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Abstract

Knowledge about human mobility patterns is the key element towards efficient mobility
management. Traditionally, these data are collected by paper/phone household surveys
or travel diaries and serve as input for transportation planning models. In this chapter,
we report on current state-of-the-art techniques for sensing human activity and report
on their applicability for smart city mobility management purposes. We particularly
focus on the use of location-enabled devices and their potential  towards replacing
traditional  data  collection  approaches.  Furthermore,  to  illustrate  applicability  of
smartphones  as  ubiquitous  sensing  devices  we  report  on  the  use  of  Routecoach
application that was used for mobility data collection in the city of Leuven, Belgium.
We provide insights into lessons learned, ways in which collected data were used by
different stakeholders, and identify existing gaps and future research needs in this field.

Keywords: smart cities, travel behavior, travel patterns, data collection, GNSS, call de-
tails records, crowdsourcing, smartphone, sensing human activity, transportation
planning

1. Introduction

The topic of smart cities gained increasing interest among researchers from different fields.
The concept goes beyond the pure use of information and communication technologies (ICT)
towards building smarter buildings, mobility solutions, sustainable living and smart gover-
nance that meets the needs of an urban population as a sustainable community. In this chapter,
we examine the role and potential of sensing devices as one of key pillars towards smart
mobility management. We particularly focus on the use of smartphones as ubiquitous sensing
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devices that provide more detailed insight into mobility behavior than ever before facilitating
smarter mobility management, development of tailor made policy measures and advanced
two-way communication channels between relevant stakeholders. To illustrate these poten-
tials we report on the use of Routecoach app developed at Ghent University and used by more
than 8000 users for mobility data collection in the city of Leuven, Belgium. We provide insights
into lessons learned, ways in which collected data were used by different stakeholders, and
identify  future  research  needs  that  can  alleviate  existing  gaps  towards  truly  smart  and
seamless mobility management.

2. Sensing human activity

Understanding mobility behavior is one of the key elements in ensuring better transport and
urban planning. Advances in these areas are welcomed as they can ensure more seamless
mobility, which is particularly a demanding task in urban areas where different transport
modes meet and often share same space. As mobility is service, and it is impossible to store its
capacities at certain location for future time, when the service will be needed, but rather
synchronized time-space respond to dynamic demand is needed. To be able to better estimate
these demands, and provide adequate level of service, data on travel activities are collected.
The traditional data collection process can be user-oriented or location-oriented.

2.1. User-oriented sensing

A user-oriented approach goes from starting point of mobility system’s user and data collected
this way are usually aggregated at the household level. This type of data collection process
commonly involves implementation of paper or phone household surveys, or interviews,
where people are asked to record or state their travel behavior on for instance an average
weekday. Ideally, household travel surveys involve representative sample of target population,
and processed data on trip origins and destinations, frequencies, purposes, and utilized
transport modes serve as an input for transportation planning models. Ettema et al. [1] and
Stopher and Greaves [2] have shown that data collected in this way deviated systematically
from the actual travel behavior. Some examples of such deviation include tendency of the
respondents to underreport non-motorized trips [3–5] or public transport users to overestimate
their actual travel time [6]. Furthermore, response rates to these surveys tend to be low which
represents challenge in terms of nonresponse bias [7]. To avoid these pitfalls paper travel
diaries were introduced [8].

In paper travel diaries, one is asked to systematically note his or hers travel behavior details
with respect to travel times, origin and destination locations, transport modes, trip purposes,
and frequencies. The data collection interval is usually one complete week during non-holiday
periods. Literature reports [9, 10] that respondents tend to postpone filling in these diaries,
which results in obtaining incomplete and inconsistent information. Quite often this would
include having trouble remembering and recording smaller trips (e.g., walking to nearby post
office to pick up package delivery or to local library to return a book), rounding off time and
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distances [11], having difficulties in defining the exact locations of places they have visited, or
underreporting multimodal trip segments (e.g., indicating trip made by public transport, but
forgetting to mention walking to and from public transport stop or between metro and bus
stops).

