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Domain Decomposition Evolutionary Algorithm 
for Multi-Modal Function Optimization 
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1Shenzhen Institute of Information Technology, Shenzhen 518029, 
2School of Computer, China University of Geosciences, Wuhan,  

PRC. 

1. Introduction     

The Simple Genetic Algorithm (SGA) is applied more and more extensively since it was 
proposed by J. H. Holland [1]  in 1970’s. SGA is an optimization method based on 
population by emulating the evolvement disciplinarian of the nature. It has showed the 
great advantage of quick search for optimal solutions while applied in the optimization of 
single-modal functions. But as we all know many problems in reality belong to the 
optimization of multi-modal function, and if SGA is applied to solve this kind of problems, 
it has the confliction between the search space and convergence speed: the expansion of 
search space will slow down the convergence speed and the acceleration of convergence 
speed will reduce the search space, lead to early convergence and as a result stop research at 
some local optimal solutions.  
Evolutionary algorithms have been used regularly to solve multi-modal function 
optimization problems, due to their population-based approach and their inherent 
parallelism, e.g. a crowding factor model proposed by De Jong[2], a shared-function model 
proposed by Goldberg and Richardson[3], an artificial immune system method, a split ring 
parallel evolutionary algorithm, etc., all of which have attempted to maintain the diversity 
of the population during the process of evolution. In this chapter, we introduce a new 
‘Domain Decomposition Evolutionary algorithm (called DDEA) which can solve not only 
simple nonlinear programming problems effectively and efficiently, but can also find the 
multiple solutions of multi-modal problems in a single run. The DDEA employs dual 
strategy approach that searches at two levels of detail (namely global then local). In the first 
(global) step, a Self-adaptive Mutations with Multi-parent  Crossover Evolutionary 
Algorithm (SMMCEA)[4] is employed to perform a global search to divide the 
(chromosome) population into several subpopulations or niches in subdomains, which is 
domain decomposition. In the second (local) step, an evolutionary strategy-like algorithm is 
employed to perform a local search on each isolated niche independently. Then the best 
solutions of the multi-modal problem are exploited. 
The remainder of the chapter is organized as follows. Section 2 introduces a Self-adaptive 
Mutations with Multi-parent  Crossover Evolutionary Algorithm (SMMCEA); Section 3 
introduces Domain Decomposition evolutionary algorithm (DDEA); Section 4 presents the 
successful results of applying DDEA to several challenging numerical multi-modal 
optimization problems; Section 5 concludes. O
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2. Introduction of SMMCEA 

2.1 The Problem to Solve  

The general non-linear programming (NLP) problem can be expressed in the following 
form: 

Minimize  f(X,Y) 

s.t.    hi(X,Y)= 0   i = 1,2,...,k1 ， gj(X,Y) ≤0      j=k1+1, k1+2,...,k 

Xlower ≤ X ≤ Xupper  ，  Ylower ≤ Y ≤ Yupper 

(1) 

where X∈Rp, Y∈Nq, and the objective function f (X,Y), the equality constraints hi(X,Y) and 

the inequality constraints gj(X ,Y) are usually nonlinear functions which include both real 

variable vector X and integer variable vector Y. 

Denoting the domain D = {(X,Y) | Xlower ≤ X ≤ Xupper，Ylower ≤ Y ≤ Yupper }, we introduce the 

concept of a subspace V of the domain D. m points (Xj,Yj), j＝1,2,…,m in D are used to 
construct the subspace V, defined as : 

V ＝{(Xv,Yv)∈D|(Xv,Yv)= ∑ =

m

i iii
YXa

1
),( } 

where ai is subject to ∑ =

m

i ia1 = 1, -0.5≤ ai  ≤1.5. 

Because we deal mainly with optimization problems which have real variables and 

INequality constraints, we assume k1 = 0 and q = 0 in the expression (1). 
 

Denoting  wi (X)＝
⎪⎩

⎪
⎨
⎧ ≤

 otherwise  ),( 

0)(   0,

Xgi

Xgi     and    W(X)＝  )(

1

XW

k

i

i∑
=

 

 

Then problem (1) can be expressed as follows: 

                              Minimize f(X)            X∈D  (2) 

Subject to 

W(X)=0                                 X∈D  

We define a Boolean function “better” as: 

better (X1, X2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

                  ))()(())W( )(W(

              ))()(())W( )(W(

                                                )  W( )W(

                                                 )( )(

2

XfXfXX

XfXfXX

XX

XWXW

 

 

If better (X1, X2) is TRUE，this means that the individual X1 is “better” than the individual 

X2. 

