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Abstract

“Everything is related to everything else, but near things are more related than distant
things” is the first law of geography. It can be hypothesized that spatially, occurrence
of a crash can exhibit similarities. To identify spatial patterns of crashes, this chapter
presents  spatial  autocorrelation  techniques  such  as  Moran’s  I  and  the  Getis-Ord
Gi*statistics;  spatial  interpolation  such  as  kriging;  and  nonparametric  probability
density  function  and  kernel  density  (K).  The  aim  of  this  chapter  is  to  provide
application of spatial statistics in transportation engineering specifically to identify
crash concentrations and patterns of clusters in a study area.

Keywords: The Getis-Ord Gi* statistics, Kernel-Density function, kriging, Moran’s I,
spatial autocorrelation, highway safety, crash

1. Introduction

In this chapter, spatial data analysis and its application in the field of transportation engi-
neering specifically for crash data analysis is presented. Analysis of spatial data extends the
representation of geographic space from discrete sets of points, lines and polygonal features
to mapping surfaces characterizing a continuous space. Statistics using spatial relationships
for the data mapped investigates the similarities among them. The first law of geography
states “Everything is related to everything else, but near things are more related than distant
things” [1]. This principle has been used in various fields such as criminology, economics,
transportation, etc. to identify relationships within a geographic space. In order to perform
spatial data analysis, geographical locations and attributes of an object (point, line or polygon,
area)  are  required.  Spatial  data  analysis  can answer questions such as  how spatial  data
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distributions can be compared, and how future distributions based on current spatial data
can be forecasted. In the past, different statistical techniques have been used with spatial data
and they can be broadly classified as:

Spatial autocorrelation (SA): The basic principle of SA is similar to the first law of geography.
SA is defined as the correlation of a variable with itself in space. SA measures the strength
of autocorrelation and the assumption of independence. A variable is said to be spatially
autocorrelated if there are systematic patterns in its spatial distribution. SA is positive if
nearby areas (regions) are alike. Negative autocorrelation applies to neighboring areas that
are unlike, and SA is not exhibited by random patterns.

SA is measured using spatial autocorrelation indices. Some of the commonly used indices
are Moran’s I and Geary’s C. These indices are often referred to as global indices. They
measure overall degree of spatial autocorrelation in a data set. For specific disaggregated
estimates, local indices are used. Some of the local indices are local Moran’s I [2], local
Geary’s C [3], and the Getis-Ord Gi* statistics [4, 5].

Spatial interpolation: It is defined as the process of using data for locations to predict ones
that are not sampled. Inverse distance weighting and kriging [6] are commonly used in
spatial interpolation techniques. The latter considers a spatial lag relationship that has both
systematic and random components.

Spatial regression: Due to spatial autocorrelation, ordinary regression models cannot be
used. To identify the underlying effects between the dependent variable and a spatial lag of
itself, geographically weighted regression (GWR) [7, 8] is used.

Additional analysis techniques include nonparametric analysis such as kernel density esti-
mation [9], as used in point pattern analysis to identify the first-order effects, i.e., measure
the variation in mean value.

This chapter is organized as follows: first, the fundamental concepts for several spatial sta-
tistics measures are explained, and it is followed by case studies related to the fundamental
concepts. The chapter ends with conclusions and recommendations.

2. Fundamental concepts

This section presents the concepts related to spatial autocorrelation, i.e., Moran’s I and the
Getis-Ord Gi* statistics; spatial interpolation, i.e., kriging; and nonparametric analysis, i.e.,
kernel density estimation. They are presented to show their use in transportation safety.

2.1. Moran’s I

It is one of the oldest indicators of SA [2]. SA compares the value of a variable in one location
with its value at other locations. Similar to a correlation coefficient, SA varies between −1.0 and
+1.0. A positive correlation indicates clustering (i.e., higher crash concentrations in highway
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safety), whereas negative correlation indicates dispersion or low crash concentration. Moran’s
I is expressed as
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The term wij represents a contiguity matrix. If location j is adjacent to location i, the interaction
receives a weight of 1; otherwise, zero. The term wij compares the sum of the cross products of
values at different locations weighted by the inverse of the distance between the locations.

The significance of Moran’s I can be evaluated by a Z value as
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where E(I), the expected value of Moran’s I, can be computed as
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S(I), the standard deviation, is computed as
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In the foregoing formula, i, j, and k represent the location of crashes. At a level of 5%, values
of Z greater than +1.96 and less than −1.96 indicate significant positive and negative SA,
respectively.

