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1. Introduction 

In the chapter limit properties of genetic algorithms and theproblem of their classification 
are elaborated. Recently one can observe an increasing interest in properties of genetic 
algorithms modelled by Markov chains (Vose, Rowe). However, the known results are 
mainly limited to existence theorems. They say that there exists a limit distribution for a 
Markov chain describing a simple genetic algorithm. In the chapter we perform the next 
step on this way and present a formula for this limit distribution for a Markov chain. 
Moreover, we claim that our convergence theorems can be extended to algorithms which 
admit the change in the mutation rate and others parameters. 
The formula for a limit distribution requires some knowledge about the distribution of the 
fitness function on the whole solution space. However, it suggests the methods to control 
the algorithm parameters to get better convergence rate. The formula can play an important 
role in deriving new classification tools for genetic algorithms that use methods of the 
theory of dynamical systems. That tools will exploit real dynamics of the search and be 
independent of the taxonomic methods of classification that are used nowadays. 
On the base of the knowledge of the limit distribution we construct an optimal genetic 
algorithm in the probabilistic sense. Generally this algorithm is impossible to describe. This 
is an open problem at the moment, however, its existence and its form suggest an 
improvement of the original algorithm by changing its parameters. Constructed in this way 
the optimal genetic algorithm is an answer to one of the questions stayed by famous No Free 
Lunch Theorem. Moreover, it is a complementary result to this theorem. On the base of this 
theoretical result we perform a classification of algorithms and show empirical 
(computational) results in getting which the entropy, fractal dimension, or its 
approximations: the box-counting dimension or information dimension, are used. 
One of the most difficult, however, of practical importance, problems is the choice of an 
algorithm to given optimisation problem. 
The distinguishing between an optimisation problem and the algorithm and its choice 
creates to the main difficulty. Consequently, the distinguishing is an artificial operation 
because it abstains from the idea of genetic algorithm (GA), since the fitness function, arises 
from the cost function (i.e. the function to be optimised) is the main object of the genetic 
algorithm and it emerges from the formulation of the optimisation problem and it is difficult O
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to speak about genetic algorithm as an operator without the fitness function. However, in 
our consideration we will simultaneously use both notions of the genetic algorithms. The 
first notion as an operator acting on the cost (fitness) function, the second - as a specific 
(real) algorithm for which the fitness is the main component being the algorithm's 
parameter. 
This dual meaning of the genetic algorithm is crucial for ou consideration, because our main 
aim is to try to classify genetic algorithms. The classification should lead to a specific choice 
of methodology of genetic algorithms understood as operators. It is expected that in terms of 
this methodology one will be able to choose the appropriate algorithm to given optimisation 
problem. We claim that using this classification one could improve existing heuristic 
methods of assortment of genetic algorithms that are based mainly on experiences and 
programmer intuition. 
There is the so-called "No-free lunch theorem" [12] according to which it does not exist a 
best evolutionary algorithm and moreover, one cannot find most suitable operator between 
all possible mechanisms of crossover, mutation and selection without referring to the 
particular class of optimisation problems under investigation. Evolutionary algorithms are 
the methods of optimizations which use a limited knowledge about investigated problem. 
On the other hand, our knowledge about the algorithm in use is often limited as well [13, 
14]. 
The "no free lunch" results indicate that matching algorithms to problems give higher 
average performance than those applying a fixed algorithm to all problems. In the view of 
these facts, the choice of the best algorithm may be correctly stated only in the context of the 
optimisation problem. 
These facts imply the necessity of searching particular genetic algorithms suitable to the 
problem at hand. 
The present paper is an attempt to introduce an enlarged investigation method to the theory 
of genetic (evolutionary) algorithms. We aim at 
1. the investigation of convergence properties of genetic algorithms, 
2. the formulation of a new method of analysis of evolutionary algorithms regarded as 

dynamical processes, and 
3. the development of some tools suitable for characterization of evolutionary algorithms 

