
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Probabilistic and Statistical Layered Approach
for High-Level Decision Making in Soccer

Simulation Robotics

Carlos Bustamante and Leonardo Garrido
Tecnológico de Monterrey, Campus Monterrey

México

1. Introduction

In literature, some authors propose to see artificial intelligence as the design of an intelligent
agent (Russell & Norvig, 2003). An agent is an entity that perceives its environment, thinks
and acts accordingly. An intelligent agent in this sense is one that makes rational decisions.
Therefore, some authors like to call them rational agents. The part of artificial intelligence
that focuses in the study of rational agents and the way they cooperate, coordinate and
negotiate as abstract social entities is called multiagent systems.
A lot of techniques have been proposed in the effort of making rational agents. Every one
presents its own advantages and disadvantages and their efficiency varies among different
domains. Hence, it seems interesting to try to combine techniques and measure their
efficiency when they work together. Such approaches are known as hybrid systems.
Evaluating and testing multiagent systems in real life is very complicated. Many domains
are complex, dynamic and uncertain. Diverse testbeds have been created to allow
researchers to easily test and compare ideas for extrapolating them to real situations later.
One of the most known testbeds for multiagent systems nowadays is the RoboCup
competition.
RoboCup initiative is an international project that promotes artificial intelligence, robotics
and related areas, through a competition and conferences system with robotic soccer as the
base problem. The ultimate goal is “by year 2050, to develop a team of fully autonomous
humanoid robots that can win against the human world champion team in soccer”. The
competitions are divided into many leagues, one of them being the 3D simulation league. In
RoboCup 3D, the environment is complex, dynamic and noisy.
This chapter focuses on the development of a decision making framework of a RoboCup 3D
simulation agent based on a recently explored fuzzy-Bayesian hybrid classifier. Fuzzy
theory and Bayesian methods have been used by separate for years and they have presented
good results in various domains. A fuzzy-Bayesian approach faces uncertainty in decisions
with probabilistic reasoning and learning, and treats variables involved in the process as
fuzzy variables, which are expressed linguistically and are computed mathematically. This
decision making approach tries to combine the best of statistical data processing with
human-like view of attributes related to a problem.

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Robotic Soccer 110

On the other hand, a simulation allows reproducing a real environment approximating
physical conditions by means of complex mathematical models. This provides the
advantage of being able of changing parameters for representing different environments
and to correct mistakes in which many times, in real life, there is no backing out. RoboCup
3D simulation has these characteristics and is a relatively recent RoboCup league with a
long way to go.
The efficiency of a fuzzy-Bayesian decision making system for a soccer agent, however, is
constrained to the degree of quality of the world model data. This is why the development
of the agent is done in a 3-layer fashion. The lowest layer consists of obtaining accurate
motion models. The middle layer uses such models and a particle filter to allow a precise
self-localization of an agent. With the filtered position of an agent, positions of other objects
in the world are easily computed. Finally, the highest layer uses the middle-layer data for
making decisions with the fuzzy-Bayesian framework.

2. Soccer

Since 1997, the RoboCup Soccer Simulation 2D has been one of the main contributors to the
RoboCup initiative in terms of multiagent learning, coordination, communication and
opponent modelling. However, the simulation omits several aspects that affect robots in real
situations. The motion of dynamic objects is restricted to two dimensions. Also, the physics
are simplistic and don’t allow complex behaviours.
In order to fulfill the RoboCup ultimate goal by 2050, the simulation system must treat
agents as physical entities with realistic features. After all, the RoboCup goal implies the
development of humanoid-like robots and therefore the simulation league must converge
with the humanoid league in some point. As more realistic agent models were needed, the
3D simulation league was created. The agents are spheres1 , but 3D interactions make the
environment more complex and more interesting for researchers in artificial intelligence and
multiagent theory. The simulator serves as the main platform in the RoboCup Simulated
Soccer League, part of the RoboCup competitions, whose main event is celebrated every
year.

Fig. 1. Monitor for the RoboCup 3D Soccer Simulator

1
This year the simulator was changed radically and the agents are now humanoids, which makes the

RoboCup 3D domain even more complex and interesting.

Probabilistic and Statistical Layered Approach for High-Level Decision Making 111

The RoboCup 3D simulator is a software that provides two elements: a core system called
the soccer server and a monitoring tool. The simulator is aimed for three main tasks: allows
players to sense and act in their environment, has rules for several situations in a soccer
match and applies the laws of physics to recreate a real-like scenario.
The environment of the current soccer simulation2 is a big box which contains a virtual
soccer field. It respects FIFA specification for international real soccer matches. Simulation
steps are 0.01 seconds long and agents receive sensations every 20 simulation steps. The
global coordinate system of the field is as follows: the x-axis extends over the horizontal line
that extends from the left to the right. The y-axis is over the field and is perpendicular to the
x-axis. The z-axis points up. The global angle marks 0 degrees in the direction of the x-axis
and grows in counter-clockwise direction. A graphical representation of the soccer field
coordinate system and the global angle direction is shown in figure 2. The elements in the
field are divided in two classes:

• Static elements are elements in the environment whose position is fixed.
o Landmarks: reference points for localization.

Four posts, two for each of the goals
Four flags, which are placed in each corner of the field

o Goal: A rectangular box with width 7.32m, height 2.0m and depth 2.0m.
There are two goals, one for each team. They are located over the end line
of the field, with two vertical posts touching the line and a crossbar
joining those posts. A team scores one point if the ball passes gets inside
the goal box.

o Field: A rectangle of width U[64.0m, 75.9m] and length U[100.0m,
110.9m]. It is subdivided in regions such as the left and right half areas,
the penalty boxes, the goal boxes and the center circle. The field is
contained inside a box of width equal to the field’s width plus a border
size of 10.0m, length equal to the field’s length plus the border size of
10.0m and height 40.0m.

