants from spin alignment relaxations were used (see
the Figure 11 caption). Note also that as the gyrotropic frequency is considerably larger for� = 10. nm, those data correspond to many more orbits of the vortex, equivalent to a more
complete averaging. Even so, the distributions for both thicknesses follow very closely to the
expected form that depends on the validity of the Thiele equation, with no adjustable param-
eters (see Figure 12).

Figure 11. The radial distribution of vortex core positions for the simulations in Figures 9 and 10, with �= 60 nm,� = 30, and thicknesses � = 5.0,10 nm. Data out to final time � = 2.5 × 105 was used. The solid curves are the

theory expression (57), using force constants � = 0.1753�0 for � = 5.0 nm and � = 0.6832�0 for � = 10 nm, as

obtained from spin alignment calculations, with force constant unit �0 = �/�e�.

Using � expressed in terms of both � and �, the probability to find the vortex core within some

range �� and �� of the location (�,�) is �(�,�)���� ∝ e−�� ����, where the normalized
probability function is found to be

1 12 2
2 2( , ) = e e .

2 2
β βββ

π π
- -k X k Yyx yx kkp X Y (59)

This is a product of Gaussian distributions in each coordinate, �(�,�) = �(�)�(�), with zero
mean values, but variances given by
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= / , = / .σ σx x y ykT k kT k (60)

The distributions p(X) and p(Y) found from the simulation data of Fig. 9 are shown in Fig.
12, and compare closely to the theoretical expression (59).

Figure 12. Distributions of vortex core coordinates for the LLG-Langevin simulation in Figure 9 with �= 60 nm,� = 30, and thickness � = 5.0 nm. The solid curves are the theory expressions from Eq. (59) based on the Thiele
theory for vortex motion, using force constants �� = 0.1156�0 and �� = 0.2657�0 from spin alignment relaxa-

tion, where �0 = �/�e�.

Clearly one could also find the corresponding distributions of the momentum components by
similar reasoning.

Instead of looking at the momentum components, we can equivalently calculate a theoretical
speed distribution for the vortex core [13]. This is simplest if we use the effective circular
coordinate � , and consider that fact that its velocity in Eq. (36) implies a speed � ≡ �̇  given
by

=| | .ω ρGu (61)

As � is proportional to �, so are their probability distributions. If �(�) is the desired speed
probability distribution, then conservation of probability states that

( ) = ( ) = ( / | |) / | | .ρ ρ ω ωG Gg u du p d p u du (62)

Thus, the speed distribution is derived from the effective circular coordinate distribution by
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With �� = �/�, one obtains

12 2 2 2 2/ / r2
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(64)

This depends on the root-mean-square speed, determined from �r��,
r r=| | = 2 / .ω ρms G msu kTk G (65)

The function �(�) is a Maxwellian speed distribution similar to that for an ideal gas. One could

consider the factor in the exponent as depending on a kinetic energy term 12���2 for a particle,

where �� is some mass associated with that particle in gyrotropic motion. From Eq. (64), one

can read off the value needed for this mass,

2
= / .

G
m G k (66)

This curious result gives a kind of effective mass that depends on the potential experienced by
the vortex. Thus, it should not be consider an intrinsic vortex mass. Generally, � is linearly
proportional to thickness � [see expression (25)], whereas � tends to increase approximately

with �2 [see expression (41) and also Section 4.2], making this mass nearly independent of L.
Probably, �� is more strongly determined by the disk area, ���. In the case of circular disks,

using the approximate expression (41) for � = �� and the definition (25) of � gives a quantitative

result,

2

2
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(2 ) .
0.878

π
μ γ

»G
am (67)

Thus, the mass is determined primarily by the disk radius �, and it does not depend on the
material parameters such as the exchange stiffness or saturation magnetization. For a radius
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�= 100 nm, the mass is 1.2 × 10−22 kg, an extremely small value. Even so, the mass can be
taken to represent how a vortex responds dynamically to the potential. With the gyrotropic
frequency given by �� = �/�, the mass is written equivalently as

= / | | / | | .ω ωµG G Gm G L (68)

With �� depending only on disk radius or possibly area in the �� plane, and the gyrovector

proportional to �, this re-expresses that ��  is also proportional to �, as shown implicitly in
Figures 5 and 7.