2.2. The Getis-Ord Gi* statistics

G-statistics, developed by Getis and Ord, analyzes the evidence of spatial patterns and
represents a global SA index [4, 5]. The Gi* (pronounced as G-i-star) statistics, however, is a
local SA index. It is more suitable for discerning clusters of high or low concentration. A simple
form of the Gi* statistics is [10]
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where Gi* is the SA statistics of an event i over n events (e.g., crashes) [11]. The term xj
characterizes the magnitude of the variable x at event j over all n, and in highway safety, an
index such as crash severity index (CSI) value determined at a particular location can be used.
The Gi* statistics can be observed from the underlying distribution of the variable x [11]. The
threshold distance (the proximity of one crash to another) can be set to zero to indicate that all
features were considered neighbors of all other features.

Further, the standardized Gi* is essentially a Z value as well and can be associated with
statistical significance
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Positive and negative Gi* statistics values correspond to clusters of crashes with high- and low-
value events, respectively. A Gi* statistics close to zero implies a random distribution of events.
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2.3. Kriging

Kriging, a spatial prediction methodology based on spatial interpolation, was first developed
by Matheron [12] based on the work of Krige [6] to predict ore reserves. Kriging has been
applied widely in air quality analysis, geology, hydrology, ecology, etc. The major application
of this technique is to predict values at unmeasured locations while assessing the errors of
these predictions [13]. It relies on the notion that unobserved factors are autocorrelated over
space, and the levels of autocorrelation decreases with distance. A trend estimate, μ(s), is
determined which can be defined as [13]

( ) ( ) ( )i i iZ s s s= +m e (11)

where Zi(s) is the variable of interest and s indicates the location of the site “i.” It is composed
of a deterministic trend μi(s) and a random error term εi (s). The random errors are autocor-
related over space. The expected value of Z(s) results in different types of kriging, namely
simple, ordinary, universal, intrinsic kriging, and so on. However, universal kriging is
preferred to other kriging methods as the trends depend on explanatory variables and
(unknown) regression coefficients. The correlation between Z(s) and Z(s + h) does not depend
on actual locations, but only distance “h” between the two sites. This is possible by assuming
weak stationarity in all three cases. This indicates a constant variance of 2γ (h) for any s and
h, where γ (h) can be expressed as
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where var[Z(s + h) − Z(s)] is the variance between s and s + h. When 2γ (h) is plotted versus
distance, the plot is called a semivariogram. A semivariogram depicts the spatial autocorrela-
tion of the measured sample points. One of the major steps is to select an appropriate semi-
variogram model that best fits the relationship between γ and h. There are three models that
best explain the relationship, i.e., exponential, spherical, and Gaussian. In this chapter, only
spherical model is presented, and the specifications are
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The different models (spherical, exponential, and Gaussian) rely on parameters that describe
their shape and level of spatial autocorrelation in the data. c0 in the above equation is called
the nugget effect and reflects discontinuity in the variogram origin as caused by factors such
as sampling error and short-scale variability. The origin of the term nugget originates from
gold deposits, as gold commonly occurs as nuggets of pure metal that are much smaller than
the size of a sample. It can result in strong variability in the sample when physically close, and
therefore discontinuity of the variogram at the origin can be observed [14].

The rate of variogram reflects the degree of dissimilarity of more distant samples. At large
distances, a variogram can increase indefinitely if the variability of the phenomenon has no
limit. However, if the variogram stabilizes at a value, called the sill, it indicates that beyond
a certain distance Z(s) and Z(s+h) are uncorrelated [14]. This distance is called the range
denoted by a. It determines the threshold distance at which γ(h) stabilizes [13]. c0 + c1 is the
maximum γ (h) value, called sill, and c1 is referred to as partial sill [15]. Figure 1 illustrates
a semivariogram.

Figure 1. Illustration of a semivariogram.

2.4. Kernel density estimation

The kernel density method is a nonparametric method that uses a density estimation technique.
It enables the observer to evaluate the local probability of an occurrence and degree of danger
in a zone. For a given set of observations from an unknown probability density function, the
kernel estimator can be defined as
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where h is called the smoothing parameter or bandwidth, K is called the kernel, and �  is the
estimator of the probability density function f. Thus, the kernel estimator depends on band-
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width (h) and kernel density (K). For a given kernel, K, the kernel estimator critically depends
on the choice of the smoothing parameter h. An appropriate choice of the smoothing parameter
should be determined by the purpose of the estimate.