based on the notions of the symbolic dynamics. 
Genetic algorithm (GA) performs a multi-directional search by maintaining a population of 
potential solutions and encourages information formation and exchange between these 
directions. A population undergoes a simulated evolution due to the iterative action with 
some probability distributions of a composition of mutation, crossover and selection 
operators. The action of that composition is a random operation on populations. 
If we imagine that a population is a point in the space Z of (encoded) potential solutions 
then the efect of one iteration of this composition is to move that population to another 
point. In this way the action of GA is a discrete (stochastic) dynamical system. We claim that 
by implementing the methods and the results of the theory of dynamical systems, especially 
those known from the analysis of dynamics of 1D mappings, one can move towards the goal 
of the theory of GA, which is the explanation of the foundations of genetic algorithm's 
operations and their features. 
In GA with the known fitness function the proportional selection can be treated as a 
multiplication of each component of the frequency vector by the quotient of the fitness of the 
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corresponding element to the average fitness of the population. This allows to write the 
probability distribution for the next population in the form of the multiplication of the 
diagonal matrix times the population (frequency) vector. Moreover, results of the mutation 
can also be written as a product of another matrix with the population (probability) vector. 
Finally the composition of both operations is a matrix, which leads to the general form of the 
transition operator (cf.(17)) acting on a new probability vector representing a probability 
distribution of appearance of all populations of the same PopSize. The matrix appearing 
there turns to be Markovian and each subsequent application of SGA is the same as the 
subsequent composition of that matrix with itself. (cf.(19)). Thanks to the well-developed 
theory of Markov operators ([18, 22, 26, 27]) new conditions for the asymptotic stability of 
the transition operator are formulated. 

2. Genetic algorithms 

In the paper we use the term population in two meanings; in the first it is a finite multi-set (a 
set with elements that can repeat) of solutions, in the second it is a frequency vector 

composed of fractions, i.e. the ratio of the number of copies of each element zk ∈Z to the total 

population size PopSize. 
In our analysis we are concerned with probability distributions of each population for a 
particular case of the simple genetic algorithm (SGA) in which the crossover follows the 
mutation and the proportional selection. In the case of a binary genetic algorithm (BGA) the 
mutation can be characterized by the bitwise mutation rate Ǎ - the probability of the 
mutation of one bit of a chromosome. In the paper, however, we are not confined to binary 
operators; the present discussion and results are valid under very week assumptions 
concerning the mutation and selection operators. 

2.1 Population and frequency vector 
Let 

 

be the set of individuals called chromosomes. 1By a population we understand any multi-set of 

r chromosomes from Z, then r is the population size: PopSize. 

Definition 1. By a frequency vector of population we understand the vector 

 
(1) 

where ak is a number of copies of the element zk. 

The set of all possible populations (frequency vectors) is 

 
() 

                                                 
1 If one considers all binary l-element sequences then after ordering them one can compose 

the set Z with s = 2l elements. 
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When a genetic algorithm is realized, then we act on populations, and new populations are 
generated. The transition between two subsequent populations is random and is realized by 
a probabilistic operator. Hence, if one starts with a frequency vector, a probabilistic vector 

can be obtained. It means that in some cases pi cannot be rational any more. Hence the 

closure of the set Λ, namely 

 
(3) 

is more suitable for our analysis of such random processes acting on probabilistic vectors; 

they are in the setΛ . 

2.2 Selection operator 

Let a fitness function f : Z →R+ and population p be given. If we assume the main genetic 

operator is the fitness proportional selection, then the probability that the element zk will 

appear in the next population equals 

 
(4) 

where f (p) is the average population fitness denoted by 

 
(5) 

We can create the matrix S of the size s, where its values on the main diagonal are 

 
(6) 

Then the transition from the population p into the new one, say q is given by 

 
(7) 

and the matrix S describes the selection operator [21, 23, 24]. 

2.3 Mutation operator 
Let us define a matrix 

U  = [Uij ] , 

with Uij as the probability of mutation of the element zj into the element zi, and Uii - the 

probability of the surviving of the element (individual) zi. One requires that 

www.intechopen.com



Limit Properties of Evolutionary Algorithms 

 

5 

1.                                                                        Uij ≥ 0 ; 
 

2.                                                        

    

                                                 (8) 

 

In the case of the binary uniform mutation with parameter Ǎ as the probability of changing 

bits 0 into 1 or vice versa, if the chromosome zi differs from zj at c positions then 

 (9) 

describes the probability of mutation of the element zj into the element zi. 

2.4 Crossover operation 

In order to define the operator of crossover C  one needs to introduce additional denotation. 

