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1. Introduction    

Genetic algorithms (GAs) are powerful stochastic search techniques and are the most widely 
known types of evolutionary algorithms (EAs). This method performs a search by evolving 
a population of candidate solutions through the use of non-deterministic operators and by 
improving incrementally the individuals forming the population by mechanisms inspired 
from those of genetics (e.g. crossover and mutation). They are known to offer significant 
advantages over traditional methods by using simultaneously several search principles and 
heuristics, of which the most important ones are: population-wide search, continuous 
balance between exploitation (convergence) and exploration (maintained diversity) and the 
principle of building-block combination. However, GA can suffer from excessively slow 
convergence before providing an accurate solution. This is because of its fundamental 
requirement of using minimal prior knowledge without exploiting local information. Since 
the introduction of global search algorithms in engineering applications, many modified 
versions of GA have been reported to reduce the searching time and to raise the global 
search capability. Many researchers have proposed improved versions of GA which GA 
operator works adaptively (Wu et al., 1999; He et al., 2001; Fung et al., 2002). A local search 
or meta-heuristic algorithm has been incorporated into GA to improve the algorithm 
(Renders & Flasse, 1996; Berger et al., 1999; Lee et al., 2001; Hsiao et al., 2001; Hagenman et 
al., 2003; Jiang et al., 2003). The combined GA-SA algorithm has been introduced to improve 
the efficiency of the global search (Roach & Nagi, 1996; Yu et al., 2000; Ong et al., 2002; Liu et 
al., 2002; Ponnambalam et al., 2003). 
In the first half of this chapter, a new hybrid evolutionary algorithm known as clustering-
based hybrid evolutionary algorithm (CHEA) is introduced (Kim et al., 2006). This 
algorithm utilizes the GA’s grouping property which involves gathering a number of 
individuals around the global candidate according to the generation. Clustering of 
individuals using artificial neural network (ANN) is incorporated into the GA to evaluate 
the stage of maturity of genetic evolution and to deal with statistical data of each cluster. 
After clustering, a local search is carried out for each cluster to accelerate the convergence 
process and to judge the convexity of each cluster. Finally, an efficient random search is 
adapted for searching the potential global candidate which may be missed in GA and local 
search. The efficiency of the proposed algorithm is then verified by applying it to three well-
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known benchmark functions namely banana function, multi-modal function and Rastrigin 
function. 
The dynamic behavior of a rotating shaft is significantly influenced by the stiffness and 
damping characteristics of the bearings. The precise values of stiffness and damping 
coefficients are difficult to predict. In the past decade, many works have dealt with 
identification of bearing coefficients using impulse or synchronous/non-synchronous 
excitation techniques (Burrows & Stanway, 1977; Kraus et al., 1987), and using mathematical 
formulations using an out-of-unbalance response (Lee & Hong, 1988; Chen & Lee, 1995, 
1997). Other researches used the least square method as an optimizer to minimize the error 
between the measured unbalance response and the estimated one after they have 
formulated the minimization problem (Edwards et al., 2000; Reddy et al., 2002 and Tiwari et 
al., 2002). Least square method with sensitivity-based approach is a very effective algorithm 
that can be used for parameter identification of machinery characteristics. However, the 
application of least square optimizer cannot guarantee a global minimum, which means the 
identified parameters may not be the optimum ones for the real rotor-bearing systems 
which are often influenced by noises or non-linear effects. 
Recently, global optimization schemes such as GA and simulated annealing (SA) (Kirpatrick 
et al., 1983) have been used in the area of parameter identification. These schemes do not 
involve gradient information and mathematical formulation but require only forward 
analysis procedure. Unfortunately identification approach based on global optimization 
algorithms is a highly time consuming task because it is based on the iterative strategy 
which updates unknown parameters systematically using an analytical output. Therefore, a 
fast and more efficient search algorithm is required for parameter identification in line with 
the rapid progress of computer technology.  
In the latter half of this chapter, we introduce a method of using a hybrid evolutionary 
algorithm for parameter identification of ball bearings (Kim et al., 2007). The identification 
method utilises the hybrid evolutionary algorithm. The capability of the technique is 
verified using a numerical example and a series of  experimentation on a tests. The results 
reveal that the proposed method can identify not only unknown bearing parameters but 
also unbalance information of disks. In contrast to other traditional identification 
techniques, the method can be applied with simple formulation of an optimisation problem 
using the existing dynamic analysis procedure without any complex mathematical 
approach. 

2. Clustering-based hybrid evolutionary algorithm (CHEA) 

The CHEA is a hybrid GA which is combined with neural-network, local search and 

random search. The flowchart of CHEA process is shown in Fig. 1. The first task is GA-

clustering, in which GA is combined with the clustering process by using neural network. In 

this task, all individuals after each generation of GA are classified into several clusters until 

all individuals are well classified. After GA-clustering, the local search (LS) is carried out for 

each cluster with their best individuals. If all final points of the local search converged close 

to one point, this point implies a global candidate. This means that, graphically, the 

objective function is a kind of convex, which has only one global/local minimum in the 

search space. If all final points do not converged to one point, the objective function is 

considered to be a multi-modal function, which has many local minima. In this case, 
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additional local searches are carried out which starts at several random points within each 

group to determine whether each cluster has only one local minimum or not. Similarly, 

considering one cluster, if the final points by the local search are nearly the same point, this 

cluster has one local minimum, which implies the objective function is a convex for the 

region of this cluster. Otherwise the clusters have many local minima in their regions. In this 

case, GA is run again with reduced bounds as those of each cluster. The classification and 

the local search procedure are executed until each cluster has only one local minimum. 