• Dynamic elements are elements in the environment which can change their positions
over time.

o Players: The main actors in the environment. Players have a spherical
shape, with radius 0.22m and mass 75kg. The color depends on the team:
one team has blue players and the other has red players.

o Ball: A sphere with radius 0.111m and mass U[0.41kg, 0.45kg], which is
much smaller than the mass of the players. The weight of the ball varies
from game to game, but it is constant during a game once it has been set.

FIFA rules are implemented in the simulator in different play modes like kick-off, goal
kicks, corner kicks, throw-ins and free kicks. If agents try to violate rules entering an area
that is prohibited by the current situation, they are teleported to a valid position, which
depends of the current situation. In corner kicks, throw-ins and free kicks, the invalid area is
inside a circle of 9.15 meters of diameter around the ball. In goal kicks, the invalid area is the

2 The current simulator version is 0.5.6 (July 2007). It is now more oriented to the new humanoid 3D
simulation.

Robotic Soccer 112

enemy penalty area. In kick-off, the invalid area is the semi-circle of 9.15 meters of diameter
in the center of the field plus the opponent’s half field.

Fig. 2. Global coordinate system in the RoboCup 3D Soccer Simulator

In the RoboCup 3D Soccer Simulation agents are homogeneous, in the sense that their share
the same properties and have the same set of perceptors and effectors (except for the
goalkeeper that has an extra effector for catching the ball). An agent is an entity that
perceives its environment through sensors and acts upon that environment through
effectors (Russell & Norvig, 2003). In the 3D simulator, an agent is a client software with
such characteristics and connects to the simulation engine through a communication server.
Data packages generated and received by the server are strings in form of s-expressions.
Agents that receive these messages must parse these strings in order to analyze the
information contained in the package.
The process of interactions between agents and the simulation engine consists of two steps:
initialization and life cycle. Agents have a set of effectors and perceptors to act upon their
environment. Communication is allowed by using certain effectors and perceptors.
Among the effectors we can find create, init, beam, drive, kick, say and pantilt. The goalkeeper
has an extra catch effector. The agent moves in the environment using its drive effector and
interacts with the ball using the kick effector. The set of perceptors includes vision, game
state, agent state and hear. The say effector and the hear perceptor make communication
possible.
To make a more realistic simulation, some effectors and perceptors are affected by white

noise. This means that errors are normally distributed with expected values and

different standard deviations. The exception is the pantilt perceptor (part of the agent state
perceptor) in which values are rounded to the next integer value. Table 1 shows all the error
sources and their characteristics.

Probabilistic and Statistical Layered Approach for High-Level Decision Making 113

Uncertainty in perceptors and effectors

Drive effector

Kick effector

Vision perceptor

Agent State perceptor

Table 1. Sources of uncertainty in the RoboCup 3D simulation environment.

3. Motion Models

Obtaining the motions models in RoboCup 3D is the first and most essential task to
accomplish before working on high level design. Knowing the motion models means
knowing what is going on behind the scenes in the simulation. Not only we can predict the
results of dynamic object actions, but we also can explain some behavior and thus construct
better high level solutions.
The models were derived from a formal mathematical analysis. For obtaining accurate and
feasible parameters for the motion models, the power of statistical analysis and curve fitting
tools was exploded. The parameters were obtained under ideal conditions, i.e. noise
produced by the simulator in effectors and perceptors was eliminated. The methodologies
and results of this chapter were published in (Bustamante et al., 2007).

3.1 Definition

A motion model of a dynamic object is described formally as a function from certain duple

 in time to a duple in time , where is the position vector, is

the velocity vector and , that is:

 (1)

3.2 Agent Motion Model

The movement of the agent is affected by the drive force (applied to its drive effector) and

by the air friction. The drive force vector is defined as

 (2)

The force vector does not have a z-axis component because spherical agents can’t jump. The
air drag force is defined as (Marion & Thornton, 2003)

 (3)

Robotic Soccer 114

The constant represents the coefficient that imposes an air drag force to a body and is

the body’s velocity. The equations that model the forces over each axis are

 (4)

Here is the mass of the agent, is the acceleration, is the drive force (in newtons),

 is the air drag coefficient for the agent and is the global horizontal angle in the x-y

plane. Also let and .

Let be the drive force percentage, i.e. the drive force command sent to the

Drive Effector. The relation between and is given by

 (5)

As the equations that model the forces for both axis are similar, it is enough to analyze x-
axis and generalize for y-axis later. The differential equation that models the movement on
the x-axis is expressed as a differential equation from (4)

 (6)

3.2.1 Agent Speed Model

Solving the differential equation (6) gives

 (7)

Finally for simplicity some constant terms are defined like the terminal speed of the agent

 (8)

which is the maximal speed that the agent can reach when the drag force equals the drive
force. Also, let’s define a time constant

 (9)

Finally, the agent’s speed model is expressed as

 (10)

Probabilistic and Statistical Layered Approach for High-Level Decision Making 115

3.2.2 Agent Position Model

Once having the speed model, the agent’s position model is determined relatively easy
integrating equation (10) from to

 (11)

where is the integration constant and represents the initial position.