Let matrices C 0,…,C s-1 be such that the element (i, j) of the matrix C k denotes the probablity 

that an element zi crossovered with an element zj will generate an element zk. 

For the presentation simplicity let us consider the case of chromosoms of the lenght l = 2. 
Then elements of the space B will be of the form 

z0 = 00, z1 = 01, z2 = 10, z3 = 11. (10)

For the uniform crossover operation when all elements may take part, the matrix C 0 has the 

form 

 

(11)

One can define the remaining matrices; all matrices C k are symmetric. Finally, the operator 
C in the action on a population p gives 

 (12)

where the dot · denotes the formal scalar product of two vectors from s-dimentional space. 
Hence, from a given population (say, p) to the next population (say, q) the action of the 

simple genetic algorithm (SGA) [21, 23, 24] is described by the operator G being a 

composition of three operators: selection, mutation and crossover: 

 (13)

The reader interested in the detailed descrition of the operators is referred to the positions 
[21, 23]. In what follows the crossover is not present. However, most of the results of 
subsequent sections hold if the crossover is present. 
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3. Transition operator 

Let p = (p0,…,ps-1) be a probabilistic vector. If we consider p ∈Λ , then transition operators 

should transform set Λ  into itself. The action of the genetic algorithm at the first and at all 
subsequent steps is the following: if we have a given population p then we sample with 

returning r-elements from the set Z, and the probability of sampling the elements z0,…, zs-1 is 

described by the vector G(p), where 

 
(14)

This r-element vector is our new population q. 
Let us denote by W the set of all possible r-element populations composed of elements 
selected from the set Z, where elements in the population could be repeated. This set is finite 
and let its cardinality be M: It can be proven that the number M is given by some 
combinatoric formula 

 
(15)

Let us order all populations, then we identify the set W with the list W = {w1,…,wM}. Every 

wk, k = 1, 2,…,M, is some population for which we used the notation p in the previous 

section. According to what we wrote, the population will be identified with its frequency 
vector or probabilistic vector. This means that for the population 

, the number 
k

i
w , for i ∈ {0,…,s – 1}, denotes the probability of 

sampling from the population wk the individual zi (or the fraction of the individual zi in the 

population wk). 
Let us assume that we begin our implementation of SGA from an arbitrary population  

p = wk. In the next stage each population w1,…,wM can appear with the probability  

β1k, β lk,…, β Mk which can be determined from our analysis. In particular, if in the next stage 

the population has to be q, with the position l on our list W , then this probability [23, 28, 31] 

is equal 

 
(16)

Notice that 
 
for every k = 1, 2,…,M. After two steps, every population 

w1,…,wM will appear with some probability, which is a double composition of this formula2. 

It will be analogously in the third step and so on. Then it is well founded to analyze the 

                                                 
2 With our choice of denotations for the populations p and q in (16), the element βlk of the 
matrix will give transition probability from the population with the number k into the 
population with the number l. 
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probability distribution of the population's realization in the next steps. This formula gives a 
possibility of determining all elements of a matrix T which defines the probability 
distribution of appearance of populations in the next steps, if we have current probability 
distribution of the populations. 
It is important that elements of the matrix are determined once forever, independently of the 
number of steps. The transition between elements of different pairs of populations is 
described by different probabilities (16) represented by different elements of the matrix. 
Let us denote by 

 

where  the set of new M-dimensional probabilistic vectors. A 

particular component of the vector y  represents the probability of the appearance of this 

population from the list W of all M populations. The set Γ is composed of all the possible 
probability distributions for M populations. Described implementation transforms at every 
step the set Γ into the same. 
On the set Γ the basic, fundamental transition operator, 

 (17)

is defined. If u ∈Γ, then  is the probability distribution 

for M populations in the step number t, if we have begun our implementation of SGA given 

by G ( (14)) from the probability distribution u = (u1,…,uM) ∈ Γ, by t – application of this 

method. The number denotes the probability of appearance 

of the population wk in the step of number t. By the definition G(p) in (14),(16) and the 

remarks made at the end of the previous section the transition operator T (t) is linear for all 

natural t.  