Finally, an efficient random search is adopted for extra-searching to find the potential global 

candidate which may be missed in GA and local search.  

Adaptive resonance theory-Kohonen neural network (ART-KNN) developed by (Yang et al., 
2004) is incorporated for clustering of individuals after each generation in GA. Sequential 
quadratic programming (SQP) is adopted for the task of local search in this algorithm. 
 

 

Fig. 1. Flowchart of CHEA 

2.1 GA-clustering task 
GA improves the genes of individuals based on evolutionary operation. Geometrically, the 

evolution of GA is that increasing individuals are gathered together around the global or 

local minimum with respect to the increase of generation as shown in Fig. 2. Generally GA is 

not efficient for improving the precision of best individuals to global minimum after 

gathering around the global minimum. However, the ability to gather individuals to a 

global or local minimum in the first several generations is excellent. Therefore, the proposed 

hybrid algorithm intends to use the merit of GA and to prevent inefficient calculations after 

the individuals have gathered around the global or local minimum. 

If the objective function is a multi-modal function which has more than two local 
minimums, clustering or classification of individuals are necessary to divide them into 
several clusters as shown in Fig. 2(b) and requires a stop criterion for GA.. The clustering 
evaluation function (CEF) is introduced to evaluate the stage of maturity of individuals in 
each generation. CEF is defined by eq (1) using statistical data of each classified cluster:  
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where, vij denotes the ith vector for the jth cluster and v0j is the center of the jth cluster. wg, 
wm, wr are weight factors for cluster, distance of each group and similarity by ART-KNN, 

respectively. E E denotes Euclidian distance between two vectors. M denotes the number of 

cluster and Nj is the number of individual for the jth cluster. 
In this study, well matured is defined when the average distance from the mid point of each 
cluster approaches a small value and the average distance among mid points approaches a 
large value. CEF value for stop criterion is very important because it is directly related to the 
efficiency of the search algorithm. GA stopped with a too high CEF implies that the GA 
evolution is not matured yet and individuals may be classified into too many clusters. On 
the contrast, with a too small CEF, most individuals will migrate to only one cluster which 
contains the best individual. This may lead to lose of useful information about local 
minimum. Furthermore, if the number of individuals is not sufficient to find all the local 
minima, most individuals will move to a local minimum. In our study with trying many 
kind of test functions, the best stop criterion is selected as 0.2.  
As shown in the flowchart of GA-clustering task in Fig. 1, ART-KNN algorithm was adapted 
as the traditional GA procedure to classify individuals into several clusters after the 
evaluation of fitness. After clustering, it is judged whether all individuals are well matured 
by using the CEF. If the CEF is smaller than the stop criterion, subroutine GA-clustering is 
terminated and returns to the final individuals and provides cluster information to the main 
program. Otherwise, the general procedure of GA, such as selection, crossover and 
mutation, is preceded again.  

Individuals

Global minima

Individuals

Global minima ClustersClusters

 
(a) 2nd generation                             (b) 4th generation 

Fig. 2. Distribution of individuals according to generations 

2.2 ART-KNN algorithm 
The adaptive resonance theory (ART) network (Carpenter & Grossberg, 1988) is a neural 
network that self-organizes stable recognition codes in real time in response to arbitrary 
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sequences of input patterns. It is also a vector classifier based on mathematical model for the 
description of fundamental behavioral functions of the biological brain such as the learning, 
parallel and distributed information storage, short and long-term memory and pattern 
recognition. The Kohonen neural network (KNN) (Kohonen, 1995) is also called self-
organizing feature map network (SOFM). It defines a feed forward two-layer neural 
network that implements a characteristic non-linear projection from the high dimensional 
space of sensory or other input signals onto a low-dimensional array of neurons.  
Recently, Yang et al. proposed a new algorithm using the adaptive resonance theory-

Kohonen neural network (ART-KNN) (Yang et al., 2004), which does not affect the initial 

training and can adapt with additional training data. The structure of ART-KNN is shown 

in Fig. 3. It is similar to ART’s but excluding the adaptive filter. ART-KNN is formed by two 

major subsystems: the attentional subsystem and the orienting subsystem. There are two 

interconnected layers, discernment layer and comparison layer, which are fully connected 

with both bottom-up and top-down processes and comprise of the attentional subsystem. 

The application of a single input vector leads to several patterns of neural activity in both 

layers. The activity in discernment nodes reinforces the activity in comparison nodes due to 

top-down connections. The interchange of bottom-up and top-down information leads to a 

resonance in neural activity. As a result, critical features comparison is reinforced with those 

having the greatest activity. The orienting subsystem is responsible for generating a reset 

signal to discernment when the bottom-up input pattern and top-down template pattern do 

not match during comparison process according to a similarity law. In other words, once it 

has detected that the input pattern is novel, the orienting subsystem must prevent the 

previously organized category neurons in discernment from learning this pattern (via a 

reset signal). Otherwise, the category will become increasingly non-specific. When a 

mismatch is detected, the network adapts its structure by immediately storing the novelty 

with additional weights. The similarity criterion is set by the value of the similarity 

parameter. A high value of the similarity parameter means than only a slight mismatch will 

be tolerated before a reset signal is emitted. On the other hand, a small value means that 

large mismatches will be tolerated. After the resonance check, if a pattern match is detected 

according to the similarity parameter, the network changes the weights of the winning node.  
 