2.2 Related Work 
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In 1999, Guo Tao proposed a multi-parent combinatorial search algorithm (GTA) for solving 
non-linear optimization problems in his PhD thesis [5]. Later it was developed as a kind of 
subspace stochastic search algorithm [6], that can be described as follows: 
Guo Tao’s Algorithm (GTA) 
Begin 

         initialize popln P ＝ {X1, X2,…, XN };  Xi ∈D since (q = 0 implies no integer variables) 
                    generation count t := 0; 

                    X best  ＝arg )( 
1

XfMin i
Ni≤≤

; 

                    X worst ＝ arg ) ( 
1

XMax i
Ni

f
≤≤

; 

         while abs(f (X best)-f (X worst)) >ε do 

                              select randomly m points X 1′, X 2′,…, X m′ from P to form the subspace V; 

                              select randomly one point X′ from V; 

                                  If  better (X′, X worst) then  Xworst: = X′; 
                                  t := t + 1; 

                                 Xbest = arg )( 
1

XfMin i
Ni≤≤

; 

                                 Xworst ＝ arg )( 
1

XfMax i
Ni≤≤

 

         end do 
                      output  t , P ; 
End 
where N is the size of population P, (m –1) is the dimension of the subspace V (if the m 

points (vectors) that construct the subspace V are linearly independent)，t is the number of 

generations, ε is the accuracy of solution. Xbest = arg )( 
1

XfMin i
Ni≤≤

 means that Xbest is the 

variable (individual) in Xi (i=1, 2,…, N) that makes the function f (X) have the smallest value. 
The sub-population in GTA is families which reproduce sexually through the number of m 
individuals randomly selected from P. The best individual in the sub-population takes part 
in competition to replace the worst individual in P, therefore the pressure of elimination 
through selection is minimum. There is no mutation operator, only using multi-parents 
crossover in GTA. 

2.3 A self-adaptive evolutionary algorithm 

Since Guo’s algorithm deals mainly with continuous NLP problems with Inequality 
constraints, to make it a truly universal and robust algorithm for solving general NLP 
problems, we extend Guo’s algorithm by adding to it the following improvements: 
(1) Guo selected randomly only one candidate solution from the current subspace V. 

Although he used the concept of a subspace to describe his algorithm, he did not really use a 

subspace search, but rather a multi-parent crossover. Because he selected randomly only one 

individual in the subspace, this action would tend to ignore better solutions in the subspace, 

and hence influence negatively the quality of the result and the efficiency of the search. If 

however, we select randomly several individuals from the subspace, and substitute the best 

one for the worst one in the current population, the search should be better. So we replace 

the instruction line in Guo’s algorithm: 
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“select randomly one point X′from V; ” 

with the two instruction lines: 

              “ select randomly s points 
*
1X ᧨ *

2X ᧨…᧨ *

sX  from V; 

      X′= arg ( )

1
i

f XMin
i s

∗

≤ ≤
;” 

(2)The dimension m of the subspace in Guo’s algorithm is fixed (i.e. m parents reproduce). 

The algorithm always selects a substitute solution in subspaces which have the same 

dimension, regardless of the characteristics of the solutions in the current population. Thus, 

when the population is close to the optimal value, the searching range is still large. This 

would apparently result in unnecessary computation, and affect the efficiency of the search. 

We can in fact reduce the search range, that is to say, the dimension of the subspaces. We 

therefore use subspaces with variable dimensions in the new algorithm, by adding the 

following instruction line to Guo’s algorithm: 

if abs ( f (Xbest) – f (Xworst)) ≤ η .and.  m ≥3  then   m := m – 1; 

where η depends on the computation accuracy ε, and η > ε. For example, if the computation 

accuracy ε = 10-14, then we can set η = 10-2 or 10-3. 