Let us compose a nonnegative, square matrix T of dimension M, with elements βlk, l, k = 1, 
2,…,M, i.e 

T = [βlk]. (18)

We will call it the transition matrix. Then the probability distribution of all M populations in 
the step t is given by the formula  

T  t u, t = 0, 1, 2, … 

Elements are independent from the number of steps of the algorithm. The above introduced 
transition operator T(t) is linked with the transition matrix by the dependence 

T (t) = T  t 
.  (19)

Notice that though the formula (16) determining individual entries (components) of the 
matrix T are population dependent, and hence nonlinear, the transition operator T(t) is 
linear thanks to the order relation introduced in the set W of all M populations. The multi-
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index (l, k) of the component βlk kills, in some sense, this nonlinearity, since it is responsible 
for a pair of populations between which the transition takes place. The matrix T in (18) is a 
Markovian matrix. This fact permits us to apply the theory of Markov operators to analyze 
the convergence of genetic algorithms [18, 22, 26, 27]. 

Let ek ∈ Γ be a vector which at the k-th position has one and zeroes at the other positions. 

Then ek describes the probability distribution in which the population wk is attained with the 

probability 1. 

By the notation T (t)wk we will understand 

 (20)

which means that we begin the GA at the specific population wk . Further on we will assume 

Ujj > 0 for j ∈ {0,…,s – 1}. 

For a given probability distribution u = (u1,…,uM) ∈ Γ it is easy to compute that the 

probability of sampling the individual zi, for i∈{0,…,s – 1}, is equal to 

 
(21)

where k

i
w  is the probability of sampling from k-th population the chromosome z i, and uk - 

the probability of appearance of the k-th population. By an expected population we call the 

vector from Rs of which i-th coordinate is given by (21). Since  for k 

∈{1,…,M}, i ∈ {0,…, s – 1} and 

 

the vector belongs to Λ . From (21) we obtain that the expected population is given by 

 
(22)

Obviously, it is possible that the expected population could not be any possible population 
with r-elements. 
For every u ∈ Γ and for every t certain probability distribution for M populations  
T(t)u is given. Consequently the expected population in this step is known. By 

 we denote the expected population at the step t, if we 

begun our experiment from the distribution u ∈ Γ; of course we have R(t)u ∈ Λ . 

3.1 Asymptotic stability 

Definition 2. We will say that the model is asymptotically stable if there exist u* ∈ Γ such that: 

 (23)
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(24) 

Since for k ∈{1,…, M} we have 

 (25)

then (24) will give 

 
(26)

It means that probability of appearance of the population wk in the step number t converges 

to a certain fixed number *

k
u independently of the initial distribution u. It is realized in some 

special case, when our implementation began at one specific population p = w j . 
Theorem 1. If the model is asymptotically stable, then 

 (27)

where p* ∈Λ  is the expected population adequate to the distribution u*. Particularly, we have also 

 (28)

Proof. From (22) we have 

 

and 

 

Then 

 

 

On the basis of (24) the equality follows (27). Taking into account our notation, given in (20), 

the formula (28) is the particular case of (27).                                                                         ! 

Theorem 1 states that for the asymptotically stable case the expected population stabilizes, 

converging to p* ∈Λ  independently of initial conditions. This result has a fundamental 
meaning for the analysis of the convergence of genetic algorithms. This generalization will 
be the subject of our next paper. Moreover, this theorem is an extension of Th.4.2.2.4 4 from 
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[24] for the case when it is possible to attain any population in a finite number of steps, (not 
only in one step). It means that the transition operator does not need to be positively 
defined, but there exists such k, that the k-th power of the transition matrix possesses a 
column which is strongly positive. The same concerns Th.4.2.2 1 of [24, 25] which is true 
only for a positively defined transition matrix. 

We shall say that from the chromosome za it is possible to obtain zb in one mutation step with 

a positive probability if Uba > 0. We shall say that from the chromosome za it is possible to 

get the chromosome zb with positive probability in n-step mutation if there exists a sequence 

of chromosomes 
0l

z ,…, 
nl

z , such that 
0l

z = za, 
nl

z = zb, and for any k = 1,…, n it is possible 

to attain the chromosome 
kl

z from 
1kl −

z in one step with a positive probability. 

Definition 3. Model is pointwise asymptotically stable if there exists such a population w j that 

 
(29)

Condition (29) denotes that in successive steps the probability of appearance of a population 
other than w j tends to zero. It is a special case of the asymptotic stability for which 

u*= e j . 