 

Fig. 3. Structure of ART-KNN 
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2.3 Clustering by ART-KNN 

In the ART-KNN, the determination of a limiting value of similarity (ρ) is important in  the 

optimization problem because the classification result is dependent on ρ. CEF detailed in the 

previous section is used to evaluate the superiority of the classified results based on average 

distance from mid point of each cluster and the variance of each cluster.  

ART-KNN is modified and incorporated into GA procedure for the clustering process 
according to following sequence: 

Step 1: Normalize every individuals of GA from 0 ~ 1.0.  

Step 2: Change similarity ρ  from 0.4~1.0.  

                   • Classify into clusters using ART-KNN for each ρ. 

                   • Calculate the CEF for each ρ. 
Step 3: Choose clustering results which correspond to minimum CEF.  

2.4 Sequential quadratic programming (SQP) 
SQP method represents the state of the art in nonlinear programming methods. 

Schittkowski (Schittkowski, 1985) has implemented and tested a version that outperforms 

every other tested methods in terms of efficiency, accuracy and percentage of successful 

solutions over a large number of test problems. Based on the work of Powell (Powell, 1978), 

the method allows it to closely mimic Newton's method for constrained optimization similar 

to an unconstrained optimization. At each major iteration, an approximation is made of the 

Hessian of the Lagrangian function using a quasi-Newton updating method. This is then 

used to generate a QP sub-problem whose solution is used to form a search direction for a 

line search procedure. An overview of SQP can be seen in Fletcher (Fletcher, 1980). The 

general method is not listed here, but MATLAB program provides a full implementation 

together with the SQP algorithm.  

2.5 Efficient random search 
The last procedure of CHEA is a complementary random search to find a global minimum 

candidate, which may be missed in GA and LS procedure. Considering the valley of global 

minimum is highly narrow and deep as shown in Fig. 4, general stochastic global search 

algorithms, such as GA and SA, often fail to find the global minimum. This is because not 

only we use limited number of trials to find the global minimum but heuristics reduce the 

searching area toward the global candidate which has a relatively wide valley. The mutation 

operator in GA gives a part of this random search by changing the genes randomly, but it 

doesn't use previous search history at all. Therefore, this paper proposes an efficient random 

search method, which uses all previous search points. It works by generating a new search 

point as far as possible from all previous search points. In the stochastic viewpoint, this 

random search increases the probability of finding the global minimum.  

The steps of the proposed efficient random search are as follows:  
Step 1: Generate 5 search points randomly. 
Step 2: Calculate Euclidean distance of the nearest point among previous search points.  
Step 3: Select one point which has the largest Euclidean distance. 
Step 4: Calculate fitness from the objective function. 

         If the calculated fitness is smaller than the best local minimums from GA-LS, 
Step 5: Apply local search using the SQP. 
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Step 6: Else, go to step 1, repeat the above procedure until the maximum number of 
             iterations is reached. 

 

 

Fig. 4. An objective function which has narrow and deep global minimum 

3. Application to test functions 

The new optimization algorithm was tested by using several benchmark functions to 
evaluate its capability and to compare it with other algorithms. Many types of test functions 
have been used to this subject, however in this study, the three well-known test functions 
were used to evaluate the algorithm. 

• Test function 1: Banana function which has one global minimum and converges 
                                   slowly to the global minimum. 

•  Test function 2: Multi-modal function which has several global minima and several 
                                  local minima 

• Test function 3: Rastrigin function which contains one global minimum and many  
                                  local minima 
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Test function 1, known as a Banana function, has the shape shown in Fig. 5 (a). In general, 

the convergence speed of an evolution program for this function is very slow and the 

accuracy of the searched solution is low as well. The objective of this example is to find the 

variable x, which minimizes the objective function. This function has only one optimum 

solution (x1 = 1.0, x2 = 1.0) at f(x) = 0. It is difficult to find the optimum solution because of a 

valley phenomenon. In general, an objective function which has several global minima 

Local minimum 

Global minimum 

 

f(x) 
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and/or local optimum points is called the multi-modal function as shown in Fig. 5 (b). The 

objective of this test function is to maximize the objective function. This function has four 

local minima of f(x)=14.333087 and four global minima of f(x)=16.09172. The Rastrigin 

function defined in eq. (4) is often used to evaluate the global search capability because there 

are many local minima around the global minimum as shown in Fig. 5 (c). It is very difficult 

to find a global minimum within the limited function in this test function. The objective of 

this test function is to minimize a function. This function has 220 local minima and one 

global minimum f(x)=0 at (0,0). 