(3) We know in principle that Guo’s algorithm can deal with problems containing EQuality 

constraints. For example, we can use the device of setting two INequality constraints  

0≤hi(X ,Y) and hi(X ,Y)≤0 to replace the equality constraint hi(X ,Y) = 0, but the experimental 

results when employing this device are not ideal. However, equality constraints are likely to 

exist in real-world problems, so we should find methods to deal with them. One such 

method is to define a new function W(X, Y) 

Where W(X, Y) = ∑
=

k

i

YX
i
W

1

),(  

              

⎪⎩

⎪
⎨
⎧

++=

=
=

.,,2
1

,1
1

    )},,(,max{

,,2,1     ,),(
),(

kkkiYX
i
go

i
kiYX

i
h

YXW i

A

A
 

(4) The penalty factor r is usually fixed. However, some people use it as a variable, such as 

Cello[7], who employed a self-adaptive penalty function, but his procedure was rather 

complex (using two populations). We also make r a variable namely r = r (t), where t is the 

iteration count. It can self-adjust according to the reflection information, so we label it a 

“self-adaptive penalty operator”. Since the constraints have been normalized, r is relative 

only to the range of the objective function, which ensures a balance between the errors of the 

fitness function and the objective function, in order of magnitude.  

(5) Guo’s algorithm can deal only with continuous optimization problems. It cannot deal 

directly with integer or mixed integer NLP problems. In our algorithm, when we are 

confronted with such problems, we need only replace the integer variables derived from the 
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range of the float of the fitness function with “integer function” int(Y*), where int(Y*) is 

defined as the integer part of Y*. No other changes to the algorithm are needed.  

 (6) The only genetic operator used in Guo’s algorithm was crossover. However, we can add 

self –adaptive mutations in it, we introduce a better of Gaussian and Cauchy mutation 

operator into the subspace search. For Gaussian density function fG with expectation 0; and 

variance σ 2 is 

Gf =
2

2

2

2

1 σ

πσ

x

e
−

  ,       ᧩∞ < x <  +∞ 

For Cauchy density function  fC with scale parameter t>0 is, 

Cf =
22

11

xt +π
  ,       ᧩∞ < x <  +∞ 

2.4 A Self-adaptive mutations with multi-parent crossover evolutionary algorithm 

Considering the above points, we introduce a new algorithm as follows: 

Denoting Z = (X, Y*), where Z∈D*, and 

D* = {(X, Y*)|Xlower≤X≤Xupper, Ylower≤Y*≤Yu,  X ∈Rp, Y*∈Rq},  we define integer vector 

Y=int(Y*), where Yu = Yupper+0.999…9I 

Denoting    W(Z)＝W(X, int(Y*)), 
we define the Boolean function “better” as follows: 

           better(Z1 ,Z2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

                  ))()(())W( )(W(

              ))()(())W( )(W(

                                                )  W( )W(

                                                 )( )(

2

XfXfXX

XfXfXX

XX

XWXW

 

 

The general NLP problem (1) can be expressed as follows: 

 Minimize f(X,int(Y*))    in D*      S.t.    (3) 

W(Z)=0 ,        Z∈D* 

The new algorithm can now be described as follows: 
SMMCEA : 
          Begin 

                 initialize P ＝ {Z1,Z2,…,ZN };   Zi∈ *D ; 
                 t := 0; 

                Zbest  ＝  )(arg
1 i

ZfMin
Ni≤≤

; 
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                Zworst ＝ )(arg
1 i

ZfMax
Ni≤≤

; 

                while not abs ( F (Zbest) – F (Zworst)) ≤ε do 

                      select randomly M  points Z1′, Z2′,…, ZM′from P to form the subspace V; 

                      select s points randomly 
*

1Z ,
*

2Z …
*

sZ  from V; 

                      for i=1,…s  do 
                            for j=1,…p+q  do 

                           
*
GiZ (j) :=

*

iZ (j)+ iσ (j)N j (0, 1) 

                           
*

CiZ (j) :=
*

iZ (j)+ iσ (j)C j (1) 

                           iσ (j) := iσ (j)exp( ))1,0(')1,0( jNN ττ +  

                     endfor 

               if  better(
*

GiZ ,
*

CiZ ) then   :   else   : *'**'*
CiiGii ZZZZ == ; 

               endfor 

               Z′= )(arg
1 i

ZfMin
Ni≤≤

; 

               if  better (Z′, Z worst)   then  Zworst  := Z′; 
               t := t + 1;  