Theorem 2. Model is pointwise asymptotically stable if and only if there exists exactly one 

chromosome za with such a property that it is possible to attain it from any chromosome in a finite 

number of steps with a positive probability. In this situation the population wj is exclusively composed 

of the chromosomes za and 

 (30)

holds. Moreover, the probability of appearance of population other than wj tends to zero in 

the step number t with a geometrical rate, i.e. there exists ǌ ∈ (0, 1), D∈ R + such that 

 

(31)

! 

The proofs of our theorems and auxiliary lemmas are stated in other articles [29-31, 33]. 
From the formula (30) it follows, that from a population wj we receive wj with the probability 
equal 1. Moreover, if wj becomes once, then from this moment on we shall permanently have 
populations wj . Numbers ǌ and D could be determined for a specific model. It will be the 
subject of the next articles. 
Theorem 2 states that the convergence to one population could occur only under specific 
assumptions. This justifies the investigation of the asymptotic stability which is different 
from that in Definition 3. 

Definition 4. By an attainable chromosome we denote za ∈ Z such that it is possible to attain it from 

any other chromosome in a finite number of steps with a positive probability. Let us denote by Z* the 

set of all za with this property. 
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Theorem 3. Model is asymptotically stable if and only if Z* ≠ 0. 

! 

Theorem 4. Let us assume that the model is asymptotically stable. Then the next relationship holds: 
 

            (war) *

k
u > 0 if and only if the population wk is exclusively composed of chromosomes 

belonging to the set Z*.                                                                                                                           ! 

Corollary 1. If Z*= Z then *

k
u  > 0 for all k ∈ {1,…,M}.                                                                      ! 

Here we set the summary of our results: 

1. Z*= 0 ⇒ lack of asymptotic stability; 

2. Z*≠ 0 ⇒asymptotic stability but: 

3. cardinality (Z*) = 1 ⇒ pointwise asymptotic stability (in some sense convergence to one 

population); 

4. cardinality (Z*) > 1 ⇒ asymptotic stability, but there is no pointwise asymptotic 

stability. 
If one restricts to a binary simple genetic algorithm with a positive mutation probability, 
then it is possible to attain any individual (chromosome) from any other individual. Then 
there is more than one binary chromosome which is possible to attain from any other in a 
finite number of steps with a positive probability, and by Corollary 1, it is impossible to get 
the population composed exclusively of one type of chromosome. It could be interesting to 
consider non-binary cases for which the above observation does not hold. 

3.2 Genetic algorithms with parameters adaptation 
Genetic algorithm is realized as an adaptation process, hence it is natural to expect, that 
during its action its parameters are adapted on the base of some internal dynamics of the 
algorithm. It follows from the conjecture, that at different states, i.e. at different steps of the 
algorithm, values of algorithm parameters could be changed in the optimal way to 
accelerate the process convergence. 
Till now the problem of algorithm parameters fitting is complex and not well defined, and it 
has an undefined structure. However, there exist many arguments for parameters 
adaptations that can improve action of actual genetic algorithm. There exists an opinion that 
by adding individual algorithm or metha-algorithm related to the actual one one can 
improve the solution of the problem. Such situation may be realized by an adaptation of 
genetic algorithms parameters on the base of the present state of the process (i.e. the actual 
population). It is conducted, for example, by introducing the methodology of parameters 
changing, which uses information on populations and values of the fitness function. The 
same can be proposed by a modification of the fitness function only. 
In most case such adaptation is realised by increasing not only the dimension of 
chromosoms but also the search space, and consequently the population vector. Then, there 
appears an extra meta-algorithm, which runs parallel to the actual genetic one. 
Even in such situations our algorithm model is conserved (16), and then the search space is 
enlarged (the arguments set) and in consequence the number of possible populations grow. 
The dimension of the Markovian matrix describing new, composed algorithm 18 grows. 
However, the transition operator (19) has the same properties as in the classical simple 
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genetic algorithm. Consequently, all theorems on convergence of genetic algorithms from 
the previous sections are conserved, as well as the results concerning the limit algorithm of 
the next Section 4.2 and the form of the optimal algorithm in probabilistic sense. 