 
(a) Banana function           (b) Multi-modal function        (c) Rastrigin function 

Fig. 5. Benchmark test functions 

The convergence speed of the optimization algorithm is evaluated by using test function 1. 
The ability of searching several global minima simultaneously is evaluated by using test 
function 2. The global search capability among many local minima is finally evaluated by 
using test function 3. Table 1 shows the parameters of CHEA used in this paper. 
 

Length of chromosome 12 

Number of population 200 

Crossover probability 40% 

GA 

Mutation probability 
 
0.8exp( / 2)Gi− , iG : ith generation 

CEF  0.2 

wg 0.9 

wm 1.5 

Clustering 

wr 0.9 

Random search Max iteration 400 

 Table 1. Parameters for CHEA 

To observe the searching procedure of CHEA, the gradual process of CHEA for Rastrigin 
function is shown in Fig. 6. GA was terminated in one cluster after six generations as shown 
in Fig. 6 (a). After GA-clustering process, local search was carried out with four randomly 
selected individuals from each cluster. Since the results of the local search did not converge 
to a point, CHEA considered this cluster to have many local minima as shown in Fig. 6 (b). 
Therefore, GA-clustering task was repeated with reduced search bounds. After five 
generations, all individuals were well clustered as shown in Fig. 6(c) where the GA was 
terminated. After a local search for each cluster, CHEA produced a global minimum and 
three local minima as shown in Fig. 6(d). No better global candidate was found during 
random search. 
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 (a) Distribution of individuals after 4th generation of GA 

 (b) Local search by SQP with individuals randomly selected 

 

   
(c) Distribution of individuals after 5th generation of re-GA with reduced search area 

(d) Final results by CHEA 

Fig. 6. Optimization procedure by CHEA for test function 3 

4. Comparison of performance of CHEA 

Optimization results by CHEA are compared with EGA (Kim, 2003) and ASA (Ingber & 
Rosen, 1992) which are known as the advanced version of GA and SA. Table 2 shows the 
comparison for test function 1. The second column indicates the total number of function 
call which also represents computation time. Third to fifth columns show the mean 
optimum values of the design variables and the final value of the objective function, 
respectively. The result using ASA did not converge well to an optimum value though it 
spent more computation times than those of CHEA. EGA gave the exact optimum value but 
took 3183 number of function calls as compared to CHEA which took 1120 functional calls.  
The results for test function 2 are shown in Table 3. All algorithms showed the results 

having similar resolution, but ASA produced only one global minimum as compared with 

the others which found four global minima. EGA was slower than ASA but found all the 

global minima. The table shows that CHEA found all global minima and with the smallest 

number of function call. 
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Finally, the test results for test function 3 are summarized in Table 4. All algorithms found 
the local minima, but they often failed to find the global minimum. The last column shows 
the percentage of success in finding the global minimum. EGA produced the worst results in 
terms of computation time and success ratio. CHEA although is slower than ASA but the 
success ratio to global minimum is more superior. Considering the convergence speed, 
accuracy of results and global search capability, CHEA is found to be the most efficient 
algorithm among the considered algorithms which are known to be efficient and fast.  
 

 No. of function call x1 x2 f(x) 

ASA 1414 0.6995 0.4878 0.0905 

EGA 3183 0.9999 1.0000 6.06e-19 

CHEA 1120 1.0000 1.0000 9.94e-13 

Table 2. Comparison of the results for the test function 1 

 

 No. of function call x1 x2 f(x) 

ASA 1391 0.43881 −0.30585 16.09172 

EGA 3014 −0.43880 

−0.43880 

−0.43880 
  0.43880 

−0.30585 

−0.30585 

−0.30585 
  0.30585 

16.09172 
16.09172 
16.09172 
16.09172 

CHEA 1131 −0.43880 

−0.43880 

−0.43881 
  0.43881 

−0.30585 

−0.30585 

−0.30585 
  0.30585 

16.09172 
16.09172 
16.09172 
16.09172 

Table 3. Comparison of the results for the test function 2 

 

 No. of function call x1 x2 f(x) 
Success to 
global (%) 

ASA 1336 1.82e-5 −2.55e-6 −2.55e-7 83 

EGA 3131 1.00e-20 1.00e-20 3.16e-13 85 

CHEA 2100 −5.72e-9 
  0.994 

−0.994 
  8.69e-7 

−2.81e-7 
  4.63e-8 
  9.23e-9 
  0.994 

1.57e-11 
0.994 
0.994 
0.994 

99 

Table 4. Comparison of the results for the test function 3 

5. Unbalance response analysis of rotating shaft 

In this study, the vibrations are calculated using general finite element procedures. Since the 

finite element discretization procedure is well documented in many literatures (Nelson, 

1980; Pilkey, 1994; Choi & Yang, 2000), the details are omitted here and only the equations of 

motions are presented below. 
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5.1 Disk element  
The rigid disk is modeled as a four degrees of freedom rigid body with the generalized 
coordinates defined as two translations V, W of the mass center in the X and Y directions 
and two rotations B and Γ of the plane of the disk about the X and Y axes. The rigid disk 

needs to be located at a finite element station. If the spin speed Ω is assumed to be constant 
then the coordinates qd are governed by the following equation. 

( )d d d d d d

T R Ω+ − =M M q G q F$$ $
 

(5) 

where ,d d

T RM M  are the translational and rotational mass matrices respectively, Gd is the 

gyroscopic matrix and Fd is the force vector acting on the disk. 