6. Summary and interpretation of results

This chapter has provided an overview of some methods for finding the static, dynamic, and
statistical properties of vortex excitations in thin nanodisks of soft magnetic material. By
assuming the thickness is much less than the principal radius, � ≪ �, the magnetization points
primarily within the plane of the disk, except within the vortex core, and it has only weak
dependence on the coordinate � perpendicular to the plane. This allowed for the transforma-
tion to an equivalent 2D problem, which has been studied here using a form of micromagnetics,
converting the continuum problem to one on a square grid.

The Lagrange-constrained spin alignment scheme was used to find static vortex energies while
securing the vortex in a desired location �, thereby allowing for the calculation of vortex
potential �(�) within the disk. For a vortex near the center of an elliptic disk, the force constants�� and �� for displacements along the principal axes a, b are found, with �� ≤ �� when � ≤ �.

However, the disk ellipticity �/� must be above a lower limiting value for a vortex to stable; a
very narrow disk will prefer the formation of a quasi-single-domain state, or even a multi-
domain state, but not a vortex. A vortex energetically prefers a displacement along the longer
axis of the disk; that is consistent with the shape of its elliptic orbits, which have the same
ellipticity as the disk itself [see Eq. (33)].

The vortex gyrotropic orbits can be described very well through the use of the Thiele equation
(24), which replaces the dynamics of the many degrees of freedom in the magnetization field�(�,�) by the dynamics of only two Cartesian components in the vortex core location,� = (�(�), �(�)). This works best for a vortex near the disk center, where it is unlikely to be
destabilized by deformations caused by the boundaries. For zero temperature, the dynamics
from RK4 integration of the LLG equations is completely consistent with that from the Thiele
equation. The Thiele equation predicts the vortex gyrotropic frequencies to be �� = − �/�,
which is confirmed in the dynamics simulations while using force constants from the Lagrange-
constrained static vortex structures. Generally, the zero-temperature gyrotropic frequencies
are roughly proportional to �/� with only a weak dependence on disk ellipticity, as can be
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concluded from the results in Figure 7. The frequencies are determined by the geometric mean
force constant, � = ����, which shows why knowledge of the vortex potential is important

for this problem.

Thermal effects for nonzero temperature have been included by introducing a Langevin
equation (21) that results from including stochastic magnetic fields into the LLG equation. This
Langevin equation gives the time evolution in the presence of thermal fluctuations. Solved
numerically using a second-order Heun algorithm, a vortex initially at the disk center (the
minimum energy point) will spontaneously undergo gyrotropic orbital motion, on top of a noisy
spin wave background. The orbital motion takes place at a slightly lower frequency compared
with its motion for � = 0, because the presence of spin waves weakens the exchange stiffness
of the system. The resulting distribution of vortex position can be predicted using an effective
Lagrangian and Hamiltonian that result from the Thiele equation. That Hamiltonian can be
expressed in a form in Eq. (50) containing only a potential energy. This then shows that the
distributions (and variances) of effective radial coordinate � and Cartesian coordinates � and� depend on ��/��, where �� is either � or �� or ��, respectively [see Eqs. (57) and (60)].

Surprisingly, large vortex rms displacements on the order of 1–10 nm can result, with the larger
values taking place in the weaker potentials of thinner disks (Figure 11) and in disks with larger
radii �. However, these noisy elliptical motions simply reflect the equipartition of energy into
the two collective degrees of freedom available to the vortex (�, �), with each receiving an

average thermal energy of 12��. The radial coordinate, in contrast, receives a full �� of energy

on average. The theoretical probability distributions are confirmed in simulations provided
the time evolution averages over a large number of gyrotropic orbits.

A vortex speed distribution can also be derived from the position distribution, essentially
because the momentum and position coordinates of a vortex are not independent. The
speed distribution �(�) can be characterized by a mass �� proportional to the disk radius �,

but independent of material properties. The mass has the sense that as the vortex position

fluctuates, it has some Maxwellian speed distribution, with a kinetic energy 12���2 that en-

ters in the Boltzmann factor. This is in contrast to the Thiele equation, which has been used
here with no intrinsic mass term. Indeed, the vortex gyrotropic frequency is the same as that
for a corresponding 2D harmonic oscillator of mass �� and spring constant �, that is,�� = �/��
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