3.3 Ball Motion Model

Unlike the agent, the movement of the ball can be separated in two different phases:
1. In the first phase, a kick force is applied to the ball for 10 simulation steps. Thus the

ball is affected by the kick force and by the air drag force in X and Y, and is also
affected by gravity in Z.

2. In the second phase, the ball decelerates and is affected just by the air drag force in
X and Y, and additionally by gravity in Z.

3.3.1 First Phase of Ball Motion

In the first phase, the ball behaves like an agent with constant force (kick force). The force
vector is defined as

 (12)

Let be the global horizontal angle in the x-y plane between the agent and the ball and

the elevation angle sent to the kick effector. The equations that model the forces over each
axis are

 (13)

Here is the mass of the ball, is the acceleration, is the kick force (in newtons) and

 is the air drag coefficient for the ball. Also let ,

 and .

Let be the kick force percentage, i.e. the power command sent to the Kick

Effector. The relation between and is given by

 (14)

Robotic Soccer 116

As with the agent, we can generalize one equation for both X and Y axis, but we have to
define a different equation for z-axis. The differential equation that models the movement
on X and Y is expressed as

 (15)

The differential equation that models the movement on Z is expressed as

 (16)

3.3.1.1 Ball Model for the First Phase in X-Y

Notice that equation (15) is the same of that of the agent (6). Then, we only summarize the
finals equations:

 (17)

 (18)

where is the terminal speed of the ball (i.e. the maximal speed that the ball could reach

if the kick force was applied for a long time).

3.3.1.2 Ball Model for the First Phase in Z

The solution to the differential equation (16) for Z is expressed as

 (19)

This is very similar to equation (7). We have to define the terminal speed of the ball in Z as

 (20)

Finally we have

 (21)

 (22)

3.3.2 Second Phase of Ball Motion

In the second phase, the ball decelerates until it stops moving in X and Y, and it bounces
until it stops moving in Z. The equations that model the forces over each axis are

Probabilistic and Statistical Layered Approach for High-Level Decision Making 117

 (23)

The differential equation that models the movement on X and Y is expressed as

 (24)

The differential equation that models the movement on Z is expressed as

 (25)

3.3.2.1 Ball Model for the Second Phase in X-Y

Solving differential equation (24) gives

 (26)

The amplitude represents the initial speed of the second phase, which must be

equal to the final speed of the first phase evaluated in 10 simulation steps of 0.01 seconds
each). Formally,

 (27)

Using equation (26) the speed is given by

 (28)

and the position by

 (29)

3.3.2.2 Ball Model for the Second Phase in Z

Solving differential equation (25) gives

 (30)

The constant A can be calculated using the initial condition as

Robotic Soccer 118

 (31)

Substituting this value in equation (30), the speed model is given by

 (32)

which in terms of constants is

 (33)

and the position model is given by

 (34)

When the ball is at rest, is equal to the radius of the ball.

3.5 Finding the Values of the Coefficients

The next step is to evaluate the coefficients needed by the model. We already know and

, so we must look specifically for , , and in order to have a complete

description of the equations.
Two scenarios were defined for obtaining representative data from the simulation. In the
first scenario, an agent is placed in the center of the soccer field and runs over the x-axis
with maximum acceleration towards the opponent’s goal. In the second scenario, the ball is
placed at the center of the field and is kicked by an agent with maximum acceleration
towards the opponent’s goal.
Tracking the data of the scenarios via the monitor’s port, a set of pairs (t, x) were obtained
where t is time and x is position, which describes the movement of the agent and the ball

over the x-axis. The values of the coefficients were computed with Matlab and the Curve

Fitting Tool, using the set of pairs (t, x) and the motion models, giving the following results

 (35)

 (36)

 (37)

 (38)

Probabilistic and Statistical Layered Approach for High-Level Decision Making 119

We can get the medium viscosity with the aid of the Stokes’ equation (Marion & Thornton,
2003)

where is the radius, and the viscosity coefficient. This quantity must be calculated with

 which is a drag force caused only by the fluid, opposite to that represents a drag

force caused by the fluid and the system motion. Using the radius of the ball we

have

 (39)

We can infer that the simulated medium is not air as the value of is bigger than the air

viscosity which is approximately .

3.6 Practical Applications

The physics model described so far can be used to implement higher level behaviors like
soccer skills. In the next sections we describe two of such skills.

3.6.1 Goto

Using the Goto skill the agent is capable of moving to any <x, y> coordinate on the soccer
field. The movement of the agent consists of three steps: 1) acceleration, 2) constant speed
and 3) deceleration. In fact, the most important is step 3 because in the first two steps the
agent must apply the maximal force, but in the last step the agent must decide at which
moment stops. For breaking, the agent applies a drive force vector of magnitude zero and
makes use of the drag force to stop. It calculates the distance that it needs to stop

moving when drive force becomes zero. This distance is compared with the distance that the
agent needs to cross to reach its destination . If , the agent keeps

applying a drive force, otherwise the agent stops applying the drive force. can be

calculated as

 (40)

3.6.2 Dribbling

The Dribbling skill provides the agent with the ability to move from one place to another
without losing the possession of the ball. For accomplishing this task, the agent needs to run
in the direction of the ball’s velocity vector and kick the ball with the exact force that allows
the agent to kick again in a near future without loosing possession and without colliding
with the ball.
This is a difficult skill that few teams have implemented efficiently. One of the few teams
that have implemented the dribble skill efficiently is SEU3D (Xu et al., 2006), but no precise
explanation is given in their team description paper about their method. Our idea is that the

agent can decide at which distance it desires to kick the ball after kicking it for the first

time. Then the agent can use this distance to find the needed kick force. In fact, is the