4. Classification of algorithms and its invariants 

The convergence of GAs is one of the main issues of the theoretical foundations of GAs, and 
has been investigated by means of Markov's chains. The model of GA as a Markov's chain is 
relatively close to the methods known in the theory of dynamical systems. 
In the analysis of GAs regarded as (stochastic) dynamical systems one can use the fact, 
(proven by Ornstein and Friedman [4, 10]) which states that mixing Markov's chains are 
Bernoulli's systems and consequently, the entropy of the systems is a complete metric 
invariant. 
Those facts enable us to classify GAs using the entropy. The systems for which the entropies 
have the same value are isomorphic. Hence the entropy makes it possible to classify GAs by 
splitting them into equivalence classes. 

4.1 Isomorphism of algorithms 
The domain of research of the ergodic theory is a space with measure and mappings which 
preserve it. The measure space is the point set X with a measure m (when normalised to one, 

it is called the probability) defined on  - algebra of its subsets B, called measureable. To use 

results of the theory some defintions [16, 15] must be introduced. 

Definition 5. Let (X1, B1, m1), (X2, B2, m2) be measure spaces. We say that a mapping φ : X1 →X2 is 

measure preserving if: i) it is measurable, i.e. φ -1(A) ∈ B1 for every A ∈ B2, and ii) m1(φ -1(A)) = 

m2(A). If X1 = X2 and m1 = m2 =: m and φ preserves a measure m then we say that m is φ-invariant 

(or invariant under φ). 
In the example below we will say that so-called 1D backer's transformation3preserves 
Lebesgue measure of the line. Let X = [0; 1) and consider φ1(x) = 2x (mod 1). Notice that even 
though the mapping doubles the length of an interval I, its inverse image has two pieces in 
general, each of which has the length of I, and when we add them, the sum equals the 
original lenght of I. So φ1 preserves Lebesgue measure. 
The generalization of the above mapping to 2D is the backer' transformation defined4 on the 
square X = [0, 1] × [0, 1] as 

 
(32)

which presereves the 2D Lebesgue measure on the unit square. 

Definition 6. Probability spaces (X1, B1, m1), (X2, B2, m2) are said to be isomorphic if there exist 

M1 ∈ B1, M2 ∈ B2 with m1(M1) = 1 = m2(M2) and an invertible measure preservimg 

transformation φ : M1 → M2. 

                                                 
3  It is also called 1D Bernoulli shift. 
4 The transformation is the composition of three transformations of the unit square first, 
press down the square, cut in the midle and move the right half to the top of the left half. 
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In [16] the defintion is more general and requires the mapping φ  to be defined on whole X1 

and be almost everywhere bijective from X1 onto X2, i.e. it must be bijective except for the 
sets of measure zero. However, in view of Definition 6 the sets X1\M1 and X2\M2 have zero 
measure. 
In order to investigate genetic algorithms and their similarity (or even more - isomorphism) 
we need to consider mappings defined on probability space. 

Definition 7. Suppose probability spaces (X1, B1, m1), (X2, B2, m2) together with measure preserving 

transformations T1 : X1→ X1; T2 : X2 → X2. We say that T1 is isomorphic to T2 if there exist M1 ∈ 

B1, M2 ∈ B2 with m1(M1) = m2(M2) = 1 such that: i) T1(M1) ⊆ M1, T2(M2) ⊆M2, and ii) there is an 

invertible measure-preserving transformation 

 

Consider infinite strings made of k symbols from [1,…, k]. Put   An 

element x of X is denoted by (x1 x2 x3… ).5 Let a finite sequence p1, p2,…, pk, where for each i 

the number pi ∈ [0, 1] be such that 
 
For t ≥ 1 define a cylinder set (or a block) of 

length n by 

 (33)

With this denotation let us introduce the main definition of the Bernoulli shift which plays 
the main role in our approach [15, 16]. 
Definition 8. Define a measure Ǎ on cylinder sets by 

 (34)

A probability measure on X, again denoted by Ǎ, is uniquely defined on the  - algebra generated by 
cylinder sets. We call Ǎ the (p1,…,pk)-Bernoulli measure and X is the Bernoulli shift space. The one-

sided Bernoulli shift transformation T on X defined by 

 (35)

 
Similarly, we may define the two-sided Bernoulli shift transformation by 

 

on  where * denotes the 0-th coordinate in a sequence. Let us notice that the 

shift preserves the measure Ǎ. 
In the case of a binary sequence when we have two symbols only and if each symbol has 

probablity  the space X identified with  is ( , )-Bernoulli shift space. 

