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1. Introduction 

Combinatorial optimization problems (COPs) have a wide range of applications in 
engineering, operation research, and social sciences. Moreover, as real-time information and 
communication systems become increasingly available and the processing of real-time data 
becomes increasingly affordable, new versions of highly dynamic real-world applications 
are created. In such applications, information on the problem is not completely known a 
priori, but instead is revealed to the decision maker progressively with time. Consequently, 
solutions to different instances of a typical dynamic problem have to be found as time 
proceeds, concurrently with the incoming information. 
Given that the overwhelming majority of COPs are NP-hard, the presence of time and the 
associated uncertainty in their dynamic versions increases their complexity, making their 
dynamic versions even harder to solve than its static counterpart. However, environmental 
changes in real life typically do not alter the problem completely but affect only some part of 
the problem at a time. For example, not all vehicles break down at once, not all pre-made 
assignments are cancelled, weather changes affect only parts of roads, any other events like 
sickness of employees and machine breakdown do not happen concurrently. Thus, after an 
environmental change, there remains some information from the past that can be used for 
the future. Such problems call for a methodology to track their optimal solutions through 
time. The required algorithm should not only be capable of tackling combinatorial problems 
but should also be adaptive to changes in the environment. 
Evolutionary Algorithms (EAs) have been successfully applied to most COPs. Moreover, the 
ability of EAs to sample the search space, their ability to simultaneously manipulate a group 
of solutions, and their potential for adaptability increase their potential for dynamic 
problems. However, their tendency to converge prematurely in static problems and their 
lack of diversity in tracking optima that shift in dynamic environments are deficiencies that 
need to be addressed. 
Although many real world problems can be viewed as dynamic we are interested only in 
those problems where the decision maker does not have prior knowledge of the complete 
problem, and hence the problem can not be solved in advance. This article presents 
strategies to improve the ability of an algorithm to adapt to environmental changes, and 
more importantly to improve its efficiency at finding quality solutions. The first constructed 
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model controls genetic parameters during static and dynamic phases of the environment; 
and a second model uses multiple populations to improve the performance of the first 
model and increases its potential for parallel implementation. Experimental results on 
dynamic versions of flexible manufacturing systems (FMS) and the travelling salesman problem 
(TSP) are presented to demonstrate the effectiveness of these models in improving solution 
quality with limited increase in computation time. 
The remainder of this article is organized as follows: Section 2 defines the dynamic problems 
of interest, and gives the mathematical formulation of the TSP and FMS problems. Section 3 
contains a survey of how dynamic environments are tackled by EAs. Section 4 presents 
adaptive dynamic solvers that include a diversity controlling EA model and an island-based 
model. The main goal of Section 5 is to demonstrate that the adaptive models presented in 
this article can be applied to realistic problems by comparing the developed dynamic 
solvers on the TSP and FMS benchmarks respectively. 

2. Background 

Dynamism in real-world problems can be attributed to several factors: Some are natural like 
wear and weather conditions; some can be related to human behaviour like variation in 
aptitude of different individuals, inefficiency, absence and sickness; and others are business 
related, such as the addition of new orders and the cancellation of old ones. 
However, the mere existence of a time dimension in a problem does not mean that the 
problem is dynamic. Problems that can be solved in advance are not dynamic and not 
considered in this article even though they might be time dependent. 
If future demands are either known in advance or predictable with sufficient accuracy, then 
the whole problem can be solved in advance. 
According to Psaraftis (1995), Bianchi (1990), and Branke (2001), the following features can 
be found in most real-world dynamic problems: 

• Time dependency: the problem can change with time in such a way that future 
instances are not completely known, yet the problem is completely known up to the 
current moment without any ambiguity about past information. 

• A solution that is optimal or near optimal at a certain instance may lose its quality in the 
next instance, or may even become infeasible. 

• The goal of the optimization algorithm is to track the shifting optima through time as 
closely as possible. 

• Solutions cannot be determined in advance but should be computed to the incoming 
information. 

• Solving the problem entails setting up a strategy that specifies how the algorithm 
should react to environmental changes, e.g. to resolve the problem from scratch at every 
change or to adapt some parameters of the algorithm to the changes. 

• The problem is often associated with advances in information systems and 
communication technologies which enable the processing of information as soon as 
received. In fact, many dynamic problems have come to exist as a direct result of 
advances in communication and real-time systems. 

Techniques that work for static problems may therefore not be effective for dynamic 
problems which require algorithms that make use of old information to find new optima 
quickly. 
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2.1 Representative dynamic combinatorial problems 
Combinatorial problems typically assume distinct structures (for example vehicle routing 
versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very 
specific to the application at hand. The test problems used for dynamic scheduling and 
sequencing with evolutionary algorithms are typical examples (Bierwirth & Kopfer 1994; 
Bierwirth et al. 1995; Bierwirth & Mattfeld 1999; Lin et al. 1997; Reeves & Karatza 1993). 
However, the travelling salesman problem has often been considered representative of various 
combinatorial problems. In this article, we use the dynamic TSP and a dynamic FMS to 
compare the performance of several dynamic solvers. 