Robotic Soccer 120

displacement of the agent between kicks, but is also the displacement of the ball. Using
equation (11) with the assumption that the agent has reached its terminal speed and
equation (29) we have

We can find the value of with equation (27). But this equation needs a

simplification. In fact, in that equation is much smaller that because the agent

can only apply a very small speed to the ball due to the restriction that the kick force is
applied only for a little period of time. Hence we have

but also equals . Then, we finally get the kick force that the agent needs apply

to the ball for an efficient dribble skill as

 (41)

3.7 Experiments

For evaluating the models of the agent a scenario was defined were an agent is placed in the
center of the soccer field and runs with maximum acceleration towards the opponent’s goal.
For the ball, a scenario was defined where the ball is placed at the center of the field and is
kicked by the agent with maximum acceleration towards the opponent’s goal. The error of
the models against the noiseless real data is computed to make an objective evaluation of
such models. Results of comparison are shown in table 2. Also, we present here two graphs
that show the efficiency of our physics model when it is applied to a) GoTo Skill and b)
Dribbling skill.Mean and standard deviation were computed of the absolute errors between
the values thrown by the models and the expected real values, thus

 (42)

Probabilistic and Statistical Layered Approach for High-Level Decision Making 121

 Mean
Standard
Deviation

Agent Motion Model

Ball Motion Model (X-Y)

Ball Motion Model (Z)

Table 2. Mean and standard deviation of the absolute error (in meters) between data thrown
by the motion models and real information thrown by the simulator in debug mode

3.7.1 Goto

In this experiment an agent uses the Goto skill to move 10 meters away from its initial
position. Figure 3 shows the real and estimated values of the distance between the agent
position and the destination. We can notice that 1) our physics model is so accurate that both
curves almost superpose and 2) the efficiency of the GoTo skill is so good that the agent
reach its destination without oscillating in the final position.

Fig. 3. GoTo Experiment. The real and the estimated positions almost overlap which
indicates a good accuracy of the physics models

3.7.2 Dribbling

Figure 4 shows the speed of the agent and the ball versus time. The agent runs towards the
ball in the direction of the ball’s velocity vector. We can notice that 1) The first kick is
weaker than the others because the agent has not reached its maximal speed and 2) The
agent never decelerates.

Robotic Soccer 122

Fig. 4. Dribbling Experiment. The agent does not decelerate which indicates an efficient
dribble as the agent never collides with the ball

4. Probabilistic Localization

Localization refers to the problem of determining the pose of an agent from sensor data
(Fox, 1998). The pose of an agent represents the location and orientation of a robot relative to
a global coordinate frame (Thrun et al., 2005).
The localization problem has been claimed as "the most fundamental problem to providing
a mobile robot with autonomous capabilities" (Cox, 1991). It is a fundamental problem
because if an agent ignores where it is, it is not feasible to decide what action to execute.
Unfortunately, in most situations, an agent cannot sense the pose directly, i.e. it is not
equipped with a noise-free sensor for measuring its position. So the agent has to compute its
pose based on relative and absolute measurements of reference points. The set of all
absolute reference points is the so-called map of the environment. The map contains the
reference points in global coordinates.

In RoboCup 3D, the agent’s pose is a tuple , where is the 2D position of

the robot in the global coordinate frame and is the orientation of the agent’s pan-tilt

angle, respectively. The aforementioned reference points are the corner flags and the goal
posts. In robotics, reference points receive the name of landmarks to indicate that they are
used for robot navigation. In the soccer simulation, a RoboCup 3D soccer agent receives the
range (distance) and bearing (angles) to each visible landmark, along with a signature that
identifies it. Hence, there is no uncertainty about the identity of each flag, but the range and
bearing measurements are affected by Gaussian noise. In most real situations, a robot does
not directly sense the characteristics of the landmarks. Instead, it has to extract or infer
important features from data.
When an agent receives relative information of the reference points by means of its vision
perceptor, it has to guess its location as accurately as possible. This is even harder because
the intrinsic uncertainty in perceptors and effectors. To increase accuracy, an agent must
filter the noisy data to get a reliable and precise pose estimate.

Probabilistic and Statistical Layered Approach for High-Level Decision Making 123

4.1 Classification of Localization Problems

Thrun divides the localization problem into three dimensions (Thrun et al., 2005),
depending on the nature of the environment and the previous knowledge:

• Local/Global Localization: Characterized by the initial knowledge of the agent. It has
three categories:

o Position tracking: Assuming that the initial agent's pose is known, this
method uses the motion model to track the position of the agent
considering a small-effect noise (usually approximated by a unimodal
distribution like a Gaussian). As the uncertainty is around the agent's true
pose, the problem is called local.

o Global localization: In this case, the initial pose of the agent is unknown, i.e.
when the agent is placed in the environment it lacks information about
where it is. It is a harder problem than position tracking.

o Kidnapped robot problem: It has the same characteristics than global
localization, but with more difficulties. It assumes that the agent can be
teleported to other location during its operation. It is hard because the
agent believes that it knows where it is while in reality it does not. In
global localization, the agent knows for sure that it does not know where
it is. Usually, wrong beliefs about the state of the world are worst than
ignorance about the world itself.

• Static versus Dynamic Environments: A static environment is that in which the agent
is the only dynamic object. A dynamic environment is that in which many objects
change their poses over time. Clearly, a dynamic environment presents much more
difficulties than a static environment.