Indeed, both travel surveys and diaries were designed primarily to provide data for macro-
scopic traffic models, and respectively, were focused on capturing trips between traffic analysis
zones (TAZs). A TAZ is the unit of geography most commonly used in conventional trans-
portation planning models and represents spatially homogeneous land use area (e.g., resi-
dential area, industry area etc.). Size of the TAZ varies, but typically it is a zone of under 3000
people. Quite often, these zones match census block information which makes it easier to
interpret models’ outputs. As macroscopic traffic models are not focused on trips inside
individual TAZs, but between different ones, both travel surveys and diaries ignored shorter
trips within TAZs and, this way further impacted underreporting of smaller trips that were
usually made by active transport modes [12, 13]. This resulted in bias in observed modal splits
and further underpinned evolution of car-oriented transport.

2.2. Location-oriented sensing

Compared to user-oriented sensing, the location-oriented data collection process tries to
capture travel entities that are passing predefined location. This can be one point in the
transport network, but more often the data collection process includes several points dispersed
geographically to cover target area and all input/output points to the target part of the network
(e.g., main roads entering the city, train stations etc.). The most straightforward way is to
manually note the number of vehicles or pedestrians that passed the predefined location within
the predefined time interval (usually 15 min or 1 h). In addition, other traffic data like, vehicle
occupancy rate or vehicle classifications can also be collected. As manual counting is quite
expensive way to collect mobility data and suffers from human errors, this approach is further
developed into automated counting of moving objects. For this purpose, different types of a
data recorders and sensors placed on or under the traffic network surface can be used (e.g.,
pneumatic road tubes, piezoelectric sensors and inductive loops). This has been widely
deployed over the past few decades but the implementation and maintenance costs tend to be
high. In addition, they successfully extract only traffic counts while additional information
stay unreported (e.g., vehicle occupancy rate). To avoid these pitfalls, video based techniques
for traffic counting have been developed. They rely on vehicle identification and more
advanced approaches can include automated vehicle classifications or capturing of vehicle
occupancy rates.

2.2.1. Computer vision applications

For vehicle identification, usually license plate matching techniques are applied. These
techniques consist of collecting vehicle license plate characters and arrival times at various
checkpoints. Since manual collection of license plate information is less practical for high-speed
roads, ideally this is done by video cameras and character recognition software to recognize
and automatically transcribe the license plate number for subsequent computer processing
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[14]. Collection of arrival times at different checkpoints makes it possible to process data in
order to recreate vehicle movements (if data collection points are of adequate density) or to
derive travel times in the transport network. However, the ability of video based method to
correctly identify license plate characters is often influenced by factors such as vehicle speed,
volume of vehicle flow, ambient illumination (day, night, sun, or shadow), spacing between
vehicles (occlusion), weather conditions (rain, snow, fog), plate variety, physical position of the
plate (tilt, rotation), etc. In general, the license plate capturing and recognition rates may vary
from as low as 15% (for poor visibility/weather conditions) to as high as 85–90% [15]. Another
application for mobility studies comes from the possibility of implementation of computer
vision applications in vehicles to recognize the surroundings and adjust their driving behavior
in line with this information. These types of applications are particularly interesting for
automated vehicles as future mobility entities within the smart cities. Figure 1 shows example
of ongoing research activities under the Vebimobe project where applicability of computer
vision for automated recognition of traffic signs within the city of Ghent, Belgium is studied.
Specially designed vehicles test the ability to recognize traffic signs, while being integrated in
traffic flow movements, from cameras that operate in different spectrums [16]. One of the main
aims of the Vebimobe project is to examine readiness of related technologies in ensuring
application of such data collection techniques for automated vehicles’ speed adaption and
more sustainable route guidance applications.

Figure 1. Vebimobe —organization structure of research activities (left) and test vehicle with equipment for computer
vision supported detection of traffic signs (right) (from [16]).

Furthermore, for machines to be able to detect and identify people instead of vehicles (or traffic
signs) is a more challenging task and sensing of humans has long been one of the hardest
machine vision problems to tackle. Next to the inherited challenges with ambient illumination,
occlusions (e.g. having umbrella), weather conditions (rain, snow, fog), etc., main challenge
comes from wider diversity in appearance and more erratic way humans behave. So far
successful applications mainly focus on recognizing human silhouettes and classifying
activities (standing, walking) [17, 18] while face recognition performs better on a smaller scale.
For urban areas where large number of people passes daily (e.g., in a train station), the
performance is lower due to limits in recognition. However, for mobility-related applications
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where just separation between different transport modes is needed (in this case, just recog-
nizing whether it is human/pedestrian), success rates are higher than in case where actually
identifying a unique human is needed to, for example, compare travel times between succes-
sive locations.