2.2 Travelling salesman problem 
Although the TSP problem finds applications in science and engineering, its real importance 
stems from the fact that it is typical of many COPs. Furthermore, it has often been the case 
that progress on the TSP has led to progress on other COPs. The TSP is modelled to answer 
the following question: if a travelling salesman wishes to visit exactly once each of a list of 
cities and then return to the city from which he started his tour, what is the shortest route 
the travelling salesman should take? 
As an easy to describe but a hard to solve problem, the TSP has fascinated many researchers, 
and some have developed time-dependent variants as dynamic benchmarks. For example, 
Guntsch et al. (2001) introduced a dynamic TSP where environmental change takes place by 
exchanging a number of cities from the actual problem with the same number from a spare 
pool of cities. They use this problem to test an adaptive ant colony algorithm. Eyckelhof and 
Snoek (2002) tested a new ants system approach on another version of the dynamic problem. 
In their benchmark, they vary edge length by a constant increment/decrement to imitate the 
appearance and the removal of traffic jams on roads. Younes et al. (2005) introduced a 
scheme to generate a dynamic TSP in a more comprehensive way. In their benchmarks, 
environmental changes take place in the form of variations in the edge length, number of 
cities, and city-swap changes. 

2.2.1 Mathematical formulation 
There are many different formulations for the travelling salesman problem. One common 
formulation is the integer programming formulation, which is given in (Rardin 1998) as 
follows: 

 
(1) 

 

where xij= 1 if link (i; j) is part of the solution, and dij
 
is the distance from point i to point j. 

The first set of constraints ensures that each city is visited once, and the second set of 
constraints ensures that no sub-tours are formed. 
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2.2.2 Solution representation 
In this article a possible TSP solution is represented in a straight forward manner by a 
chromosome; where values of the genes are the city numbers, and the relative position of 
the genes represent city order in the tour. An example of a chromosome that represents a 10 
city tour is shown in Figure 1. With this simple representation, however, individuals cannot 
undergo standard mutation and crossover operators. 

 
(a) (b) 

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5. 

2.3 Flexible manufacturing systems 
The large number of combinatorial problems associated with manufacturing optimization 
(Dimopoulos & Zalzala 2000) is behind the growth in the use of intelligent techniques, such 
as flexible manufacturing systems (FMS), in the manufacturing field during the last decade. 
An FMS produces a variety of part types that are flexibly routed through machines instead 
of the conventional straight assembly-line routing (Chen & Ho 2002). The flexibility 
associated with this system enables it to cope with unforeseen events such as machine 
failures, erratic demands, and changes in product mix. 
A typical FMS is a production system that consists of a heterogeneous group of numerically 
controlled machines (machines, robots, and computers) connected through an automated 
guided vehicle system. Each machine can perform a specific set of operations that may 
intersect with operation sets of the other machines. Production planning and scheduling is 
more complicated in an FMS than it is in traditional manufacturing (Wang et al. 2005). One 
source of additional complexity is associated with machine-operation versatility, since each 
machine can perform different operations and an operation can be performed on different 
alternative machines. Another source of complexity is associated with unexpected events, 
such as machine breakdown, change of demand, or introduction of new products. A 
fundamental goal that is gaining importance is the ability to handle such unforeseen events. 
To illustrate the kind of FMS we are focusing on, we give the following example. 

2.3.1 Example 
A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The 
three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and {O4,O6}, 
where Oi denotes operation i. This system is to be used to process three part types P1, P2, and 
P3, each of which requires a set of operations, respectively, given as {O1, O4, O6}, {O1, O2, O5, 
O6}, and {O4, O6}. There are several processing choices for this setting; here are two of them: 
Choice (a) For part P1: (O1 →M2; O4 →M3; O6 →M3); i.e, assign machine M2 to perform 
operation O1, and assign M3 to process O4 and O6. For part P2: (O1 →M1; O2 →M2; O5 →M2; O6 

→M1). For part P3: (O4 →M3; O6 →M3). 
Choice (b) For part P1: (O1 →M2; O4 →M3; O6 →M1). For part P2: (O1 →M1; O2 →M2; O5 →M2; 
O6 →M3). For part P3: (O4 →M3; O6 →M1). 
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By comparing both choices, one notices that the first solution tends to minimize the transfer 

of parts between machines. On the other hand the second solution is biased towards 

balancing the operations on the machines. However, we need to consider both objectives at 

the same time, which may not be easy since the objectives are conflicting. 