5.2 Shaft element  
The shaft element is considered to be initially straight and modeled as an eight degrees of 

freedom element: two translations and two rotations at each station of the element. The 

cross-section of the element is taken to be circular and uniform. Continuous shaft mass with 

a constant density is taken as equivalent lumped mass. The inertia of each element is 

divided into two parts and applied at both ends of an element.  

The equation of motion, in fixed frame and for a shaft element rotating with a constant 

speed Ω are given by, 

( )e e e e e e e e

T R Ω+ − + =M M q G q K q F$$ $
 

(6) 

Here qe is a (8×1) displacement vector, corresponding to the translational and rotational 

displacements (V, W, B, Γ) at both ends of the element. 
e

TM , 
e

RM  are the translational and 

rotational mass matrices respectively, Ge is the gyroscopic matrix, Ke is the stiffness matrix 

and Fe is the force vector acting on the shaft element. 

5.3 Bearing elements 
The nonlinear characteristics of the bearings can be linearized at the static equilibrium 

position using the assumption of a small vibration. The dynamic characteristics of the 

bearings are represented by eight stiffness and damping coefficients. The force acting on the 

shaft can be expressed as 

b b b b b+ =C q K q F$
 

(7) 

where Cb and Kb are the damping and stiffness matrices of the bearing elements, 
respectively. 

5.4 Assembly and system equation 
Once equations (5) - (7) are established for a typical element, these equations are repeatedly 

used to generate other equations recursively for other elements. Then they are assembled to 

find the global equation, which describes the behavior of the entire system. The assembled 

damped system equation of motion in the fixed frame is of the form 
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+ + =Mq Cq Kq F$$ $
 (8) 

where, M = Md + Me, K = Ke + Kb, C = Cb − ΩGe − ΩGd. M, C and K are total mass matrix, 
damping matrix and stiffness matrix, respectively. F is the external force vector acting on the 
entire system. 

5.5 Steady-state unbalance response 
In fixed frame coordinates, the unbalance force in eqn. (8) is of the form 

cos sinC St tΩ Ω= +F F F
 

(9) 

The steady state solution is given by, 

cos sinC St tΩ Ω= +q q q
 

(10) 

Substituted eqns. (9) and (10) into (8) yields 

1
2

2

C C

S S

Ω Ω
Ω Ω

−
⎡ ⎤− −⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

q FK M C

q FC K M

 

 

(11) 

The solution of eqn. (11) and substituting back into eqn. (10) provides the system unbalance 
response. 

6. Optimization formulation for identification 

6.1 General identification procedure 
Fig. 6 shows the general identification procedure for determining the unknown system 
parameters, such as bearing parameters, position, magnitude and phase of unbalance of 
rotor-bearing system. It consists of different tasks as shown in Fig. 6. At first, a linear 
analytical model which is generally described by a differential equation is formulated by 
including unknown parameters. And then, steady-state unbalance response can be 
calculated by using the equations described in previous section. Such a response can also be 
obtained from the measurements of output signals in rotor-bearing system. Finally, in the 
comparison task, the analytical response is compared with the measured response at the 
same nodes. If their correlation is poor, the system unknown parameters are renewed and 
sent to the analytical model. This iterative procedure for improving the system unknown 
parameters is set if the correlation of model and measurement is good enough. The key 
issue of this procedure is how much variations of parameters have to be given to the new 
analytical model. It is very time consuming to do this manually. Thus many optimization 
techniques have been developed to solve this kind of problem which can be formulated as 
minimization problem. 

6.2 Formulation of optimization problem 
The classical nonlinear constrained optimization problem can be written mathematically as: 

 Minimize f(x)  (12) 
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 Subject to gl(x) ≤ 0 (l=1, m), hk(x) = 0 (k = 1, n), xil ≤ xi ≤ xiu (i = 1, p)  (13) 

In general, the objective function f(x) as well as the constraint functions gl(x) and hk(x) are 
nonlinear implicit functions with respect to the design variables. Classical optimization 
algorithms require these functions to be unimodal and continuous, and their first 
derivatives have to be available. Otherwise, various numerical difficulties and convergence 
problems may arise. The global optimization algorithms, such as GA and SA, have been 
developed in order to overcome the above restrictions and difficulties. 
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Fig. 6. General identification procedure using optimization technique 

It is important to choose the form of the objective function, f(x), in engineering application of 
optimization algorithms. Three different types of objective functions are considered as 
shown in equations (14) to (16). The sum-squared difference between the magnitude of the 
experimental and analytical unbalance responses, as shown in equation (14), is a common 
choice, but this function performs rather badly in certain practical applications, especially in 
low damping system. The reasons for this failure are due to the function being dominated 
by the contributions made at the critical speed and resonant peaks. Another possible 
approach is to consider the difference of the natural logarithm of the unbalance responses to 
reduce the weighting of the natural frequencies defined in equation (15). A simple difference 
function, shown in equation (16), can also be used as an objective function. 