2.2.2. Bluetooth scanning

More recently, Bluetooth has been suggested as an interesting alternative for location oriented
sensing technology. Bluetooth is a wireless technology standard [19] for exchanging data over
short distances. It uses short wavelength ultra-high frequency (UHF) radio waves in the
industrial, scientific and medical (ISM) band from 2.4 to 2.485 GHz [20]. It was invented by
telecom vendor Ericsson in 1994, and it can connect several devices, overcoming problems of
synchronization which makes it particularly interesting for implementations ranging from
fixed and mobile devices to building personal area networks [20]. Prior to the wireless
connection of two devices through Bluetooth, the inquiry phase of the protocol needs to be
completed. In this phase, an initiator device initiates the service discovery procedure by
transmitting inquiry packets. Devices, that allow themselves to be discoverable, issue an
inquiry response. The inquiry response includes information on device ID (48-bit identifier of
the mobile device—MAC address) and clock [21]. The interesting feature, for mobility studies,
is that these information are exchanged before any connection is established which allows
completely unobtrusive sensing of nearby devices.

Today, Bluetooth has become an almost ubiquitous technology on modern mobile devices and
private vehicle keys, by placing static Bluetooth sensors at strategic locations one can get
insights into personal (based on mobile devices) or vehicle (based on keys) mobility in a variety
of contexts. Due to the range limitations this technology is more appropriate for location-
oriented tracking than user based one, but with additional processing user trajectories can be
approximated based on the timestamp sequences. Phua et al. [22] have compared Bluetooth
sensed data at supermarket and manually measured data using systematic sampling and
found that trip lengths and user demographics were similar with the exception of underre-
presenting older population. Other examples of sensing human mobility include travel time
measurements of motorized traffic [23, 24], tracking of pedestrians [25], mobility-related
incident detection [26, 27], dynamics at mass events [28] and others.

Figure 2 shows implementation of Bluetooth scanners for monitoring the crowd behavior
during the Ghent Festivities in Ghent, Belgium (as described in [28]). Implementation aimed
at supporting city event management for the organization, security, transport, and emergency
service providers. Ghent Festivities take place, every year at the end of July, on 11 squares in
the city center and lasts one full week (including both starting and ending weekends). Squares,
and city itself, act as major attractions during this period hosting on-stage performances, food
stands, and fairs that attract around two million people during festivities. On this occasion, 22
locations were covered with Bluetooth scanners. Collected data represented people’s mobility
within the festivity zone itself and the mobility to and from the festivity zone. Applications of
the resulting data are manifold. The most direct result are the statistics about visitors and their
sensed behavior (e.g., the number of visitors per day, the time and space distribution of visitors,
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the (sequence of) squares visited by individual visitors, etc.). A second, derived set of results
deals with the distribution and dynamics of the crowd in the festivity zone and the city center.
This information is vital for security services, which are monitoring the people density in order
to plan safety measures as temporary closures of access to overcrowded squares or facilitating
the circulation between certain festive locations. Derived information is also made available
to visitors by the festivity app, assisting them to plan their visit avoiding overcrowded or
temporary closed areas. A third set of results deals with the accessibility of the festivity zone
and is derived from monitoring of the travel times between train stations, public transport
stops, park and ride locations, and the festivity zone. For example, by analyzing sequence of
Bluetooth scans, of the same IDs, starting from the park and ride facility towards the city center
prolonged travel times can be observed. This suggests congestion problems on the route, where
traffic police should intervene to facilitate the circulation of the public transport. This way, the
sensed data assist partners to optimize safety and comfort to the visitors of the festivity [30].

Figure 2. Bluetooth scanning implementation for mass events (Ghent Festivities event in Ghent, Belgium) [29].

The given example, illustrates the potential of using Bluetooth scanning for deriving origin
and destination locations within the city or travel times. However, Bluetooth sensed data for
mobility studies exhibit several limitations. First, sensed location is limited to the selected
locations of static Bluetooth scanners. By analyzing sequence of observed devices’ IDs between
different locations, movement data can be estimated but exact paths are unknown unless
Bluetooth scanners are placed at each intersection of the transport network. However, this
might be quite expensive especially in large networks. Second issue is related to sample sizing
and data quality. As only the activity of discoverable Bluetooth devices can be sensed, to report
on the population level (e.g., absolute density or flow statistics) ratio of discoverable Bluetooth
devices across general population needs to be determined. This is mainly done based on the
manual counts of the total number of visitors at sensing locations; however, this process tends
to be expensive.