• Passive versus Active Approaches: Passive localization refers to the case when a
module external to the agent observes the agent’s operation over time. An active
localization approach is that in which the agent has a control module that
minimizes its localization error.

In RoboCup 3D, the localization problem consists of position tracking with possible
kidnapping, in a dynamic environment under an active approach. It is considered as
position tracking because the agent usually knows its initial position (and the initial position
of all its teammates) due to previously defined formations and roles. The kidnapped
problem emerges when an agent violates some rule of the soccer simulation, like trying to
access a restricted area in a free kick situation, in which the agent is teleported to an allowed
sector of the field. The environment is dynamic because there are many moving objects in
the environment in addition to the agent that have their own dynamics (the ball, teammates
and opponents). Finally, the approach used is active because the agent has its own
localization module.
Several approaches have been proposed in literature for the localization problem, trying to
reduce the effect of noise and increase the accuracy of the computed position as more
information is obtained over time. The two classical approaches in literature are the Kalman
Filter and the Monte Carlo localization. The former uses continuous Bayes’ filters and the
latter uses particle filter principles.

Robotic Soccer 124

4.2 Markov Localization

Markov localization (Fox, 1998) is a special case of probabilistic state estimation applied to
mobile robot localization. It represents the straightforward application of Bayes’ filters to
localization (Thrun et al., 2005). It addresses the problem of pose estimation from sensor
data given an initial hypothesis of a static environment, and uses Bayes’ rule and
convolution to update the belief whenever the robot senses or moves. As the environment is
static, Markov assumption holds: the agent’s location is the only state which affects sensor
readings.
Instead of maintaining a single hypothesis of the agent’s pose, Markov localization
maintains a probability distribution over the space of all such hypothesis (Fox et al., 1999).
Probabilities are used as weights of these different hypotheses in a formal mathematical
way.
A Markov localization method requires both an observation model and a motion model
(Röfer et al., 2005). The observation model defines the probability for sensing certain
measurements at certain locations. The motion model expresses the probability for certain
actions to move the agent to certain relative poses.
Markov localization is a direct application of state estimation within the framework of
"Partially Observable Markov Decision Processes" (POMDP). POMDP use a state estimator
for estimating the state of the world based on sensor data and on the actions taken by the
agent. Markov localization is a special case of such a state estimator: the agent is a mobile
robot and the state of the world is the position of the robot within its environment (Fox,
1998).
Algorithm 1 shows the Markov localization method. First of all, a prediction is done using
action (line 1). Then the resulting belief is updated using percept (line 2). Finally, the

belief is normalized (line 3).

Algorithm 1. Markov localization

4.3 Monte Carlo Localization

Monte Carlo localization (MCL) is a type of Markov localization in which the probability
distribution over the space of all pose hypothesis of the agent is modeled with a set of
particles (Thrun et al., 2005). Monte Carlo Localization is based on particle filters (a.k.a.
Sequential Monte Carlo methods), which are approximate Bayes’ filters that use random
samples for posterior estimation (Thrun et al., 2000) . Each particle represents the hypothesis
of an agent having a certain pose. Such particles consist of a robot pose and a certain
importance weight. Like in Sampling Importance Resampling (SIR) filters (Skare et al.,
2003), the importance weights are approximations to the relative posterior probabilities (or

Probabilistic and Statistical Layered Approach for High-Level Decision Making 125

densities) of the particles. Also, Monte Carlo importance sampling resembles genetic
algorithms (Higuchi, 1997). MCL has become very popular among localization algorithms in
the last years, mainly because it is easy to implement, it can process raw sensor
measurements, it is non-parametric and it can represent non-linear, non-Gaussian, multi-
modal probability distributions (Ronghua & Bingrong, 2004).

Formally, the MCL algorithm approximates the belief state by a set of weighted

samples (which represent a discrete probability density function) in the following way

 (43)

The variable is a sample of the random variable L in time t. The variable represents

importance weights. Ideally, each particle should be proportional to the posterior belief

 such that

 (44)

These particles, together with the current control , are given as input to the motion model

of the agent. Then each particle is weighted using the measurement model. After this, we
have an updated set of particles. Finally, the most crucial step in MCL is executed:
resampling, in which N new particles are selected with replacement from the updated set,
where the probability of selecting each sample is proportional to its weight. After the
resampling step, the particles approximate the true posterior belief. The resulting particle set
has many duplicates due to selection with replacement, which causes particles with higher
weights to appear more in the final set than particles with lower weights. Algorithm 2
shows the Monte Carlo localization method.

Algorithm 2. Monte Carlo localization

Robotic Soccer 126

4.4 Solving the Kidnapped Robot Problem

The classical MCL algorithm presented in the above sections cannot recover from robot
kidnapping or global localization failures. As time goes on, particles converge to a single
pose and the algorithm is not able to recover if such a pose is invalid. The problem is
specially important when the particle set size is small (). This problem can be

solved by injection of random particles. Assume that the agent may be kidnapped at any time

with small probability. Then add a fraction of random samples in the motion model for
attacking the problem and adding robustness at the same time.
The number of particles injected at each iteration changes over time. We can use the
measurement probability for this purpose. Thrun (Thrun et al., 2005) proposed a
modification to the MCL algorithm called Augmented Monte Carlo Localization (AMCL),
which is shown in Algorithm 3.