3. Case studies

The different case studies presented are related to the fields of crash data analysis, safety, and
forecasting of traffic volume.

3.1. Spatial autocorrelation

A study was conducted to identify crash contributing factors on highway networks of Arkansas
using a sample of crash data. In this study, spatial autocorrelation indices i.e., Moran ’s I and
Getis–Ord Gi* statistics, and multinomial logistic regression were used. Autocorrelation was
determined at different levels, and then multinomial logistic regression was used to identify
crash-contributing factors in case a crash occurs. Based on the autocorrelation indices, the
state’s 75 counties were divided into zones. Further, to identify the crash contributing factors,
a sample of data from the counties were compared to the statewide data.

Figure 2. Counties categorized by Gi* statistics [16].
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Category Number of

counties

Counties with highest

CSIa

CSIb Total CSIc CSI ratiod Crash freq.

ratio

Gi* statistics: range

of Z values

(A) (B) (C) (D) (E) (F) (G) (H)

First 3 Pulaski 137,627 276,755 .50 .51 1.7678741, 6.161180

Second 9 Garland 52,189 324,668 .16 .27 0.559918, 1.768740

Third 13 Craighead 28,676 298,379 .10 .17 −0.097831, 0.559918

Fourth 25 Madison, Cleburne,

Logan

45,707 273,196 .17 .16 −0.481099,

−0.097832

Fifth 25 Chicot, Montgomery,

Polk, Perry,

Little River, Clay,

Colombia

53,477 133,861 .40 .57 −0.775375,

−0.481100

Total 75 13e 317,676 1,306,859 .24 .34 –

Note: “–“ not applicable.
aSatisfies the condition of minimum sample size of 2000 in terms of crash frequency.
bCSI computed for county/counties in Column C.
cCSI computed for counties in Column B.
dRatio of CSI values in Columns D and E.
eTotal number of counties in Column C.

Table 1. Results presented by category, highest CSI in each category, and ratios of crash data [16].

Crash data from 2004 to 2006 were used for the study. Crashes were categorized into five levels
of crash injury severity from S1 to S5, where S1 indicated fatal injury; S2, major injury; S3,
minor injury; S4, complain of pain; and S5, property damage only (PDO), based on the KABCO
scale. Further, crash frequency (CF), i.e., the summation of crash count at various levels of crash
injury severity, and crash severity index (CSI) [16] which combines various effects of different
levels of crash injury severity into an index were determined. The first step of the analysis was
to determine whether spatial autocorrelation exists. Moran’s I was used which identified that
SA exists for the crash data used. The crash injury severity levels showed significance at various
levels.

Gi* was used to discern cluster structures of high or low concentration. Z-values were also
computed and the categorization of counties based on the z-values of the Gi* statistic was
determined. This categorization can be based on six different classification schemes: equal
interval, defined interval, quartile, natural breaks, geometric interval, and standard deviation.
The natural breaks scheme was best suited for the study [17]. In the natural breaks scheme, the
classes are based on inherent categorizing in the data. The classes identify the break points that
best groups similar values and maximizes the differences between these classes.

Applications of Spatial Statistics8



In the study, Jenks’ algorithm was used to categorize the natural breaks [17]. Jenks’ algo-
rithm is commonly used to classify the data in a choropleth map, a type of thematic map
that uses shading to represent classes of a feature associated with specific areas (e.g., a
population density map). Jenks’ algorithm generates a series of values that best represent
the actual breaks in the data as opposed to some arbitrary classification scheme. Thus, it
preserves the true clustering of data values. As a result, the algorithm creates “k” classes as
the variance within categories is minimized. The state of Arkansas was categorized into
five categories. Figure 2 shows these categories, and Table 1 presents the results by catego-
ry, and shows the number of counties in each category. From each category, a county or a
set of counties starting with the highest CSI was selected as a data sample. The highest CSI
was used as the criterion because it provided the greatest variability in the crash data.

Figure 3 presents graphically the higher and lower Z values of Gi* for the five categories. The
Gi* Z values indicate the clustering of the attributes in the study area. The first category had
higher positive Z values compared to lower Z values, indicating that the value of CSI is not
random for those counties. The trend from Figure 3 indicates that the randomness increases
over the categories. This trend is similar to the trend for identification of crash casual factors
identified for each category, presented next.