Overall, when analyzing the implementation potential of location based sensing techniques
for mobility studies, main limitations come from need for higher level of details, insights into
utilized network connections and traffic flows dependencies, as well as need to include all
users of the mobility network (pedestrians, bicyclists, public transport users, etc.). All of the
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location based sensing techniques score well for some of these challenges but fail at others. For
example, sensors placed on or under the traffic network surface provide confident counts of
vehicles, but cannot identify individual moving objects and therefore compare its observations
across different locations. Computer vision based applications, have higher success rates in
distinguishing between different transport modes, but still have limited success in identifying
individual moving objects for practical implementation. Bluetooth sensors can easily identify
individual devices and based on this information, track their moving sequences between
different locations, but they require high density of sensing locations to reconstruct actual
paths and cannot provide vehicle counts with same accuracy as road sensors or confident
estimation of used transport modes.

2.3. Location-enabled devices

Introduction of location-enabled devices started an important revolution in mobility studies
[31–34] as they allowed continuous tracking of movement locations and, this way, were able
to fill some of the gaps that were present when collecting data using traditional methods [35–
37]. Location-enabled devices mainly relay on global navigation satellite system (GNSS). The
GNSS refers to a constellation of satellites providing signals from space transmitting position-
ing and timing data and, by definition, it provides global coverage. The GNSS allows small
electronic receivers to determine their location (longitude, latitude, and altitude) to high
precision. The signals also allow the electronic receiver to calculate the current local time to
high precision, which allows time synchronization. Examples of GNSS include USA’s NAV-
STAR Global Positioning System (GPS) and Russia’s Global'naya Navigatsionnaya Sputniko-
vaya Sistema (GLONASS) [38–40]. Europe is in the process of launching its own independent
GNSS, Galileo, and China is currently expanding its regional BeiDou Navigation Satellite
System into the global Compass navigation system [41]. First location-enabled devices that
were used for mobility studies were usually installed in vehicles (Figure 3). Data collected in
this way were used to note travel times [42, 43], detect congested segments in traffic network
[44, 45], or reconstruct vehicle trajectories [46, 47]. Cai et al. [48] and Gullivera et al. [49]
developed road traffic noise estimation models based on the collected GNSS data. Ćavar et al.
[50, 51] used GNSS vehicle tracks to develop machine learning based model for predicting
travel times in urban areas.

When collecting data on traffic stream for intelligent transportation system (ITS) applications,
vehicles equipped with location-enabled devices are classified based on the vehicle driving
styles as (a) average car (vehicle travels according to the driver’s judgment of the average speed
of the traffic stream); (b) floating car (driver “floats” with the traffic by attempting to safely
pass as many vehicles as pass the test vehicle) and (c) maximum car (vehicle is driven at the
posted speed limit unless impeded by actual traffic conditions or safety considerations). The
information on the applied driving style is crucial for correct interpretation of the collected
data and development of derived statistics. In the literature, the most often applied style is
floating car [52, 53] as it has been seen to provide the most representative description of the
actual traffic stream. However, since GNSS devices for mobility studies were usually installed
in vehicles, consequently they only tracked a small portion of mobility behavior (i.e., car trips).
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To track the full spectrum of mobility behavior, respondent needed to carry the handheld
GNSS-devices continuously, as forgetting it would result in unreported gaps in the trip data
[54]. This requires significant effort and discipline from the respondent. Furthermore, to be
able to evaluate success rates of such data collection procedures, respondents often needed to
note their trips manually which, together with carrying the device, represented significant
burden to the respondents.

Figure 3. GNSS equipped vehicle (based on [15]).

2.4. Smartphone based crowdsourcing for mobility studies

Advances in development of GNSS chipsets allowed their integration in small devices, like
smartphones, which resulted in emerging new possibilities for mobility behavior sensing.
Carrying a smartphone has become a habit, and is therefore considered less of a burden,
reducing the risk of non-reported trips. In addition, smartphones today have the same
capabilities as the portable GNSS-device but also include additional sensors which can offer a
more solid base for required interpretations of the data (e.g., use of accelerometer to determine
the travel mode) and improve location precision.