2.3.2 Mathematical formulation 
The assignment problem considered in this section is given in Younes et al. (2002) using the 
following notations: 
i,l are machine indices (i,l = 1,2,3,...,nm); 
j is part index (j = 1,2,3,...,np); 

k̂ j is processing choice for part j (j = 1,2,3,....,np); 

kj is the number of processing choices of Pj ; 

n i j ˆ
j

k is the number of necessary operations required by Pj on Mi in processing choice k̂ j,  

1 ≤ k̂ j ≤ kj  

t i j ˆ
j

k is the work-load of machine Mi to process part Pj in processing choice k̂ j; 

 

 
Using this notation, the three objective functions of the problem (f1, f2, and f3) are given as 
follows:  
1. Minimization of part transfer (by minimizing the number of machines required to 

process each part): 

 

(2) 

2. Load Balancing by minimizing the cardinality distance (measured in number of 
operations) between the workload of any pair of machines: 

 

(3) 

3. Minimization of the number of necessary operations required from each machine over 
the possible processing choices: 

 

(4) 

An overall multi-objective mathematical model of FMS can then be formulated as follows: 

Optimize(f1, f2, f3) 
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s.t. 

 
The first set of constraints ensures that only one processing choice can be selected for each 
part. The complexity and the specifics of the problem require revising several components 
of the conventional evolutionary algorithm to obtain an effective implementation on the 
FMS problem. In particular, we need to devise problem-oriented methods for encoding 
solutions, crossover, fitness assignment, and constraint handling. 

2.3.3 Solution representation 
An individual solution is represented by a series of operations for all parts involved. Each 
gene in the chromosome represents a machine type that can possibly process a specific 
operation. Figure 2 illustrates a chromosome representation of a possible solution to the 
example given in Section 2.3.1. The advantages of this representation scheme are the 
simplicity and the capability of undergoing standard operators without producing infeasible 
solutions (as long as parent solutions are feasible). 
 

 
(a) (b) 

Fig. 2. Chromosome representation. A schematic diagram of the possible choice of part 
routing in (a) is represented by the chromosome in (b) 

3. Techniques for dynamic environments 

The limitation on computation time imposed on dynamic problems calls for algorithms that 
adapt quickly to environmental changes. We discuss some of the techniques that have been 
used to enhance the performance of the standard genetic algorithm (GA) in dynamic 
environments in the following paragraphs (we direct the interested reader to Jin and Branke 
(2005) for an extensive survey). 

www.intechopen.com



Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments 

 

213 

3.1 Restart 
The most straightforward approach to increase diversity of a GA search is to restart the 
algorithm completely by reinitializing the population after each environmental change. 
However, any information gained in the past search will be discarded with the old 
population after every environmental change. Thus, if changes in the problem are frequent, 
this time consuming method will likely produce results of low quality. Furthermore, 
successive instances in the typical dynamic problem do not differ completely from each 
other. Hence, some researchers use partial restart: Rather than reinitializing the entire 
population randomly, a fraction of the new population is seeded with old solutions (Louis 
and Xu 1996; Louis and Johnson 1997). It should be noted here that for environmental 
changes that affect the problem constraints, old solutions may become infeasible and hence 
not be directly reusable. However, repairing infeasible solutions can be an effective 
approach that leads to suboptimal solutions. 

3.2 Adapting genetic parameters 
Many researchers have explored the use of adaptive genetic operators in stationary 
environments (see Eiben et al. (1999) for an extensive survey of parameter control in 
evolutionary algorithms). In fact, the general view today is that there is no fixed set of 
parameters that remain optimal throughout the search process even for a static problem. 
With variable parameters (self adapting or otherwise) finding some success on static 
problems, it would be natural to investigate them on dynamic problems. 
Cobb (1990) proposed hyper-mutation to track optima in continuously-changing 
environments, by increasing the mutation rate drastically when the quality of the best 
individuals deteriorates. Grefenstette (1992) proposed random immigrants to increase the 
population diversity by replacing a fraction of the population at every generation. 
Grefenstette (1999) compared genetically-controlled mutation with fixed mutation and hyper-
mutation, and reported that genetically controlled mutation performed slightly worse than 
the hypermutation whereas fixed mutation produced the worst results. 

3.3 Memory 
When the problem exhibits periodic behaviour, old solutions might be used to bias the 
search in their vicinity and reduce computational time. Ng & Wong (1995) and Lewis et al. 
(1998) are among the first who used memory-based approaches in dynamic problems. 
However, if used at all, memory should be used with care as it may have the negative effect 
of misleading the GA and preventing it from exploring new promising regions (Branke 
1999). This should be expected in dynamic environments where information stored in 
memory becomes more and more obsolete as time proceeds. 