Algorithm 3. Augmented Monte Carlo localization

Probabilistic and Statistical Layered Approach for High-Level Decision Making 127

Algorithm 3 injects random particles to counterattack the problem of global localization.
The particles could be drawn according to a uniform distribution, but a better idea is to
generate particles from the measurement distribution which is feasible due to the fact that
the sensor model in our domain is based on landmarks. A new strategy is suggested: to
fusion the information of every sensed landmark using a Kalman Filter, thus computing a
more accurate pose from the measurements. With this strategy we aim to generate better
particles for the injection of particles phase of AMCL. We call this approach KFSF-AMCL
(Kalman Filter Sensor Fusion for AMCL). A Kalman Filter is a recursive filter which
estimates the state of a system from incomplete and noisy measurements. In position
tracking, the Kalman Filter has similar steps to the particle filter: it updates the state using a
motion model and corrects it using the measurement model. When used for sensor fusion,
only the measurement update is needed which is stated in the following equations

 (45)

Here, is the current state or pose estimate, is the vector of measurements,

 is Kalman gain which minimizes the a posteriori error covariance, is

the a posteriori estimate error covariance, is the measurement error covariance

and relates the process state to the measurement.

4.5 Experiments

A experiment was carried out to probe the performance of AMCL algorithm in the
localization of a RoboCup 3D agent. Systematic resampling is used in all experiments
because implementation of particle filters in robotics use this kind of mechanism very often
(Thrun et al., 2005). Furthermore, the size of the particles set was fixed to 100, the vision is
restricted (the official ranges are 180 degrees for the horizontal plane and 90 degrees for
latitudal angle) and the AMCL parameters for injection of random particles were fixed to

 and .

The experiment is aimed to prove the accuracy of the AMCL algorithm with different
resampling strategies. A graphical explanation of the experiment is shown in figure 5.

Fig. 5. Scenario for localization experiment 1

Robotic Soccer 128

Table 3 shows the results obtained with simple MCL. The error is the x-axis is relatively big,
given that the minimal kick distance is 0.07 meters between the agent and the ball. The error
appears because the noise in effectors and perceptors is accumulated over time and the
algorithm is unable to recover from errors due to low variance in particles.

 Error in x-axis

Minimum 0.000174046

Maximum 3.43221

Average 1.18437

Table 3. Accuracy of simple MCL

In table 4 we can see the comparison among different configurations of AMCL. The worst
strategy is obviously the random landmark heuristic with an average error of in the

axis were the agent is moving (x) and in the other axis (y). The maximum error is

 which is relatively high considering that the minimum kick distance to the ball is

meters. Following the random strategy we have the closest landmark heuristic with an
average error of meters and the average of landmarks heuristic with meters.

AMCL algorithm with Kalman Filter Sensor Fusion gives the best results with an average
error of meters, a maximum error of meters and a standard deviation of

meters.

 Absolute Error

Implementation maximum mean
standard
deviation

Random 0.277 0.142 0.064

Closest 0.155 0.079 0.050

Average 0.090 0.045 0.022

KFSF 0.084 0.033 0.022

Table 4. Accuracy of AMCL with four different implementations of SampleLandmarkModel

5. Probabilistic Decision Making

RoboCup simulation is an excellent test-bed for machine learning algorithms. It presents a
multiagent cooperative and adversarial scenario in a partially observable, episodic,
continuous and non-deterministic noisy environment.
Given such uncertainty, classical logic-based approaches fail to achieve a high performance.
Thus, a probabilistic method is ideal for dealing with this kind of environment.
The simplest probabilistic approach is the Naive Bayesian classification (Langley et al., 1992)
which has proven to be successful in many applications (Lewis, 1998) in spite of the not
always fulfilled conditional independence assumption of the attributes given the class. If we
wish to use this classifier in the RoboCup simulation domain, we confront two main issues.
First, the classical Naive Bayes classifier assumes that the attributes are discrete, but in
RoboCup simulation the attributes are in the range of real numbers and thus are continuous.
Second, the classifier must lead to a fast decision process because the soccer simulator
demands almost real-time decisions with low thinking times for the sense-think-act cycle of
the agents.

Probabilistic and Statistical Layered Approach for High-Level Decision Making 129

In literature, continuous attributes are handled using conditional Gaussian distributions for
each attribute’s likelihood given the class. Other approach is to discretize by crisp
partitioning the domain of the attributes, but this can lead to loss of information.
Instead of discretizing, the issues are overcome using a fuzzy extension namely Fuzzy Naive
Bayesian classifier in the following way: the continuous attributes are fuzzified and
combined with probabilities of the naive Bayes model in a straight easy way. The formulas
used in the fuzzy extension resemble the original naive Bayes equations, so the classification
process is still fast and reliable plus providing an incremental learning mechanism.
The Fuzzy Naive Bayesian classifier is implemented in a RoboCup simulation 3D team for
decision making. It was tested specifically to evaluate the best receiver of a pass in a given
situation. In the next sections, an explanation is given about the Fuzzy Naive Bayes model.
Furthermore, it is compared versus a Gaussian Naive Bayes classifier, another approach of
handling continuous attributes. Initial results obtained on this chapter for the Fuzzy Naive
Bayesian classifier applied to decision making in RoboCup 3D were published in
(Bustamante et al., 2006). Later performance comparison to Gaussian Naive Bayes classifier
in the same pass skill scenario was published in (Bustamante et al., 2006b).