( )2

1( ) ( , ) ( , )X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

 
(14)

2 10 10( ) log ( , ) log ( , )X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

 
(15)

3( ) ( , ) ( , )X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

 
(16) 
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where, U denotes the unbalance response and superscripts X and A represent measured and 

analytical responses, respectively. Ω  is the rotating speed of the shaft, j is the measuring 
node and x is the identifying parameter vector. 
The optimization problem for parameters identification of rotor-bearing system is 
formulated as follows:  

Minimize f(x)  

 subject to: 
l u

i i i
x x x≤ ≤ ,  xi∈x, xi= 1, 2, …, 5   (17) 

and the design variables:  x = (kxx, kxy, kyx, kyy, cxx, cxy, cyx, cyy, u) 
 

where, xi is the design variable and superscripts l and u represent the lower and upper 

bounds of the design variables, respectively. kij, cij (i, j = x, y) are the stiffness coefficients and 

damping coefficients of bearing respectively. Subscript x and y denote horizontal and 

vertical direction, respectively. u denotes the residual unbalance of the disk.  

In this study, only the diagonal terms of the stiffness and damping coefficients (kxx, kyy, cxx, 

cyy) are considered and does not consider inequality or equality constraints. When a journal 

bearing is used in the rotor-bearing system, cross-coupled terms of stiffness and damping 

coefficients (kxy, kyx, cxy, cyx) need to be selected as design variables.  

7. Numerical application 

The proposed methodology is first verified by a simulation study. A simple rotor-bearing 

model is shown in Fig. 7 and detail specifications of the rotor bearing model are shown in 

Table 5. The rotor system consists of a shaft of 1.3m in length and 0.1m in diameter, and has 

three disks. Two bearings support the shaft at the each ends. The dynamic coefficients of the 

two bearings are of the same values, and hence only the diagonal terms are considered. An 

unbalance mass was added on disk 2 (6th node) with a magnitude of 200 g⋅mm and an angle 

of 0o. The unbalance responses at the 2nd and the 12th nodes were selected as simulated 

measured responses. To consider the uncertainty of the analytical model and to examine the 

robustness of identification, 10% of Gaussian noise was applied to the simulated responses.  

The stiffness and damping coefficients of the bearing and the magnitude of unbalance mass 
on disk were chosen as identifying parameters. The formulation of optimization is described 
in the following section. 

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

 

Fig. 7. Rotor bearing model (Lalanne and Ferraris, 1998) 
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Shaft length (m) 1.3 

Shaft diameter (m) 0.1 

Young’s modulus (GPa) 200 

Density (kg/m3) 7,800 

Shaft 

Poisson ratio 0.3 

kxx, kyy (MN/m) 50, 70 

cxx, cyy (kN⋅s/m) 0.5, 0.7 Bearing 

kxy, kyx, cxy, cyx 0 

Table 5. Model parameters in Lalanne’s rotor model  

7.1 Formulation of optimization 
Objective function 

         
( )2

1

,

( ) ( , ) ( , )X A

j j

j v h

f U UΩ Ω
= Ω

= −∑∑x x x

 

 Minimize 
 

2 10 10

,

( ) log ( , ) log ( , )X A

j j

j v h

f U UΩ Ω
= Ω

= −∑∑x x x  (18) 

     
3

,

( ) ( , ) ( , )X A

j j

j v h

f U UΩ Ω
= Ω

= −∑∑x x x

 
where, Uj is vertical and horizontal responses at 2nd and 12th nodes, respectively and Ω is 
rotating speed ranging from 200 to 15000 rpm with a step of 200 rpm. 
 

Design variables (Identifying parameters) 

 
( , , , , )xx yy xx yyk k c c u=x

  (19) 
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the 
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass 
unbalance of disk.  
 

Side constraints 

 102 ≤ kxx, kyy ≤ 109 (N/m), 100 ≤ cxx , cyy ≤ 107 (N⋅s/m), 10-7 ≤ u ≤ 10-2 (kg⋅m)  (20) 

The control parameters for this algorithm are listed in Table 6. These parameters are 
determined by considering the global search capability and the computation time.  
 

Length of chromosome 12 

Number of population 200 

Crossover probability 40% GA 

Mutation probability 0.8exp( / 2)Gi− , iG : ith generation 

CEF 0.2 

wg 0.9 

wm 1.5 
Clustering 

wr 0.9 

Random search Max iteration 500 

Table 6. Control parameters for optimization algorithm (CHEA) 
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7.2 Identification results 
Table 7 shows the identification results using the simulated unbalance response without 
noise. With the objective functions of all cases, all identified parameters have exactly the 
same reference values and the total call number of the objective function is about 3000. Fig. 8 
shows the history of the objective function values. It can be seen that, after 6th generation, 
GA-clustering task was terminated and yielding the classification to one cluster. In a local 
search, three points converged to one point and consumed 1300 times of function 
evaluations. With a total of 500 trials of random searches the algorithms were unable to 
locate the lower local minimum candidate and the program had to be terminated. The result 
clearly shows that the shape of objective function needs to be a wide concave type.  
 