3.4 Multiple population genetic algorithms 
The inherent parallel structure of GAs makes them ideal candidates for parallelization. Since 
the GA modules work on the individuals of the population independently, it is 
straightforward to parallelize several aspects of a GA including the creation of initial 
populations, individual evaluation, crossover, and mutation. Communication between the 
processors will be needed only in the selection module since individuals are selected 
according to global information distributed among all the processors. 
Island genetic algorithms (IGA) (Tanese 1989; Whitley & Starkweather 1990) alleviate the 
communication load, and lead to better solution quality at the expense of slightly slower 
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convergence. They have showed a speedup in computation time. Even when an IGA was 
implemented in a serial manner (i.e., using a single processor), it was faster than the 
standard GA in reaching the same solutions. 
Several multi-population implementations were specifically developed for dynamic 
environments, for example the shifting balance genetic algorithm (SBGA) by Wineberg and 
Oppacher (2000); the multinational genetic algorithm (MGA) by Ursem (2000); and the self-
organizing scouts (SOS) by Branke et al. (2000). 
In SBGA there is a single large core population that contains the best found individual, and 
several small colony populations that keep searching for new optima. The main function of 
the core population is to track the shifting optimal solution. The colonies update the core 
population by sending immigrants from time to time. 
The SOS approach adopts an opposite approach to SBGA by allocating the task of searching 
for new optima to the base (main) population and the tracking to the scout (satellite) 
populations. The idea in SOS is that once a peak is discovered there is no need to have many 
individuals around it; a fraction of the base population is sufficient to perform the task of 
tracking that particular peak over time. By keeping one large base population, SOS behaves 
more like a standard GA—rather than an IGA—since the main search is allocated to one 
population. This suggests that the method will be more effective when the environment is 
dynamic (many different optima arise through time) and hence the use of scouts will be 
warranted. SOS is more adaptive than SBGA, which basically maintains only one good 
solution in its base. 
MGA uses several populations of comparable sizes, each containing one good individual 
(the peak of the neighbourhood). MGA is also self-organizing since it structures the 
population into subpopulations using an interesting procedure called hill-valley detection, 
which causes the immigration of an individual that is not located on the same peak with the 
rest of its population and the merging of two populations that represent the same peak. The 
main disadvantage of MGA is the frequent evaluations done for valley detection. 

3.5 Adapting search to population diversity 
There is a growing trend of using population diversity to guide evolutionary algorithms. 
Zhu (2003) presents a diversity-controlling adaptive genetic algorithm (DCAGA) for the vehicle 
routing problem. In this model, the population diversity is maintained at pre-defined levels 
by adapting rates of GA operators to the problem dynamics. However, it may be difficult to 
set a single value as a target as there is no agreed upon accurate measure for diversity 
(Burke et al. 2004). Moreover, the contemporary notion that the best set of genetic 
parameters changes during the run can be used to reason that the value of the best (target) 
diversity also changes during the run. 
Ursem (2002) proposes diversity-guided evolutionary algorithms (DGEA) which measures 
population diversity as the sum of distances to an average point and uses it to alter the 
search between an exploration phase and an exploitation phase. Riget & Vesterstroem (2002) 
use a similar approach but with particle swarm optimization. However, the limitation on 
runtime in dynamic problems may not permit alternate phases. 

4. Efficient solvers for dynamic COPs 

From the foregoing discussion, techniques based on parameter adaptation and multiple 
populations seem to be the most promising for tackling dynamic optimization problems. 
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These techniques, however, were designed for either static problems or dynamic continuous 
optimization problems, thus none can be used without modification for dynamic COPs. This 
section introduces two models that are specifically designed for dynamic COPs: the first 
model uses measured population diversity to control the search process, and the second 
model extends the first model using multiple populations. 

4.1 Adaptive diversity model 
The adaptive diversity model (ADM) is comparable in many ways to other diversity controlled 
models. ADM, like DCAGA, controls the genetic parameters. However, unlike DCAGA 
ADM controls the parameter during environmental changes, and without specifying a 
single target for diversity. ADM, like DGEA, uses two diversity limits to control the search 
process, however, it does not reduce the search to the distinct pure exploitation and pure 
exploration phases, and it does not rely on the continuity of chromosome representation. 
In deciding on the best measure for population diversity, it is important to keep in mind that 
the purpose of measuring diversity is to assess the explorative state of the search process to 
update the algorithm parameters, rather than precisely determining variety in the 
population as a goal in itself. For this goal, diversity measures that are based on genotopic 
distances are convenient since genetic operators act directly on genotype. 
Costs of computing diversity of a population of size n can be reduced by a factor of n by 
using an average point to represent the whole population. However, arithmetic averages 
can be used only with real-valued representations. Moreover, an arithmetic average does 
not reflect the convergence point of a population, since evolutionary algorithms are 
designed to converge around the population-best. Hence, it is more appropriate to measure 
the population diversity in terms of distances from the population-best rather than distances 
from an average point. By reserving individual vn for the population-best, the aggregated 
genotypic measure (d) of the population can be expressed as 

 

(5) 

Considering the mutation operator for a start, ADM can be described as follows. When an 
environmental change is detected (at t = tm), the mutation rate is set to an upper limit μ . 

While the environment is static (tm ≤ t < tm+1), population diversity d(t) is continually 
measured and compared to two reference values, an upper limit dh and a lower limit dl, and 

the mutation rate μ (t) is adjusted using the following scheme: 

 

(6) 

 
The formula for adaptive crossover rate Â(t) is similar to that of mutation. However, since 
high selection pressures reduce population diversity the selection probability s(t) is adapted 
in an opposite manner to that used for mutation in Equation 6, as follows: 
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(7) 

where s and s  are the lower and the upper limits of selection probability respectively; and 

Zl, and Zh are as given earlier in the mutation formula 6. 
Figure 3 illustrates the general principle of the ADM, and how it drives genetic parameters 
toward exploration or exploiting in response to measured diversity. In this figure, P can be 

the value of any of the controlled genetic parameters μ, χ or s. Pr corresponds to maximum 

exploration values; i.e., μ , χ or s, whereas Pt corresponds to maximum exploitation values 

( μ , χ , or s ). 