In general, we can distinguish three ways in which mobile phone data are sensed for mobility
studies (1) call detail record and network signalization data; (2) ”passive” tracking and
(3) ”active” or ”interactive” tracking.

2.4.1. Call detail record and network signalization data

Call detail record and network signalization data represents standardized data, collected by
mobile network operators for billing purposes. Such data include records of all user-initiated
activities such as calls, SMSs, internet, and data services where each record includes spatial
and temporal parameters. In addition, network data include regular location updates of mobile
devices, usually collected every hour, or every three hours, depending on the network
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generation and configuration. Handing over details (records created when user moves from
area covered by one base station to another) are also noted. Therefore, frequency of the
collected data varies depending on the device, network, and user activity. The location
information is approximated to the telecom operator's base station points. The base stations
(Figure 4) are land stations in the land mobile service that provide the connection between
mobile phones and the wider telephone network. The size of area that each base station covers
(and respectively, the distance between base stations) is not fixed and is a result of the trade-
off between number of users (generated traffic), available frequencies, and quality of the service
that operator wants to ensure. In practice, this results in a higher density of base stations in
urban areas and lower in rural areas, but it is additionally influenced by build-up area and
land configuration, as well as with specific user movement patterns in the vicinity of the base
station (e.g., base stations that cover highways will have directed antennas, to ensure as little
as possible handovers, and area that they cover will have highly elongated shape (Figure 4)).
For these reasons, it is expected that location precision will be lower in rural areas and along
high speed roads (Figure 5).

Figure 4. Base station (from [55]).

International telecommunication union reported 12-fold increase of penetration rates for
mobile, and smartphone devices, since 2007 [56]. Such growth means that for the most of the
areas (especially in developed countries) these data are capable to represent overall population
movements. This potential gained much attention over the past years. Eurostat investigates
possibility to replace some of the traditional data collection methods for general statistics with
the use of call detail record and network signalization data [57–59]. Furthermore, their
applicability in the scope of mobility studies has been investigated for rush hour analysis [60,
61], detection of variability in human activity spaces [62–64], correlation of mobility behavior
with land use [65], and detection of TAZs and origin-destination pairs [66, 67]. Lui et al. [68]
investigate possibility to develop validation measures for activity-based transportation models
from mobile phone records. For this purpose, they approximated daily ”home,” ”other,” and
“work”-related travel sequences and classified them to define activity-travel profiles. By
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comparing profiles with travel survey statistics, they demonstrated validation potential of the
call detail records for this purpose. Gao and Liu [69] used the clustering technique to identify
whether different phones travel in the same vehicle. They used mobile phone data to determine
speed, vehicle counts, type, and density. This approach showed potential to be used for
estimation of vehicle occupancies rates although manual counting would be needed to evaluate
its effectiveness. Furthermore, Chen et al. [70] compared handover location updates and
regular network based location updates to estimate travel speeds. AbdelAziz and Youssef [71]
and Wang et al. [72] examined possibility to detect the transport mode one is using from their
call detail record and base station location data.

Figure 5. Base stations coverage.

At this point, all of the mobility-related studies that have examined possibility to use call detail
record and network signalization data for analyzing the human travel behavior recognize high
potential these data have for future applications. However, success rates achieved with
processed data are still unsatisfactory for their practical implementation. Potentially, the largest
limitation, in this sense, comes from low location precision (limited to cellular network base
station locations) and time resolution (limited to users’ activity or regular network location
updates dependable upon the type/generation of the network). This makes these data more
practical for extraction of origin and destination locations (which in this case would not overlap
traditionally used TAZs but rather be based on the cellular network configuration) and crowd
dynamics between different locations than for more detailed mobility studies. These solely are
insufficient to replace traditional travel surveys but are a good starting point. Call detail record
and network signalization data have a major advantage that comes from the fact that they are
collected by all network operators, require no additional effort by users, no additional financial
resources for their collection and cover wide areas, large populations and long time periods.
On the other end, their usage for mobility, and other, studies at this point is hindered by a
number of privacy and regulatory issues as well as some technological issues (e.g., how can
the current data processing system be amended so that the processing of the mobile positioning
data is also supported by statistical institutions), business related (e.g., operators see no benefits
of providing data and, above all, are not motivated by possibility that concurrent companies
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have insights into their user base nor equipment locations), and methodological ones (e.g., the
quality and applicability of the principles of statistical production in relation to mobile
positioning data) [58, 73, 74].