Figure 3. Comparison of Gi* statistics values across five categories.

SA indices, however, do not explain why locations that indicate a cluster of crashes have a
higher incidence of crashes compared with other locations; therefore, SA methods cannot
identify crash causality factors [16]. Multinomial logistic regression (MLR) was used to identify
the crash-contributing factors. The main reasons for choosing the MLR models were:
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• Given that a crash has occurred, the factors that increase the chances of a fatal or a serious
injury crash were considered and computed by using the odds ratio as a result of the MLR
models.

• Factors that supplement the need for attainment of zero fatalities given that crashes occur
because of other factors, including human factors, were identified.

• Factors for all levels of crash severity were identified, and common factors were selected as
an alternate solution. However, this procedure is cumbersome when the desired results can
be achieved in one model.

• A minimum sample size of 2000 is required to implement MLR models [18]. Therefore, with
a decent sample size, these models can predict accurately. Details can be found elsewhere
[18, 19].

Selected independent variables in the data were checked by using a variance inflation factor
(VIF) to ensure that multicollinearity is not an issue. The variance inflation factor was found
to be less than 10 for all of the variables; hence, multicollinearity was not observed. Variables
selected for model development depended on the quality of the data. Only certain factors were
retained for analysis since some factors had missing values. When more than 10% of the values
were missing, that factor was not considered. For the factors presented in Table 2, no more
than 1% of the values were missing. Mallows’ Cp was used to retain the variables; a smaller
value of Cp indicated a better model [19].

Abbreviations Variables Levels

ATM Atmospheric conditions Clear, rain

LGT Light conditions Dark, daylight

RSUR Roadway surface Dry, wet

RU Roadway type Rural, urban

RALI Roadway alignment Curve, straight

RPRO Roadway profile Grade, level

TOH Roadway classification Divided, undivided

TOC Collision types Angle, head-on, rear-end, sideswipe-same-direction (SSSD), single vehicle

crashes (SVC), sideswipe–opposite direction (SWOD)

WK Days of the week Weekdays (M-F), weekends (Sat, Sun)

DUI Driving under the

influence

Yes, no

AADT Annual average daily

traffic

<20,000, 20,000–40,000, 40,000–60,000, 60,000–80,000, 80,000–100,000,

100,000–120,000

Table 2. List of independent variables [16].
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Table 3 indicates that during darkness, fatal crashes were more likely to occur than PDO
crashes, and the odds ratio increased by a factor of 1.28 if other variables remained constant.
Similarly, the relative risk of fatal crashes was greater than the PDO crashes in rural areas and
on curved roads.

Variables Contributing factors Estimate Standard error Chi-square value p-Value Odds ratio

Fatal vs property damage crashes

LGT Dark vs daylight 0.25 0.12 3.92 0.0476 1.28

RU Rural vs urban 0.71 0.13 29.31 <.0001 2.04

RALI Curve vs straight 0.34 0.13 6.25 0.0124 1.40

DUI No vs yes −1.17 0.13 86.71 <.0001 0.31

Major injuries vs property damage crashes

Intercept −2.49 0.18 185.59 <.0001

RU Rural vs urban 0.43 0.08 29.24 <.0001 1.54

RALI Curve vs straight 0.29 0.08 13.05 0.0003 1.33

TOC Angle vs SSSD −0.39 0.17 5.36 0.0206 0.68

TOC Head-on vs SSSD 1.86 0.23 64.43 <.0001 6.41

TOC Rear-end vs SSSD −0.58 0.15 15.34 <.0001 0.56

TOC SVC vs SSSD 0.69 0.13 26.32 <.0001 2.00

TOC SWOD vs SSSD −1.50 0.25 36.62 <.0001 0.22

DUI No vs yes −0.77 0.08 91.27 <.0001 0.46

Table 3. Sample MLR results [16].

3.2. Kriging

Kriging models were used in a study to forecast Annual Average Daily Traffic (AADT) [13].
AADT data for 27,738 sites from 1999 to 2005 were used to forecast AADT values for 2006. The
initial interpolation was made for 27,738 sites and later expanded throughout the network.