The pseudo code for a dynamic solver using ADM can be obtained from Figure 5, by setting 
the number of islands to one and cancelling the call to PerformMigration(). 
 

 

Fig. 3. Diversity range is divided into five regions.  

Low diversity maps the genetic parameter into a more explorative value (e.g., P1) and high 
diversity maps it into a less explorative value (e.g., P2). Diversity values between dl and dh do 
not change the current values of the genetic parameters (the parameter is mapped into its 
original value P0). The farther the diversity is from the unbiased range, the more change to 
the genetic parameter. Diversity in the asymptotic regions maps the parameter into one of 
its extreme values (Pmax.exploration or Pmax.exploitation) . 
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4.2 Adaptive island model 
The adaptive island model (AIM) shares many features with other multiple population 
evolutionary algorithms that have been mentioned previously. However, unlike SBGA and 
SOS, AIM uses a fixed number of equal-size islands. In addition, no specific island is given 
the role of base or core island in AIM: the island that contains population-best is considered 
the current base island. AIM maintains several good solutions at any time, each of which is 
the center of an island. Accordingly, all islands participate in exploring the search space and 
at the same time exploit good individuals. AIM is more like MGA, but still does not rely on 
the continuity nature of the variables to guide the search process. As well, AIM uses 
diversity-controlled genetic operators, in a way similar to that of ADM. 
AIM extends the function of ADM to control a number of islands. Thus, two measures of 
diversity are used to guide the search: an island diversity measure and a population 
diversity measure. Island diversity is measured as the sum of distances from individuals in 
the island to the island-best, and population diversity is measured as the sum of the 
distances from each island best to the best individual in all islands. 
Each island is basically a small population of individuals close to each other. It evolves 
under the control of its own diversity independently from other islands. The best individual 
in the island is used as an aggregate point for measuring island diversity and as a 
representative of the island in measuring inter-island diversity (or simply population 
diversity). 
With the islands charged with maintaining population diversity, the algorithm becomes less 
reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now is 
required to maintain diversity within individual islands (not within entire population), thus 
lower rates of mutation are needed. Therefore, mutation rate in AIM, though still diversity 
dependent, has a lower upper limit. 
In order to avoid premature convergence due to islands being isolated from each other, 
individuals are forced to migrate from one island to another at pre-defined intervals in a 
ring-like scheme, as illustrated in Figure 4. This scheme helps impart new genetic material to 
destination islands and increase survival probability of high fitness individuals. 
 

 

Fig. 4. Ring migration scheme, with the best individuals migrating among islands 

On the global level, AIM is required to keep islands in different parts of the search space. 
This requirement is achieved by measuring inter-island diversity before migration and by 
mutating duplicate islands. If two islands are found very close to each other, one of them is 
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considered a duplicate, and consequently its individuals are mutated to cover a different 
region of the search space. Elite solutions consisting of the best individual from each island 
are retained throughout the isolation period. During migration, elite solutions are not lost 
since best individuals are forced to migrate to new islands. 
At environmental changes, each island is re-evaluated and its genetic parameters are reset to 
their respective maximum exploration limits. During quiescent phases of the environment, 
genetic parameters are changed in response to individual island diversity measures. A 
pseudo code for AIM is given in Figure 5. 
 

 

Fig. 5. Pseudo code for AIM. The model can be reduced to ADM by setting the number of 
islands to one, and cancelling the call to PerformMigration(). 
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5. Empirical study and analysis 

The main purpose of this section is to demonstrate the applicability of the adaptive models 
to realistic problems. First, this section describes the performance measure and the strategies 
under comparison. Benchmarks and modes of dynamics are then given for each problem 
together with the results of comparison. Statistical analysis of the significance of the 
comparisons is given in an appendix at the end of this article. 

5.1 Standard strategies and measures of performance 
The dynamic test problems are used to compare the proposed techniques against three 
standard models: a fixed model (FM) that uses a GA with fixed operator rates and does not 
apply any specific measures to tackle dynamism in the problem, a restart model (RM) that 
randomly re-generates the population at each environmental change, and a random 
immigrants model (RIM) that replaces a fraction (10%) of the population with random 
immigrants (randomly generated individuals) at each environmental change. 
Since the problems considered in this article are minimization of cost functions, the related 
performance measures are directly based on the solution cost rather than on the fitness. 
First, a mean best of generation (MBG) is defined after G generations of the rth run as: 

 

(8) 

where e θ
r  is the cost associated with the individual evaluated at time step θ and run r, tg is 

the time step at which generation g started, and ˆ
g
c  is the optimal cost (or the best known 

cost) to the problem instance at generation g. The algorithm’s performance on the 
benchmark over R runs can then be abstracted as 

 

(9) 

With these definitions, smaller values of the performance measure indicate improved 
performance. Moreover, since MBG is measured relative to the value of the best solutions 
found during benchmark construction, it will in general exceed unity. Less than unity 
values, if encountered, indicate superior performance of the corresponding model in that the 
dynamic solver with limited (time per instance) budget outperforms a static solver with 
virtually unlimited budget. 