Identified values Design 
variables 

Reference 
values f1(x) f2(x) f3(x) 

kxx (MN/m) 50 50 50 50 
kyy (MN/m) 70 70 70 70 

cxx (kN⋅s/m) 0.5 0.5 0.5 0.5 

cyy (kN⋅s/m) 0.7 0.7 0.7 0.7 

u (g⋅mm) 200 200 200 200 

No. of function call 2,993 2,768 3,150 

Table 7. Identification results using the unbalance response without noise 
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Fig. 8. History of objective function values 

The identification results using a simulated response with 10% Gaussian noise added are 
summarized in Table 8, taking into consideration the three kinds of objective functions. In 
the case of function f1(x), the errors of stiffness coefficients varied from 2.4% to 8.1% and are 
less than 10%. However, the errors due to damping coefficients fluctuate significantly. The 

www.intechopen.com



A Hybrid Evolutionary Algorithm and its Application to Parameter Identification  
of Rolling Elements Bearings 

 

159 

results by using function f3(x) are not acceptable due to the high errors encountered in 
stiffness coefficients, ranging from 14.8% to 160%. In the case of function f2(x), which is 
considered to be the best choice, the stiffness coefficients and magnitude of mass unbalance 
(u) are well identified with error less than 1% with respect to the reference values. This is 
obtained by excluding the relative higher errors of damping coefficients. The reasons for the 
poor results with respect to the damping coefficients are  

• The damping coefficients of the bearing strongly affect the magnitude of the unbalance 
response near the resonant peaks in a low damping system. 

• The peak value of the response fluctuates to the higher values than other responses due 
to the Gaussian noise. 

 

Objective function (% error) Design 
variables 

Reference 
value f1(x) f2(x) f3(x) 

kxx (MN/m) 50 45.94 (8.1) 50.16 (0.3) 112.1 (124) 
kyy (MN/m) 70 71.67 (2.4) 69.94 (0.1) 80.38 (14.8) 

cxx (kN⋅s/m) 0.5 2.570 (414) 0.434 (13.8) 0.852 (160) 

cyy (kN⋅s/m) 0.7 0.0015 (99) 0.684 (4.1) 0.834 (19) 

u (g⋅mm) 200 210.4 (5.2) 200.8 (0.3) 115.8 (42) 

Table 8. Comparison of identification results for different objective functions in the case 10% 
Gaussian noise added to unbalance response 

From these results, the objective function needs to be selected carefully by considering the 
shape of the measured response function. Fig. 9 shows the simulated unbalance responses 
with 10% Gaussian noise added and the calculated unbalance responses using the identified 
parameters for the case function f2(x). The identified response is in good agreement with the 
simulated measured ones. 
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Fig. 9. Original and identified unbalance response 
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8. Experimental validation 

The experimental validation was performed to verify the effectiveness of proposed 

identification approach. By using a Rotor-Kit system, the stiffness coefficients and unbalance 

mass of disk are identified simultaneously. The identified results are compared with those 

obtained by measurement. 

8.1 Test rig and measured response 
The test rig for experimental validation is shown in Fig. 10. The rotor-system is the RK4 

model manufactured by Bently-Nevada. A flexible coupling connects a controllable DC 

motor to the shaft. Spring-bearing, which has four springs for driving a ball bearing in all 

directions as shown in Fig. 10, was used to identify the stiffness and damping coefficients. 

The adjoined two ball bearings in the coupling side are used to prevent slight angular 

movements which usually occurred in single ball bearing setup. Two proximity probes are 

incorporated to measure the shaft vibration in the vertical and horizontal directions. 
 

 

Fig. 10. Experimental test rig 

Fig. 11 shows the schematic of the test setup with the spring-bearing. The measured signal 

was processed by using the DAI-108 and ADRE software. The stiffness of the two adjoined 

ball bearings in the left side was considered to be rigid because it was significantly greater 

than the identifying stiffness of the spring-bearing at the right side. The parameters of the 

shaft, disk and spring-bearing are listed in Table 9. To identify the unknown parameters in a 

real system, all the other parameters need to be defined. Therefore, Young’s modulus and 

density of shaft listed in Table 5 were updated by using the model updating technique. 
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DC motor

Flexible coupling

Ball bearing

Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows

DC motor

Flexible coupling

Ball bearing

Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows
 

Fig. 11. Schematic of an experimental setup with a spring-bearing 

 

Length (mm) 560 

Diameter (mm) 10 

Density (kg/m3) 7,801 

Young’s modulus (MPa) 208.11 

Shaft 

Poisson ratio  0.3 

Mass (kg) 0.809 

Polar moment of inertia (kg·m2) 568.46×10-6 

Trans. moment of inertia (kg·m2) 327.60×10-6 

Disk 

Magnitude of unbalance (g·mm) 15 

Bearing span (mm) 401 

Horizontal stiffness (kN/m) 33.9 

Bearing 

Vertical stiffness (kN/m) 33.6 

Table 9. Parameters of test setup 

Fig. 12 shows a 1X filtered measured response of horizontal vibration according to speed-up 

and speed-down of the motor. Slow roll vector at 500 rpm was used to compensate the 

original signal. The response below the critical speed was used in the identification process 

because they increased sharply near the critical speed. In actual fact, many rotating systems 

operate below the first critical speed. The reason why the measured signal is not smooth 

enough is because this system has no damping mechanism except internal material 

damping or friction. Fig. 13 shows, for example, an instantaneous measured signal in the 

vertical direction at a shaft speed of 1350 rpm. The first peak in the spectrum plot indicates 

the rotating speed and the second peak is the first natural frequency of the system. This 

appearance is frequently shown in low damping systems supported by ball bearings. 