Moreover, the space X is somorphic to [0, 1] with Lebesgue measure if each element x = (b1, 

b2,…) ∈ X and the transformation is defined by 

                                                 
5 If k = 2 then x is said to be a binary sequence. 
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(36)

To see why, notice that not every y ∈ [0, 1] has unique binary expansion, but the set of such 
points has measure zero, and we ignore them. Hence the transformation (36) is almost 
everywhere bijective (cf. remark below Def. 6) and measure preserving. 
The next notions are related to Markov measure and Markov shift. As previously consider 

the space  and let P = (Pij) be a k×k stochastic matrix with the right hand 

operation6. Suppose that π = (πi) be the right probability eigenvector of P, i.e. it satisfies 

 and Pπ = π. Define ν  on the cylinder sets by 

 (37)

Notice that the sequence of appearance is a1, a2,…, an. 

Definition 9. A unique shift invariant probability measure, again denoted by ν, on the -algebra 
generated by the cylinder sets, we call the Markov measure and then X is called the Markov shift 
space. 
Notice that the matrix P defines the transition probabilty 

 

which is the conditional probabilty (of an event xn+1 = j given that an event xn = i has 
occured). Notice that Markov shifts are Bernoulli shifts if the columns of the matrix B are 

identical. Moreover, the numbers  satisfy 

 

for any a ∈ {1, 2,…,k}. 
We can identify a Bernoulli measure or a Markov measure with a measure on the interval [0, 
1] through the binary expansion (36) (i.e. each binary sequence x = (b1, b2,…) is identified 

with the sum of R.H.S. of (36)). If the probability p ∉ {0,1/2, 1}, then the (p, 1-p)- Bernoulli 
measure represented on [0, 1] is singular continuous [16]. 

4.2 Limit distribution 
Now, after [16] we are ready to formualate main facts concerning the limit distribution of 
the Markov matrix. 

Theorem 5. Let T = (Tij) be a M×M stochastic matrix. Suppose that π = (πi) be a right probability 

eigenvector of T , i.e. it satisfies
 

 and 

 Tπ = π. (38) 

Then the following relationship hold: 

                                                 
6 Choe in [16] considers the left hand operation. 

www.intechopen.com



Limit Properties of Evolutionary Algorithms 

 

15 

i. there exists  . 

ii. Q  is stochastic (i.e. Markovian) matrix , 

iii. Q T  = T Q  = Q  , 

iv. If T v  = v  then Q v  = v . 

! 

Theorem 6. All columns of Q  are identical and equal to the column vector π.                                    ! 

Since each Markov shift is a Bernoulli shift if columns of the Markov matrix are identical, 

the limit distribution may be regarded as a Bernoulli shift. Hence the isomorphism of the 

limit distribution may be treated in the same way as for Bernoulli shifts, i.e. with the help of 

the entropy, cf. Theorem 9. 

Theorem 7. The convergence ET n - QE is of exponential type, when n→ ∞.                                      ! 

One may ask whether it is possible to find a convergence bound in terms of the second 

eigenvalue of the matrix T  and how it is related to the eigenvalues of the matrix Q ? 

Moreover, the limit operator Q  is a projection operator Q Q  = Q . Its eigenspace is composed 

of one eigenvector π and its properties will help in finding relations to NFL. It will be the 
subject of the next publication [32]. 
Theorem 8. If a genetic algorithm (14) is described by a transition matrix (18) that possesses the 

eigenvector π as a probability vector corresponding to the unit eigenvalue, i.e. the matrix satisfies Eq. 
(38), then there exists an optimal algorithm in the probabilistic sense. It means that the algorithm 
starting at an arbitrary initial distribution of populations in one step generates the limit distribution. 

This limit distribution is desrcibed by the matrix Q  appearing in Theorem 5. 

Proof. Let a vector c = (ci) describe the initial distribution of populations, with . 