5.2 Algorithm parameter settings 
In all tested models, the underlying GA is generational with tournament selection in which 
selection pressure can be altered by changing a selection probability parameter. A 
population of fifty individuals is used throughout. The population is divided into five 
islands in the AIM model (i.e., ten individuals per island). 
The FM, RM and RIM models use a crossover rate of 0.9 and a selection probability of 1.0. 
The mutation rate is set to the inverse of the chromosome length (Reeves & Rowe 2002). For 
the ADM and AIM models, the previous values represent the exploitation limits of their 
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corresponding operators, with the exploration limits being 1.0 for crossover, 0.9 for 
selection, and twice the exploitation limit for mutation. 
For TSP, edge crossover (Whitley et al. 1991) and pair-wise node swap mutation are used 

throughout. The mutation operator sweeps down the list of bits in the chromosome, 

swapping each with a randomly selected bit if a probability test is passed. 

For FMS, a simple single-point crossover operator and a standard mutation operator are 

used throughout (Younes et al. 2002). 

5.3 TSP experimentation 
5.3.1 TSP benchmark problems 
Static problems of sizes comparable to those reported in the literature (Guntsch et al. 2001; 

Eyckelhof & Snoek 2002) are used in the comparative experiments of this section. These 

problems are given in the TSP library (Reinelt 1991) as berlin52, kroA100, and pcb442. In this 

article they are referred to as be52, k100, and p442 respectively. Dynamic versions are 

constructed from these problems in three ways (modes): an edge change mode (ECM), an 

insert/delete mode (IDM) and a vertex swap mode (VSM). 

Edge change mode The ECM mode reflects one of the real-world scenarios, a traffic jam. 
Here, the distance between the cities is viewed as a time period or cost that may 
change over time, hence the introduction and the removal of a traffic jam, 
respectively, can be simulated by the increase or decrease in the distance between 
cities. The change step of the traffic jam is the increase in the cost of a single edge. 
The strategy is as follows: If the edge cost is to be increased then that edge should 
be selected from the best tour. However, if the cost were to be reduced then the 
selected edge should not be part of the best tour.  
The BG starts from one known instance and solves it to find the best or the near 
best tour. An edge is then selected randomly from the best tour, and its cost is 
increased by a user defined factor creating a new instance which will likely have a 
different best tour. 

Insert/delete mode The IDM mode reflects the addition and deletion of new assignments 
(cities). This mode works in a manner similar to the ECM mode. The step of the 
change in this mode is the addition or the deletion of a single city. This mode 
generates the most difficult problems to solve dynamically since they require 
variable chromosome length to reflect the increase or decrease in the number of 
cities from one instance to the next. 

Vertex swap mode The VSM mode is another way to create a dynamic TSP by 
interchanging city locations. This mode offers a simple, quick and easy way to test 
and analyze the dynamic algorithm. The locations of two randomly selected cities 
are interchanged; this does not change the length of the optimal tour but does 
change the solution (this is analogous to shifting the independent variable(s) of a 
continuous function by a predetermined amount). The change step (the smallest 
possible change) in this mode is an interchange of costs between a pair of cities; this 
can be very large in comparison with the change steps of the previous two modes. 

In the experiments conducted, each benchmark problem is created from an initial sequence 

of 1000 static problems inter-separated by single elementary steps. Depending on the 

specified severity, a number of intermediate static problems will be skipped to construct one 

test problem. 
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Each sequence of static problems is translated into 21 dynamic test problems by combining 
seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three periods 
of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100 
generations per shift based on a population of 50 individuals). 

5.3.2 TSP results 
Experimental results on the dynamic k100 problem in the VSM mode under three different 
periods of change are given in Figure 6, where the mean best of generation (averaged over 
ten runs) is plotted against severity of change. The ADM and AIM models outperform the 
other models in almost all cases. The other three models give comparable results to each 
other in general, with differences in solution quality tending to decrease as the severity of 
change increases. Only when the change severity is 10 steps per shift or more, may the other 
models give slightly better performance than ADM and AIM. Keep in mind that in this 100 
vertex problem, a severity of 10 in the VSM mode amounts to changing (4 × 10) edges; that 
is, about 40% of the edges in an individual are replaced, which constitutes a substantial 
amount of change. As we are interested in small environmental changes (which are the 
norm in practice), we can safely conclude that the experiments attest to the superiority of the 
ADM and AIM over the other three models in the range of change of interest. 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 6. Comparison of evolutionary models (k100 VSM) 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 7. Comparison of evolutionary models (k100 ECM) 

Running the benchmark generator in either the ECM mode or the IDM mode gives similar 
results as illustrated in Figure 7 and Figure 8 respectively. It can be seen that ADM and AIM 
outperform the other models in most considered dynamics. 
The RM model produces the worst results in all conducted experiments (even though this 
model has been modified to retain the best solution in the hope of obtaining better results 
than those obtainable using a conventional restart). 
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Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 8. Comparison of evolutionary models (k100 IDM) 

It is not easy to conclude from previous results the superiority of either model (ADM or 
AIM), since both give very comparable results in almost all cases. However, when more 
than one processor can be used, AIM is the best of the two models since it can be easily 
parallelized by allocating different islands to different processors and consequently reduce 
computation time drastically. 