2.4.2. ”Passive” tracking

”Passive” tracking refers to the use of dedicated applications that run as a GNSS-based data
logger in the background on the smartphone. Today, many applications collect such data (e.g.,
Google maps, Facebook, etc.). The use of ”passive” tracked data is examined for the purposes
of investigating individual mobility patterns [75, 76], speed analysis [77], traffic monitoring
[78], or for large-scale sensing of human behavior for smart city-oriented applications [79].
Furthermore, smartphones are used as precise indoor positioning sensors in order to improve
intelligent parking service [80] and as activity recognition sensors [81, 82]. Wan et al. [83]
propose the use of mobile crowd sensing technology to support creation of dynamic route
choices for drivers wishing to avoid congestion and Xia et al. [84] explore the use of smart-
phones, as sensors, for detection of transport modes from movement data of users.

The main advantage of this approach comes from higher spatial and temporal resolution of
collected data than it is the case for mobile network call detail records. In fact, the spatial and
temporal resolution of the collected data is set by the app maker itself, but can be influenced
by user based on the mobile phone settings (e.g., positively by the use of GNSS, Wi-Fi and
other network location data or negatively by simply turned-off mobile phone). Most often, the
critical element in determining precision is the trade-off between phone’s battery drain and
data resolution. Foremski et al. [85] showed that smartphones can be used for crowd sensing
with the decrease in battery lifetime by approximately 20%, which they found to be acceptable
by users.

Figure 6. Routecoach — App.

Figure 6 shows Routecoach smartphone application [86, 87] that was developed at Ghent
University [30] for collection of mobility data for the province of Flemish-Brabant in the frame
of the Interreg IVb NWE project NISTO. The aim of NISTO (New Integrated Smart Transport
Options) was to develop an evaluation and planning toolkit for mobility projects which is
applicable transnationally and can be adopted by planners. The Leuven data collection process
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happened between January to April, 2015. In total, 8303 users actively participated by
downloading the freely available application and collecting the data on one or more trips.
Overall more than 30,000 trips have been recorded leading to about 350,000 km of recorded
data (Table 1). The app had an option for ”passive” data collection and ”active” data collection
(the ”active” data collection segment of the app will be described in more details in the
following section). Figure 7 shows ”passive” collected trips over the wider area of City of
Leuven.

Variable Value

Users 8303

Trips 30 000

Time period 4 months

GNSS points 3 960 234

km 340 000

Table 1. Sample descriptive data.

Figure 7. ”Passively” logged trips (area: province of Flemish Brabant).

Applications of the resulting data are manifold. The most direct ones refer to user participation
(e.g., general statistics) and mobility patterns (e.g., user activity). However, for detailed
mobility studies significant post-processing is needed. This mainly refers to handling noisy
data and removal of outliers. After data cleansing, map matching is required to match observed
trips to the existing transport network locations. Care should be taken in this phase in order
not to introduce errors by implemented map-matching algorithms and data quality control
should be carried out with great care, as introduction of map-matching errors can lead to
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further errors in data interpretation and provide false base for mobility-related decision
making.

Overall, main advantages of ”passive” data collection, for mobility studies, compared to call
detail record, come from higher spatial and temporal resolution. Compared to ”active”
tracking there is no need for interaction by respondents which reduces burden for the
participant. That said, data collected this way require demanding data processing and
interpretation efforts when compared to ”active” tracking. Similar to call detail record
processing advances, results of ”passive” collected data processing are still not at mature level
to replace travel diaries and surveys. One of the main challenges in this segment comes from
the fact that it is hard to provide grand truth data, to ”passive” logged data, and to check the
success rates of the processing. As it is known that providing user with travel diary to note his
trips will result in underreporting of small segments and trips made by active transport mode,
these data are not applicable for representing the ground truth. In addition, the use of the apps
is user initiated (user chooses to install, or not to install the app), whereas traditional data
collection approaches were based on the initiative of the data collection institution. In this
phase, data collection institution has an option to define representative sample and contact
participants directly based on this definition. For mobile app data collection, it is challenging
to determine the representatives of the sample as no background data are available about the
user (e.g., no demographic data). It is always opted to aim for the law of large numbers, but
aiming at mass data collection that would satisfy this condition would require substantial
campaign resources and drastically increase the cost of data collection process. It is still to find
the balance in this sense and tackle the question of crowdsourced data representativeness.