The study assumed that the AADT values would be similar to values at nearby sites. Net-
work details were obtained based on the data provided by the Texas Department of Trans-
portation. Two functional classes were identified Class 1 (interstate) and Class 2 (other
principal arterials). Each site was then matched to attributes of the closest road section us-
ing functional class. Traffic counts on segments of the same class were spatially interpolat-
ed using kriging. For each functional class, a semivariogram was estimated. For Class 1
segments, the estimated range value, a, was 1.248; nugget value, c0, was 2.33 × 107; and par-
tial sill, c1, was 1.62 × 107. For Class 2 segments, a equaled 0.158, c0 9.86 × 108, and c1 2.82 ×
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109. It was found that Class 1 scatter was higher for a given distance compared to Class 2.
The larger values of sill and nugget for Class 1 indicated spatial autocorrelation for AADT
that is distance dependent and sensitive. Class 1 roads had many access points which
might have led to fluctuations in AADT over space. For Class 2 roads, the flow changes
appeared continuous over time.

The study concluded that more data helped improve the forecast, temporal dependence was
stronger than spatial dependence, and kriging methods provided reliable results in uncounted/
unsampled locations.

3.3. Kernel density estimation

A study examined the spatial patterns of pedestrian crashes to identify high crash zones. The
study evaluated methods to rank these zones using a Geographic Information System (GIS)
[20]. To identify these high crash zones, crash concentration maps were developed. The crash
concentration maps based on density values used simple and kernel density methods. Five
years of crash data (1998–2002) for Las Vegas metropolitan was used in the study. For this
chapter, the scope is limited to identifying the crash concentrations using the Kernel density
method.

Figure 4. Illustration between kernel density (left) and simple density (right) methods [20].

The researchers identified the high crash zones using a three-step methodology: (1) geocode
pedestrian crash data; (2) create crash concentration maps; and (3) identify zones, their shapes,
and sizes. The geocoding of the crash data was performed using the “address match” feature.
One of the major issues with point data, similar to crashes, is that when a map is plotted it may
not present clusters of crash concentrations with more than just a few crashes. Developing
maps with crash concentrations is therefore helpful.

Figure 4 illustrates the difference between simple density and kernel density methods, i.e.,
drawing a circular area of search around each crash to calculate the kernel values (K). The
value of the surface is highest at the crash location and diminishes to zero at the radius of the
circle. Thus, as a result, a smooth density surface is created.

Applications of Spatial Statistics12



Figure 5. Las Vegas, pedestrian high crash zones [20].

Figure 6. Identifying crash clusters using kernel density, application to Arkansas crash data.

Once the kernel density was identified, the zones of crash concentration were determined.
These zones were either linear or circular. When dense clusters of crashes were observed along
the route, then the zone identified was linear. When dense area was isolated at an intersection
or was not linear in shape, then the zone identified was circular. When several linear zones
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were closely spaced and demographic, traffic, and geometric characteristics were similar, the
researchers classified it as a circular zone. The study identified 29 pedestrian high crash zones,
22 linear zones, and 7 circular zones. Figure 5 presents the 29 different crash zones.

The study concluded that the GIS-based methodology helps quantify the concentration of
crashes and thus reduce the degree of subjectivity involved in identifying high crash zones.
This approach is practical and easy to implement as most agencies collect crash, census, and
traffic data sets in a GIS format.

In another study, undergraduate civil engineering students were exposed to the application of
GIS in a mandatory course in transportation engineering [21]. The GIS tutorial was imple-
mented in a laboratory environment developed as a self-guided activity supported by a web-
based learning system. One of the tasks was to create a crash concentration map based on the
data provided for a state highway network using the kernel density method. Figure 6 presents
a sample output from one of the students in the laboratory. The kernel density method is
therefore easy to implement, and students in a laboratory when provided with a self-guided
tutorial can implement it. The method when based in a GIS can also serve as a powerful tool
to visualize crash clusters in a network.

4. Conclusions and recommendations

This chapter summarizes the fundamental concepts associated with spatial analysis of data in
transportation engineering. Further, the application of these concepts is presented with
interesting case studies from the literature specifically to improve highway safety and forecast
of traffic volume for planning-level applications.

In various case studies presented in this chapter, a different spatial statistics model has been
used. Depending on the type of problem, availability of data, expected outcomes, and
ingenuity have led researchers to different techniques in spatial data analysis. These techniques
help improve understanding of the phenomenon and thereby the solution to the problem. The
future of spatial statistics lies in creative thinking and seeking solutions in more than one way.
In terms of problem solving, solutions can be derived both objectively and subjectively. The
more one experiments with the available techniques, the closer one can reach an ideal solution.
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