5.4 FMS experimentation 
5.4.1 FMS benchmark problems 
Four instances of sizes comparable to those used in the literature (Younes et al. 2002) are 
used in the comparative experiments of this section. 
Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents, 100 jobs) 
were used in Chu and Beasley (1997). The data describing these problems can be found in 
the gapd file in the OR-library (Beasley 1990). In this article they are referred to as gap1, gap2, 
and gap3 respectively. As described in Chen & Ho (2002), agents are considered as 
machines, jobs are considered as operations, and each part is assumed to consist of five 
operations. In these instances, a machine is assumed capable of performing all the required 
operations. However, in general machines may have limited capabilities; that is, each 
machine can perform a specific set of operations that may or may not overlap with those of 
the other machines. To enable this feature, a machine-operation incidence matrix is 
generated for each instance as follows: If the cost of allocating a job to an agent is below a 
certain level, the corresponding entry in the new incidence matrix is equal to one to indicate 
that the machine is capable of performing the corresponding operation. Alternatively, if the 
cost is above this level, the corresponding entry in the incidence matrix is zero to indicate 
that the job is not applicable to the machine. The final lists that associate parts with 
operations and machines with operations are used to construct the dynamic problems. 
The fourth problem instance is randomly generated. It was specifically designed and used to 
test FMS systems with overlapping capabilities in Younes et al. (2002). This instance consists 
of 11 machines, 20 parts, and 9 operations. In this article, it is referred to as rnd1. 
In terms of the number of part operations (chromosome length) and the number of machines 
(alleles), the dimensions of these problems are 200×20, 100×20, 100×10,and 62×11 for gap1, 
gap2, gap3, and rnd1 respectively. 
Dynamic problems are constructed from these instances in three ways (modes): a machine 
delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM). 
Machine delete mode The MDM mode reflects the real-world scenarios in which a machine 

suddenly breaks down. The change step of this mode is the deletion of a single 
machine. 
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Part add mode The PAM mode reflects the addition and deletion of new assignments 
(parts). The step of change in this mode is the addition or the deletion of a single 
part. This mode requires variable representation to reflect the increase or decrease 
in the number of operations associated with the changing parts. 

 
Machine swap mode The MSM mode is a direct application of the mapping-based 

benchmark generation scheme (Younes et al. 2005). By interchanging machine 
labels, a dynamic FMS can be generated easily and quickly. The change step in this 
mode is an interchange of a single pair of machines. As a mapping change scheme, 
this mode does not require computing a new solution after each change. We only 
need to swap the machines of the current optimal solution to determine the 
optimum of the next instance. 

In the current experimentation, each benchmark problem is created from an initial sequence 
of 100 static problems inter-separated by single elementary steps. Depending on the 
specified severity, a number of intermediate static problems will be skipped to construct one 
test problem. 
Each sequence of static problems is translated into 18 dynamic test problems by combining 
seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three periods of 
change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100 
generations per shift based on a population of 50 individuals). 

5.4.2 FMS results 
Experiments were conducted on the rnd1, gap1, gap2, and gap3 problems in the three 

modes of environmental change. In this section, we focus on the gap1 problem, the largest 

and presumably the hardest, and on the rnd1 problem, the most distinct. Results of 

comparisons in the MSM mode are shown in Figure 9, where the average MBG (over ten 

runs) is plotted against different values of severity. First, we notice that results of the RM 

model are inferior to those of the other models when the change severity is small. As 

severity increases, RM results become comparatively better, and at extreme severities RM 

outperforms the other models. This trend is consistent over different periods of 

environmental change confirming our notion that restart strategies are best used when the 

problem changes completely; i.e., when no benefits are expected from re-using old 

information. 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 9. Comparison of evolutionary models (rnd1 MSM) 

Starting with the ten generation period, we notice that models that reuse old information (all 

models except for RM) give comparable performance. However, as the period of change 
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increases, differences between their performance become more apparent. This trend can be 

explained as follows: when the environmental change is fast, the models do not have 

sufficient time to converge, and hence they give nearly the same results. When allowed 

more time, the models start to converge, and those using the best approach to persevere 

after obsolete convergence produce the best results. The AIM model clearly stands out as the 

best model. 

Comparing the five models on the PAM and MDM modes confirms the results obtained on 

the MSM mode. The inferiority of the RM model and the superiority of the AIM model 

persist, as can be seen in Figure 10 and Figure 11. 