2.4.3. ”Active” and/or ”interactive tracking”

“Active” and/or “interactive tracking” represents the use of interactive mobile applications
where respondents can report additional trip data as the start of the trip or transport mode.
Such reporting was, for instance, used to investigate the influence of carbon dioxide emission
information on mode choice [88] and, mostly, as ground truth for the development of super-
vised machine learning models in order to replace parts of traditional travel surveys [89, 90].
Semanjski and Gautama [91] examined applicability of “active” sensed mobility data to predict
what transport mode one will use for the next trip (Figure 8). They applied gradient boosting
trees and achieved a success rate of 73% indicating that such data can be used for smart city-
oriented mobility services as provision of transport mode relevant pre-travel information or
different incentives in order to impact one’s mobility behavior towards more sustainable mode
choices.

The use of ”actively” logged data is also explored in inferring transport modes from mobile
sensed data. These approaches strongly relay on GNSS records [35, 77], but also include data
from other smartphone sensors [92, 93]. In many cases, these data are fused so that the GNSS
data are used to improve accuracy of, for example, accelerometer-based approaches, or vice
versa [32, 70, 84]. On average, literature reports successful recognition between three to five
transport modes by using around four indicators [35, 94]. Recognized transport modes mainly
include: motorized transport (without separation between personal vehicle and, e.g., bus), bike
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and walking, and their recognition relies on variables as speed and acceleration, implying that
they give the highest indication of a transport mode [84, 92]. The main challenge arises from
similar speeds obtained by more than one transport mode (e.g., bike and pedestrians, or private
car and public transport) which is only partially solved at this point and additional knowledge
is still needed to increase the accuracies (which is mainly below 90%). Overall, all studies tested
the proposed approaches on limited time span of collected data (ranging from four hours to
one week) and limited number of participants failing to capture wide range of longitudinal,
e.g., monthly or yearly, variations in travel behavior patterns. In addition, such short time
ranges imply observed behavior under similar conditions (e.g., weather condition) where
potential limitations might lie in terms of transferability of developed approaches on a wider
population and/or area.

Figure 8. Decision trees for the transport modes (a) bike and (b) walk (from [89]).

For the Routecoach application, next to the ”passive” logging that continuously tracked
mobility behavior, participants were able to ”actively” report and validate their data. ”Active”
data collection implied higher time-space resolution of the collected records and was initiated
by the user. To start ”active” data collection user needed to mark the transport mode used at
the beginning of his or her trip. In addition, user was able to report the purpose of the trip,
enabling extra contextual information. To reduce the burden to the participants, user-friendly
graphical interface was developed so that users could simply switch between transport modes
during their travels and, in this way, easily validate multimodal trips. To stop the ”active” data
collection user needed to mark end of the trip in the data collection app. In addition to the app,
web interface was implemented (Figure 9) so that user can easily access personal mobility data
(after the registration) and add or correct context of the trips (e.g., add purpose or correct
wrongly introduced travel mode). In addition, web interface had incorporated web surveys
that the user could fill in and provide personal information and insight into his or her attitudes
toward different mobility options.

Data collected this way provide higher spatial and temporal resolution and rich (and validat-
ed) information on the context of travel activities. This significantly reduces need for data post-
processing and allows relevant insights into mobility behavior. Figure 10 shows Routecoach
insights into observed delays at road network intersections in the city of Leuven, Belgium,
providing local authorities with information on where to focus measures related to delay
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reductions. Insights on mobility behavior, at individual and aggregated levels, were also made
available to the participants (personal data) and general audience (only aggregated results) so
that everyone can adjust, if one wishes so, his or her behavior in order to avoid delays and
crowded areas. High spatial and temporal resolution of data facilitated extraction of time
relevant insights. Based on the crowdsensed data travel time for different transport modes
could be observed and impact of newly introduced measures evaluated. For example,
Figure 11 shows bike travel time isochrones, where impact of new bike highway can be easily
noticed in the North, and then North-East part of the network (as bike highway changes its
direction). In addition, comparison of different transport modes is enabled as their perform-
ance can be simultaneously confronted. Figure 12 shows accessibility of the main train station
in Leuven during the afternoon peak hour. Blue area marks parts of the city from which it is
faster to reach train station during this period than by car. Red areas indicate regions from
which one would reach train station faster by car. These insights engaged citizens and policy
maker into constructive discussion on mobility options and enable smarter mobility manage-
ment.