               Zbest  ＝ )(arg
1 i

ZfMin
Ni≤≤

; 

               Zworst ＝ )(arg
1 i

ZfMax
Ni≤≤

; 

               if abs (f (Zbest)- f (Zworst)) ≤η .and.  M ≥3  then 

                       M := M -1; 
   endwhile 
   output t , Zbest , f(Zbest) ; 
end 

Where 
*

GiZ (j), 
*

CiZ (j) and iσ (j) denote the j-th component of the vectors 
*

GiZ ,
*

CiZ  and iσ , 

respectively. N(0,1) denotes a normally distributed one-dimensional random number with 

mean zero and standard deviation one. N j (0, 1) indicates that the Gaussian random 

number  is generated anew for each value of j. C j (1) denotes a Cauchy distributed one-

dimensional random number with t=1. 

The factors τ  and 'τ  have commonly set to 
1

)(2
−

⎟
⎠
⎞⎜

⎝
⎛ + qp  and ( ) 1

)(2
−

+ qp . 

The new algorithm has the two important features: 
1. This algorithm is an ergodicity search. During the random search of the subspace, we 

employ a “non-convex combination” approach, that is, the coefficients ai of Z’=∑
=

m

i
ii

Za
1

' are 

random numbers in the interval [-0.5，1.5] This ensures a non-zero probability that any 
point in the solution space is searched. This ergodicity of the algorithm ensures that the 
optimum is not ignored. 
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2. The monotonic fitness decrease of the population (when the minimum is required). Each 
iteration (t→t+1) of the algorithm discards only the individual having the worst fitness in 
the population. This ensures a monotonically decreasing trend of the values of objective 
function of the population, which ensures that each individual of the population will reach 
the optimum. 
When we consider the population P(0), P(1), P(2),…, P(t),… as a Markov chain, we can prove 
the convergence of our new algorithm. See [12]. 

3. Introduction of DDEA 

Experiments indicate that if  SMMCEA is directly applied to the optimization of multi-
modal function, it is easy to encounter the following two conditions: 
1.  If keep searching with relatively large population size and crossover size, the 

individuals of the population will spread around near different modals, but it’s difficult 
for population to get any more improvement and to reach all the modals exactly. 

2.  If keep searching with relatively small population size and crossover size, the 
individuals of the population will converge rapidly and reach a few modals, but lose 
many other modals. 

To adopt it to the optimization of multi-modal functions, we combine the above two 
conditions together and forms two-phase evolutionary algorithm. we divide the 
optimization procedure into two phases: the first phase is called global optimization, which 
keeps searching with relatively large population size and crossover size in order to 
determine the neighborhood of all modals; the second phase is called local optimization, 
which begins search from each of the neighborhoods which is determined by the global 
optimization and then keep searching with relatively small subpopulation size and 
crossover size in order to converge rapidly and reach the modals respectively. 
In addition, we introduce the following strategies to make the algorithm suitable to the 
different tasks of the two phases: 
1.  During the phase of global optimization, in order to avoid the loss of some obtained 

modals we introduce the strategy of good individuals isolation: before each evolvement 
all the individuals in the current population are sorted by their fitness value and then 
some of the good individuals are limited not to be parents in the next multi-parent 
crossover. 

2.  During the phase of local optimization, in order to make all the subpopulations 
converge to their modals respectively more quickly, we introduce the strategy of best 
individual exemplar: the best individual of the current population will be compelled to 
be one of the parents in the next multi-parent crossover. 

3.  During the phase of local optimization, in order to begin search based on the result of 
the global optimization and to keep the search around the neighborhood of all the 

modals, to each modal we will construct a local feasible area η, which is to be modified 
during the evolvement. 