Furthermore, traditional deterministic identification approaches (Lee & Hong, 1988; Chen & 

Lee, 1995, 1997; Tiwari et al., 2002) often failed to identify the exact parameters.  
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Fig. 12. 1X filtered measured horizontal response 
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Fig. 13 Instantaneous vibration signal and its spectrum at 1350 rpm 

8.2 Optimization formulation and results 
The same control parameters for optimization algorithm listed in Table 2 are used this case. 

By using the above measured responses in the vertical and horizontal directions, 

optimization for identifying the bearing parameters and unbalance is formulated as follows:  
 

Objective function: 

                 
( )2

1( ) ( , ) ( , )X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

    

 Minimize
 

2 10 10( ) | log ( , ) log ( , ) |X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

 
 (20) 

                  
3( ) ( , ) ( , )X A

j j

j

f U UΩ Ω
Ω

= −∑∑x x x

     

where, Uj is response at the position of sensors and Ω is the rotating speed from 480 to 2140 

rpm with a step of 20 rpm. 
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Design variables (Identifying parameters): 

 
( , , , , )

xx yy xx yy
k k c c u=x

  (21) 
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the 
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass 
unbalance of disk. 
 

Side constraints: 

102 ≤ kxx, kyy ≤ 106 (N/m), 100 ≤ cxx, cyy ≤ 103 (N⋅s/m), 10-7 ≤ u ≤ 10-3 (kg⋅m) 

The identification results for the spring-bearing system are summarized in Table 10. The 
results show an average function call number of 4327 which corresponds to a computation 
CPU time of 3519 second on the P-IV 3.0 GHz PC. The reference values for the stiffness 
coefficients were obtained from static deflection tests. The percent error of identified 
parameters to reference values is given in terms of percentage error (% error).  
 

Identified values (% error) Design 
variables 

Experimental 
value f1(x) f2(x) f3(x) 

kxx`(kN/m) 33.900 30.884 (8.9) 30.796 (9.1) 33.491 (1.2) 
kyy`(kN/m) 34.600 34.203 (1.1) 34.001 (1.7) 36.390 (5.2) 

cxx (N⋅s/m) − 13.42 11.96 15.44 

cyy (N⋅s/m) − 16.06 14.11 3.16 

u (g·mm) 15 13.82 (7.8) 12.86 (14.3) 16.13 (7.5) 

No. of total function call  4,334 4,360 4,288 

Table 10. Identification results for the spring-bearing system 
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Fig. 14. Measured and Identified horizontal unbalance response for f3(x) 
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Although the 1X amplitude of the measured signal had significant fluctuation, all the 
identified parameters fitted well with the reference values. Considering the percentage error 
to reference values, as shown in the Table 10, the best choice of the objective function is f3(x), 
which is the sum of differences between measured and analytical responses. Fig. 14 shows 
the identified horizontal unbalance response and 1X filtered measured response at the 
sensor positions. From this result, it is verified that the proposed methodology could be 
effectively used to identify bearing coefficients with the magnitude of unbalance using the 
measured unbalance responses.  

9. Conclusions 

A new hybrid evolutionary algorithm using clustering-based hybrid evolutionary algorithm 
(CHEA), is proposed in this chapter. The main feature of CHEA is the clustering of 
individuals introduced for evaluating the degree of maturity of genetic evolution. After the 
clustering-based genetic algorithm, local search is carried for each cluster in this algorithm. 
CHEA attempts to find each local minimum from each cluster or continues with GA 
focusing on the regions of each cluster until all significant local minima are found. Therefore 
CHEA can lead to local minima as well as global minimum. ART-Kohonen neural network 
(ART-KNN) is used in the clustering of individuals in GA. Sequential quadratic 
programming (SQP) is adopted as local search. An efficient random search is introduced for 
improving the probability of finding the global minimum which may be missed by GA or 
local search task. The effectiveness of the proposed algorithm was evaluated using three 
well-known benchmark functions. The results showed that the CHEA reached the global 
minimum faster than EGA and ASA. It has the ability to find the global minimum as well as 
the local minima and having higher global search capability than other algorithms. 
When using CHEA for parameter identification of bearings, it optimizes the formulation 
process to achieve an optimum solution. It minimizes the differences between analytical 
unbalance responses and measured ones by considering the unknown bearing parameters 
as design variables. Three types of feasible objective functions were applied in evaluation 
process, namely, sum-squared differences, logarithmic differences and simple differences to 
find the most competent formulation of the objective function. The magnitude of mass 
unbalance was also chosen as identifying parameters. Numerical and experimental 
applications were presented to confirm the effectiveness of this methodology. In the 
numerical application, 10% of Gaussian noise was added to simulate measured response 
and to examine the robustness of the methodology. The results showed that the unknown 
parameters were correctly identified and the logarithmic differences function was concluded 
as the best objective function in the numerical simulation. When applied to an experimental 
rotor-bearing system the measured synchronous response fluctuates according to the 
rotating speeds but the identified parameters fitted well with the reference values. This new 
algorithm has the potential for use in real life applications. However, further investigations 
using industrial data are required to test the robustness of the technique before applying the 
method to industrial rotating machinery.  
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