5.1 Naïve Bayes and the Fuzzy Extension

The Naive Bayes classifier is a simple Bayesian network with one root node that represents
the class and leaf nodes that represent the attributes. Let be a class label with possible

values, and be a set of attributes or features of the environment with a finite

domain where . The classifier is given by the combination of the Bayesian

probabilistic model with a maximum a posteriori (MAP) rule, also called discriminant
function (Rish, 2001). The Naive Bayes classifier is defined as follows

 (46)

where is a complete assignation of attributes, i.e. a new

example to be classified, is a short for and is a short for . The equation

assumes conditional independence between attributes.
To deal with continuous variables, the domain of attributes can be crisp partitioned, but that
could cause a loss of information (Friedman & Goldszmidt, 1996). We use a better method
proposed in (Störr, 2002), namely a Fuzzy Bayesian classifier, a hybrid approach in which
attributes are fuzzified before classification. The Fuzzy Naive Bayesian classifier is defined
as

 (47)

where and denotes a membership function or degree of truth of

attribute value in a new example . All degrees of truth must be normalized such

that for all attributes .

Robotic Soccer 130

The probabilities required by the fuzzy model can be calculated similarly to classical Naive
Bayes as

 (48)

 (49)

 (50)

where Laplace-correction (Zadrozny & Elkan, 2001) applied to smooth calculations avoiding
extreme values obtained with small training sets. Here is the set of all training examples

, where , refers to the number of examples

, denotes the degree of truth of in a example , and

 is the membership of attribute in such example. All degrees of truth

must be normalized such that and .

5.2 Gaussian Naïve Bayes

One typical way to handle continuous attributes in the Naive Bayes classification is to use
Gaussian distributions (Mitchell, 1997) to represent the likelihoods of the features
conditioned on the classes. Thus each attribute is defined by a Gaussian probability density
function (PDF) as

 (51)

The Gaussian PDF has the shape of a bell and is defined by the following equation

 (52)

where is the mean and is the variance. In Naive Bayes, the parameters needed are in

the order of , where is the number of attributes and is the number of classes.

Specifically we need to define a normal distribution for each

continuous attribute. The parameters of such normal distributions can be obtained with

 (53)

 (54)

Probabilistic and Statistical Layered Approach for High-Level Decision Making 131

where is the number of examples where and is the number of total examples

used for training. Calculating for all classes is easy using relative frequencies such

that

 (55)

5.3 Empirical Scenarios

Selecting a good scenario for training the classifiers is not trivial. In simulated soccer,
there is a large set of possible scenarios for a given skill. The pass evaluation skill was
chosen as the test-bed for the training of both classifiers. One of the reasons why it was
selected is that passing is a fundamental characteristic of an agent that aims to play a soccer
game. Specifically, deciding what teammate is the best receiver in a given situation could
lead to better chances to score later in the game.
The scenario used to obtain the training set is explained below. A passer agent is placed in

the center of the field with the ball at a distance of , where

 is the minimum kicking radial distance between the agent and the ball stated in

the soccer server. A teammate agent is placed near the ball at a distance . An

opponent agent is placed similarly, with a distance from the ball. The angle

between the teammate and the opponent from the ball’s view point must be .

The passer agent aligns with the ball to pass it to its teammate and both the teammate and
the opponent try to intercept the pass. Once the teammate touched the ball, the episode is
labeled as SUCCESS. If the opponent touches the ball first, the episode is labeled as MISS.
A graphical representation of this scenario is shown in figure 6.

Fig. 6. Training scenario for supervised learning of parameters of each classifier. Three
agents are involved: a passer agent (A), a receiver teammate (T) and an opponent (O).
The ball is marked as (B)

In the case of the Fuzzy Naive Bayes classifier, aside of obtaining the probabilities of the
bayesian model, we have to establish the fuzzy sets for each variable. Fuzzy sets represent
linguistic values and are mathematically expressed with membership degree functions. We

Robotic Soccer 132

defined the fuzzy sets for each variable heuristically. The sets chosen for distance to the ball

, distance to teammate and distance to opponent variables are {short, medium,

long}, and for and variables are {closed, medium, wide}. A graphical representation of each

fuzzy variable is shown in figure 7.

Fig. 7. Fuzzy Sets for each Fuzzy Variable. (a) Distance to the ball , (b) Distance to

teammate and distance to opponent , (c) Alignment Angle and (d) Angle

between teammate and opponent

5.4 Experiments

For evaluating the efficiency in the domain of interest, we created a simulated-soccer test-

scenario shown in figure 8. The ball is placed at and the agent is placed

at . After that, three teammate agents and four

opponents are placed randomly at .

The passer uses a classifier to choose the best receiver teammate, i.e. the teammate with
better chances to intercept the pass successfully. The passer uses the classifier evaluating all
1 vs. 1 competitions between each teammate and each opponent (because the classifier was
trained this way). Then it selects the teammate with the maximum probability of success
given its worst probability in all its 1 vs. 1 competitions, formally

 (56)

being the set of all teammates, the set of opponents and is the

probability of success of the competition between teammate and opponent .

Probabilistic and Statistical Layered Approach for High-Level Decision Making 133

Fig. 8. Test scenario for the pass evaluation skill. Four opponent agents (black circles) and
three teammates (gray circles) are placed randomly in a certain area. The passer
(white circle) and the ball (little circle) are placed a few meters away

Table 5 summarizes the success rates of Fuzzy Naive Bayes, the Gaussian Naive Bayes and
additionally, a random strategy after 500 episodes.