The detailed procedures of the optimization DDEA are as the following: 
Phase 1: Global optimization (using SMMCEA) 
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Phase 2: Local optimization 
 

 
The new algorithm employs a zoomed (global to local) dual strategy (two steps) approach. 
The first (global) step employs a global search, i.e. it divides the (chromosome) population 
into L (L ≤ k) niches, each of which includes at least one of the k optimal solutions (if the 
objective function is continuous in D*). This step uses a SMMCEA [4]. If the number of 
parents M in the multi-parent recombination operator is large enough, for example, M ≥ 8, 

Randomly initialize population P(0)= {P1,P2,…, PN1},Evaluate P(0),t1=0 

while t1< MAXT1 do 

randomly select m1 parents from P(t1) with the strategy of good individuals isolation 

produce a child by multi-parent crossover and self-adaptive Gaussian and Cauchy  

  mutation 

    if the child is better than the worst individual of P(t1) then 

     replace the worst individual of P(t1) with the child  

 end if 

 t1= t1+1 

end while 

for k= 1 to N1  do  

initialize local feasible area η, which is the rectangle area around Pk with the 

    radium r  

Randomly initialize subpopulation SUBP(0) within the area of η  

SUBP(0)={ SUBP 1, SUBP 2,…, SUBP N2 } 

t2=0 

while (t2< MAXT2  and  individuals of SUBP(t2) are different )do 

         randomly select m2 parents from SUBP(t2) with the strategy of the best  

individual exemplar  

  produce a child by multi-parent crossover 

if the child∈η and it is better than the worst individual of SUBP(t2)    

then replace the worst individual of SUBP(t2) with the child  

  end if 

   evaluate the best individual of SUBP(t2), which is named as  

                                           SUBPbest 

  modify local feasible area η, make it as the rectangle area around  

                    SUBPbest  

with the radium r 

      t2= t2+1 
end while 

output the best individual of SUBP(t2) 

end for 
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then after sufficient large generations the population is decomposed into subpopulations 
(each of which approaches to an optimal solution), else it will converge to only one solution 
[11]. 
The second (local) step employs an evolution strategy [13] to search for the local optima in 
the chosen L subspaces determined by the subpopulations. Since the L optimal solutions are 
located in separate subspaces, the local strategy consists of two sub-steps: 
a). Rank the individuals of the population obtained from the first (global) step according to 
their fitness values. Then choose the best L individuals from the population, ensuring that 
they are not close to each other like hedgehogs. 
b). Generate L subspaces with the chosen individual at the center of each. Search these 
niches locally until each subspace converges to an optimal solution. If one does not know 
how many optimal solutions a given problem has, one can predict the number k, for 
example, by using the number of individuals whose fitness values are larger than the 
average fitness value. 
The algorithm has different limiting behaviors for different problems, namely: 
a). When the problem has only k = 1 solution, i.e. the only globally optimal solution. 
Following the nature of population descent, all of the individuals will descend together to 
the bottom of the valley.  
b). When the problem has k > 1 solutions, i.e. if k ≤ N, where N is the size of the population, k 
solutions may be generated in the population. The algorithm will then find multi-solutions 
in a single run. 

4. Numerical experiments and analysis 

Example 1 Humpback function (the function has six local optimal solutions, two of which 
are global optimal solutions) 

2

2

2

221

2

1

4

1

2

121 )44()3/1.24(),(min xxxxxxxxxf +−+++−=  

where ]2,2[],3,3[ 21 −∈−∈ xx  

Example 2 Typical function with many global optimal solutions(the function has  increasing 
number of global optimal solutions while j is increased) 

2

2

2

121 ))(sin())(sin(3),(min jxjxxxf −−= , 

where A,2,1],6,0[, 21 =∈ jxx  

Example 3 Absolute value function(the function has a plenty of local optimal solutions, 16 of 
which are global optimal solutions) 

∏∏
==

−+−=
4

1

2

4

1

121 |4||3|),(min
ji

jxixxxf , 

where ]17,0[],13,0[ 21 ∈∈ xx  

Example 4  N-dimension Shubert function[8](when n=2，the function has 720 local optimal 

solutions, 18 of which are global optimal solutions) 
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∏∑
= =

++=
n

i j

in jxjjxxxf
1

5

1

21 ))1cos((),,,(min A  

where [ 10,10], 1, 2, ,
i
x i n∈ − = A  

 

 

Fig. 1. Shubert function 

All the examples mentioned above are representatives of different kinds of functions. 
Example 1, Example 2 and Example 4 are cited from [9]. Example 1 is the representative of 
glossy function with only a few modals, Example 2 is the representative of glossy function 
with many modals, Example 3 is the representative of non-glossy function, and example 4 is 
the representative of high-dimension function. Generally we can get satisfying optimal 
solutions when we set the parameters according to the following principle: 
The phase of global optimization: N1≈ 10*the number of actual optimal solutions 