 

  
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 10. Comparison of evolutionary models (rnd1 PAM) 

 

   
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 11. Comparison of evolutionary models (rnd1 MDM) 

The inferior performance of the RM model is more apparent in the other, large, test 

problems: the performance of the RM model is consistently poor across the problem 

dynamics whereas the performance of the other models deteriorates as the severity of 

environmental change increases. Figure 12 shows the case of gap1 in the MSM mode (other 

modes show similar behaviour). Comparing the gap1 results to those of rnd1, the apparent 

deterioration of RM (relative to the other models) in the case of gap1 can be explained by 

examining change severity. Although values of severity are numerically the same in both 

cases, relative to problem size they are different, since gap1 is larger than rnd1. In other 

words, the severity range used in the experiments on gap1 is virtually less than that used on 

rnd1. 

In summary, we can conclude that AIM is the best of the five models, as illustrated clearly in 

the rnd1 experiments. For other problems in which AIM seems to produce comparable 

results to those of the other models, we can still opt for the AIM model as it offers the 

additional advantage of being easy to parallelize, as mentioned in the TSP results section. 
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Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 12. Comparison of evolutionary models (gap1 MSM) 

6. Conclusions and future work 

The island based model proves to be effective under different dynamics. Although statistical 
analysis suggest that these benefits are not significant under some problem dynamics, this 
model can be more rewarding if several processors are employed. With each island 
allocated to a different processor, the per processor computational costs are reduced 
significantly. 
The problem of parameter tuning is aggravated with dynamic environments, as a result of 
the increased problem complexity and the increased number of algorithm parameters; 
however, by using diversity to control the EA parameters, the models developed in this 
article had significantly reduced tuning efforts. 
There are several ways in which the developed models can be applied and improved: 

• The effectiveness of the developed methods on the TSP and FMS problems encourages 
their application to other problems, such as intelligent transportation systems, engine 
parameter control, scheduling of airline maintenance, and dynamic network routing. 

• Diversity controlled models can use operator-specific diversity measures so that each 
operator is controlled by its respective diversity measure, i.e., based on algorithmic 
distance. Future work that is worth exploring involves using adaptive limits of 
diversity for the models presented in this article. 

7. Appendix. Statistical analysis 

Statistical t-tests that are used to compare the means of two samples can be used to compare 

the performance of two algorithms. The typical t-test is performed to build a confidence 

interval that is used to either accept or reject a null hypothesis that both sample means are 

equal. In applying this test to compare the performance of two algorithms, the measures of 

performance are treated as sample means, the required replicates of each sample mean are 

obtained by performing several independent runs of each algorithm, and the null 

hypothesis is that there is no significant difference in the performance of both algorithms. 

However, when more than two samples are compared, the probability of multiple t-tests 

incorrectly finding a significant difference between a pair of samples increases with the 

number of comparisons. Analysis of variance (ANOVA) overcomes this problem by testing 

the samples as a whole for significant differences. Therefore, in this article, ANOVA is 

performed to test the hypothesis that measures of performance of all the models under 

considerations are equal. Then, a multiple post ANOVA comparison test, known as Tukey’s 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

226 

test, is carried out to produce 95% confidence intervals for the difference in the mean best of 

generation of each pair of models. 

Statistical results reported here are obtained using a significance level of 5% to construct 
95% confidence intervals on the difference in the mean best of generation. Tables in this 
section summarize the statistical computations of the results reported in Section 5: Table 1, 
Table 2, and Table 3 are for TSP K100 problem in the three modes of change (respectively, 
ECM, IDM, and VSM); Table 4 and Table 5 are for the FMS rnd1 and gap1 problems in the 
MSM mode. 
 

 

Table 1. Multiple comparison test of evolutionary models (k100-VSM) 

 

 
 

Table 2. Multiple comparison test of evolutionary models (k100-ECM) 

 

Table 3. Multiple comparison test of evolutionary models (k100-IDM) 

Each table covers the combinations of problem dynamics (periods of change and levels of 

severity of change) described earlier, and an additional column for a random severity) The 

entries in these tables are interpreted as follows. An entry of 1 signifies that the confidence 

interval for the difference in performance measures of the corresponding pair consists 

entirely of positive values, which indicates that the first model is inferior to the second 
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model. Conversely, an entry of -1 signifies that the confidence interval for the corresponding 

pair consists entirely of negative values, which indicates that the first model is superior to 

the second one. An entry of 0 indicates that there is no significant difference between the 

two models. 
 

 

Table 4. Multiple comparison test of evolutionary models (rnd1-MSM) 

Statistical analysis confirms the arguments made on the graphical comparisons in the 
previous section. As can be seen in Table 1, 2, and 3, there are significant differences 
between the performance of the adaptive models (ADM and AIM) and the other three 
models (FM, RM, and RIM), while there is no significant difference between ADM and AIM. 
Collectively, the statistical tables confirm the graphical comparisons presented in the 
previous section. As can be seen in Table 4, and 5, there are significant differences between 
the performance of the RM model and all others. 
 

 

Table 5. Multiple comparison test of evolutionary models (gap1-MSM) 
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