Class Fuzzy Naive Bayes Gaussian Naive Bayes Random Strategy

SUCCESS 80.8 79.6 56.6
MISS 19.2 20.4 43.4

Table 5. Percentage of successful passes after 500 episodes on the test scenario

As we can see in table 5, both the Fuzzy Naive Bayes classifier and the Gaussian Bayes
classifier outperform the random strategy. But the difference between the Fuzzy Bayes and
the Gaussian Bayes approaches is indiscernible. However, recall that fuzzy variables and
fuzzy sets for each variable were chosen heuristically. This leaves an open path for
researching the use of better variables and more accurate sets to increase the performance of
the hybrid classifier.

8. References

Bustamante, C.; Garrido, L. & Soto, R. (2006a). Fuzzy Naive Bayesian Classification in
RoboSoccer 3D: A hybrid approach to decision making, Proceedings of the RoboCup
International Symposium, , Bremen, Germany, June 2006, Springer Verlag

Bustamante, C.; Garrido, L. & Soto, R. (2006b). Comparing Fuzzy Naive Bayes and Gaussian
Naive Bayes for Decision Making in Robocup 3D, Proceedings of the 5th. Mexican
International Conference on Artificial Intelligence (MICAI 06), pp. 237-247, ISBN
3540490264, Apizaco, Tlaxcala, Mexico, November 2006, Springer

Bustamante, C.; Flores, C. & Garrido, L. (2007). A Physics Model for the RoboCup 3D Soccer
Simulation, Proceedings of Agent-Directed Simulation Symposium (ADS 07), Norfolk
VA, USA, March 2007

Cox, I. J. (1991). Blanche -- an experiment in guidance and navigation of an autonomous
 robot vehicle. IEEE Transactions on Robotics and Automation, Vol. 7, No. 2, 1991, pp.
193-204

Robotic Soccer 134

Fox, D. (1998). Markov Localization: A Probabilistic Framework for Mobile Robot Localization and
Navigation, Ph.D. Thesis, University of Bonn, Germany

Fox, D.; Burgard, W. & Thrun, S. (1999). Markov Localization for Mobile Robots in Dynamic
Environments. Journal of Artificial Intelligence Research, Vol. 11, 1991, pp. 391-427

Friedman, N. & Goldszmidt, M. (1996). Discretization of continuous attributes while
learning Bayesian networks, Proceedings of 13th International Conference on Machine
Learning, pp. 157-165, Morgan Kaufmann, San Francisco, CA

Langley, P.; Iba, W. & Thompson, K. (1992). An Analysis of Bayesian Classifiers, Proceedings
of the 10th National Conference on Artificial Intelligence, pp. 223-228, AAAI Press and
MIT Press, USA

Lewis, D. (1998). Naive Bayes at forty: The independence assumption in information
 retrieval, Proceedings of the 10th European Conference on Machine Learning, pp. 4-15,
ISBN 3540644172, Chemnitz, DE, 1998, Springer Verlag

Marion, J. & Thornton, S. (2003). Classical dynamics of particles and systems, Brooks Cole, ISBN
0534408966, San Diego

Mitchell, T. (1997). Machine Learning, McGraw Hill, ISBN 0070428077, New York
Rish, I. (2001). An empirical study of the naive bayes classifier, Proceedings of IJCAI-01

workshop on Empirical Methods in AI, pp. 41-46
Röfer, T.; Laue, T. & Thomas, D. (2005). Particle-Filter-Based Self-localization Using

Landmarks and Directed Lines, Proceedings of the RoboCup International Symposium,
pp. 608-615, ISBN 3540354379, Osaka, Japan, July 2005, Springer

Ronghua, L. & Bingrong, H. (2004). Coevolution Based Adaptive Monte Carlo Localization
(CEAMCL). International Journal of Advanced Robotic Systems, Vol. 1, No. 3,
September 2004, pp. 183-190

Russell, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice Hall, ISBN
0137903952, Englewood Cliffs, NJ, USA

Skare, Ø.; Bølviken, E. & Holden, L. (2003). Improved Sampling-Importance Resampling
and Reduced Bias Importance Sampling. Scandinavian Journal of Statistics, Vol. 30,
No. 4, December 2003, pp. 719-737

Störr, H. P.; Xu, Y. & Choi, J. (2002). A compact fuzzy extension of the Naive Bayesian
classification algorithm, Proceedings of InTech/VJFuzzy, pp. 172-177, Hanoi, Vietnam,
2002, Science and Technics Publishing House, Hanoi, Vietnam

Thrun, S.; Fox, D.; Burgard, W. & Dellaert, F. (2000). Robust Monte Carlo Localization for
Mobile Robot. Artificial Intelligence, Vol. 128, No. 1, 2000, pp. 99-141

Thrun, S.; Burgard, W. & Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents), The MIT Press, ISBN 0262201623, Cambridge, Massachusetts

Xu, Y.; Jiang, C. & Tan, Y. (2006). SEU-3D Soccer Simulation Team Description, Proceedings of
the RoboCup International Symposium, Bremen, Germany, June 2006, Springer Verlag

Zadrozny, B. & Elkan, C. (2001). Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers, Proceedings of 18th International Conference on
Machine Learning, pp. 609-616, ISBN 1558607781, Williams College, Massachusetts,
June 2001, Morgan Kaufmann, San Francisco, CA

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos Bustamante and Leonardo Garrido (2007). Probabilistic and Statistical Layered Approach for High-

Level Decision Making in Soccer Simulation Robotics, Robotic Soccer, Pedro Lima (Ed.), ISBN: 978-3-902613-

21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/probabilistic_and_statistical_layered_approach_for_high-

level_decision_making_in_soccer_simulation_r

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