2000 < MAXT1< 100*N1 

6 ≤ m1 ≤ 10 

The phase of local optimization:     10 < N2 < 20, r = 2.0 

2000 < MAXT2 < 5000 

3 ≤ m2 ≤ 5 

The following figures show population distribution in different phases for each example, 
which indicate the optimization procedures of different examples. Each figure has three 
parts: (a) is the distribution of population after randomly initialization; (b) is the distribution 
of population after global optimization; (c) is the distribution of the found modals after local 
optimization. The horizontal coordinate is the value of x1 and the vertical coordinate is the 
value of x2. 

www.intechopen.com



Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization 

 

177 

-3 -2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
(a) after randomly initialization   (b) after global optimization      (c) after local optimization 

Fig. 2.   Population distribution for example 1  
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(a) after randomly initialization    (b) after global optimization    (c) after local optimization  

Fig. 3.   Population distribution for example 2 when j=5 
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(a) after randomly initialization      (b) after global optimization   (c) after local optimization  

Fig. 4.   Population distribution for example 3 
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(a) after randomly initialization    (b) after global optimization     (c) after local optimization  

Fig. 5.   Population distribution for example 4 when n=2 

Additionally, the following tables list parameters and results for different experiments: 
 

Parameters results  
Example No. N1 MAXT1 Actual modals Found modals fitness of 
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 all modals 

Example 1 20 2000 2[9] 2 -1.031628 

Example 2ഔj=5ക 600 60000 100[9] 100 1.000000 

Example 3 200 20000 16 16 0.000000 

Example 4ഔn=2ക 100 10000 18[9] 18 -186.730909 

Table 1.  Experiment parameters and results for each example (other parameters are: 
m1=7,m2=5,N2=10,MAXT2=2000) 

The value of j 2 3 4 5 6 7 8 9 10 

Actual modals 16 36 64 100 121 169 225 289 361 
Found modals 16 36 64 100 121 169 225 289 361 

Table 2.  Experiment results for example 2 with different value of j (The fitness of all modals 
is 1.000000) 

Parameters Results 
 
Example No. N1 MAXT1 

Found 
modals 

fitness of 
all modals 

Example 4ഔn=3ക 800 500000~1000000 81 -2709.09350 

Table 3. Parameters and experiment results for example 4 when n=3 (other parameters are: 
m1=7,m2=5,N2=10,MAXT2=10000). 

From population distribution of the optimization procedures showed in Fig2, Fig3, Fig4 and 
Fig5, as well as the experiment results showed in Tables 1 and Table 2, we can see that 
DDEA is very efficient for the optimization of low- dimension multi-modal function, usually 
we can reach all the modals exactly. But Table 3 indicates that when the dimension of the 
function is increased to higher than two, the efficiency is decreased because of the search 
space is expanded sharply. 

5. Conclusion  

We here proposed some self-adaptive methods to choose the results of Gaussian and 
Cauchy mutation, and the dimension of subspace. We used the better of Gaussian and 
Cauchy mutation to do local search in subspace, and used multi-parents crossover to 
exchange their information to do global search, and used the worst individual eliminated 
selection strategy to keep population more diversity. 
Judging by the results obtained from the above numerical experiments, we conclude that 
our new algorithm is both universal and robust. It can be used to solve function 
optimization problems with complex constraints, such as NLP problems with inequality and 
(or) equality constraints, or without constraints. It can solve 0-1 NLP problems, integer NLP 
problems and mixed integer NLP problems. When confronted with different types of 
problems, we don’t need to change our algorithm. All that is needed is to input the fitness 
function, the constraint expressions, and the upper and lower limits of the variables of the 
problem. Our algorithm usually finds the global optimal value. 
In the paper we analyze the character of the multi-parent genetic algorithm, when applied to 
solve the optimization of multi-modal function, MPGA works in different forms during 
different phases and then forms two-phase genetic algorithm. The experiments indicate that 
DDEA is effective to solve the optimization of multi-modal function whose dimension is no 
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higher than two, but to high-dimension function, the efficiency is not eminent and it needs 
to be improved much more. 
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