Figure 9. Routecoach – web interface.

Figure 10. Delays at transport network intersections.
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Figure 11. Bike travel time isochrones.

Figure 12. Accessibility of the main train station during afternoon peak hour.

Although ”active” logging requires manual intervention by the respondent, this burden seems
to be limited because the reporting is restricted to short entries at the very moment of departure
and arrival. As a consequence, time and location of the departure and arrival can be more
accurately detected, and there is no need for demanding data processing as splitting GNSS-
based track into parts travelled by different modes [35, 95]. Overall, ”active” data logging
overcomes some of the weaknesses of call detail record and ”passive” data collection ap-
proaches. For one, it provides trip context and reduces the need for extensive data post-
processing. In addition, it also offers ground truth data for development of different machine
learning based algorithms that can evolve towards the transport mode, or trip purpose,
recognized from ”passive” logged data. This way, more seamless transition from traditional
data collection approaches, as travel surveys and diaries, towards fully data driven mobility
management is facilitated. Another advantage comes from user validated data, and its
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potential to find balance between campaign expenses (to familiarize users with the data
collection and app itself) and need for the representative sample, as based on the user provided
personal information, one can extract representative subsample from the overall dataset. This
can significantly reduce the cost of mobility data collection and creation of verified inputs for
transport planning models. Compared to call details record, main advantages of ”active”
logged data come from higher spatial and temporal resolution. An example of this can be seen
in quite demanding task to join data of lower resolution with, for example, freely available
data on land use. Land use data have been often implemented to estimate trip purpose.
Therefore determining whether trip ended at the school or office location is a quite challenging
task, based on the call detail records, as within the area covered by one base station potentially
there are both education, residential, work and commercial facilities. On the other end, the
main challenge for ”active” data collection comes from user engagement, trip reporting
discipline, and motivation to participate in such activities. Although, users provide validated
data on volunteering bases on same details as they were asked in traditional travel diaries, if
existing, their privacy-related concerns need to be addressed. Transparent data processing and
usage, as well as evident benefits in terms of better mobility management seem to be strong
advocates for user motivation and participation.

3. Conclusion

The introduction of smartphones as mobility sensing devices exhibits multiple advantages
when compared to traditional data collection approaches. It reduces the number of unreported
trips which was the case for travel diaries and surveys where users often postponed completing
these to later on during the day or week. This resulted in making it hard to remember short
trips (e.g., walk to nearby restaurant during the lunch break). Regarding the mobility man-
agement, the above mentioned reflected as underrepresentation of walking and biking trips
providing false insights into existing modal splits and supporting favoritism towards car-
oriented transportation planning. In this sense, the use of smartphones can support more
balanced sensing of mobility behavior across the use of different transport modes. In addition,
as carrying a smartphone has become a habit for many people, the issue of unreported gaps
in the trip data is overcome. Nevertheless the use of ”active” logging for smart city-oriented
mobility applications is advised as knowledge discovery from ”passive” logged data remains
unsatisfying (e.g., real time splitting of trips at transport mode changing points or estimation
of trip purposes from ”passively” collected data). This brings forward challenges related to
respondents’ motivation and participation in “active” logging. In this regard, the use of
different incentives is still being researched [96]. So far, adjustable and personalized rewarding
systems, social networks based interaction and gamifications show the highest potential. But,
this area still remains to be further explored in order to relate these with different user profiles
and balance between incentives and personal motivation. Regarding different user profiles,
their role is of the most value when considering smartphones as tools for policy makers to
deliver personalized mobility-related messages and make targeted policy measures. Psycho-
logical studies in this field suggest that profiling respondents based on their attitudes towards
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sustainable mobility options shows good potential in initiating behavioral change. In this
context, smartphones can be used both as sensing devices and as two-way communication
tools where targeted, time-space, relevant information can be delivered to users (e.g., reported
estimated delays on the foreseen route of interest). This way, users can make more informed
mobility decisions and information on observed behaviors can be integrated into advanced
mobility management systems.
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