Let us take an arbitrary row of the matrix Q , say j. Then in view of Theorem 6 all elements of 

this row are the same and equal to πj . Then making the product Q c we will get for this row 

 

This means that Q c = π. 

The recent theorem is in some sense complementary to the No Free Lunch Theorem. NFL 

Theorem describes the whole universe of optimization problems and algorithms used to 

solve them. The present theorem, on the other side, concernes on an individual algorithm 

dedicated to an individual optimization problem. The former theorem tells that in the mean 

all algorithms behave in similar way as far as all problems are concerned. The latter 

theorem, however, states that for allmost every genetic (evolutionary) algorithm and every 

single optimization problem there exists not only the better algorithm but also the best 

(optimal) in the probabilistic sense. This algorithm cannot be, in general, deterministic, since 

the assumptions concerning the pointwise asymptotic stability may not hold (cf. Definition 3 

and Theorem 2). The problem of determining, even in the approximate form, the best 

algoritm is still open. It is hope that the pointwise asymptotic stability can be helpful here. 
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There is of course the question of uniquenss: two different genetic algoritms may lead to 
two different limit distributions. Moreover, to two different algorithms may correspond one 
optimal algorithm. This remark may be used in formulation new methods of classification of 
genetic algorithms, additional to the entropy and the fractal dimension. 

5. Trajectory of BGA 

Let X  be a space of solutions of an optimisation problem characterized by a fitness function  

f : X  → R ;X  ⊂ Rm for which a binary genetic algorithm (BGA) will be invented. Each 

element x ∈ X  will be encoded in the form of a binary chromosome of the length l (cf. 

Section 2.1). The coding function ϕ: X  → {0, 1}l = B maps elements of X  into chromosome 

from the B space. 

Let us assume that the genetic algorithm acts on r-element populations. Each population 

forms a multiset [Pr] in the product space Br. For the i-th generation we will use the 

denotation [ r

iP ], for the population and each element of this multiset can be identified with 

a vector 

 (39)

rembering that a population is an equivalent class of points from the vector space Br. The 
equivalent relation is defined by the class of all possible permutations of the set of r-th 

numbers {1, 2,…, r}. Notice that in view of our denotation from Sec.2.1 each i

jx , j = 1, 2,…, r 

is one of elements of the set Z. 
Let us notice that we can identify points from X with their encoded targets in B under the 

action of space Xr. By a trajectory of the genetic algorithm of the duration N we mean a set 

 
(40)

where N is the number of steps (generations) of the genetic algorithm which is realized. 
Let pm and pc be the probabilities of the mutation and crossover, respectively, while ps is the 
probability of selection, all independent from the generation. 

Then, for such a genetic algorithm the probability of the appearance of the population [
1

r

i
P+ ] 

at the generation i + 1 after the population [ r

iP ] at the generation i, is the conditional 

probability 

 (41)

Here by f( r

iP ) we understand the vector{valued function of the form [f(
1

i
x ), f(

2

i
x ),…, f( i

rx )]. 

The initial population [
1

r
P ] is generated by the use of a uniform probability distribution 

over the set B, i.e. each point from B has the same probability of being selected as a member 
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(component) of [
1

r
P ]. Next populations following that one, i.e. chosen in next generations, 

are results of the action of the GA and, hence, may have a non-uniform probability 
distribution. 
Let us notice that in view of our assumptions it follows from (41) that the probability of the 
appearance of each population depends on the previous population and does not depend on 
the history (i.e. on earlier population; the probabilities pm, pc and ps can be regarded as 
parameters of the function P). 
Now, if we look at the trajectory of the GA defined by (40), we can see that its generation is 
an ergodic (mixing) process and Markov's one. Subsequent populations (i.e. points of the 
trajectory) are states of the process about which we can say that each state is accessible with 
the probability 1. 

6. Entropy 

Let us denote by Ti the operator which maps i-th generation (point of the trajectory) into the 
next one. Having the probability distribution (41) characterizing the mapping Ti from one 
population to another, we can define the entropy of the mapping 

 

(42)

where [
1,

r

i j
P+ ] is a possible population from the coding space B, j = 1, 2,…, 2 rN ,…,M: 

According to our previous proposition the initial population is generated by the use of a 
uniform probability, and the entropy may attain the maximal value generated by the GA. In 
the next step the probabilities of populations are not uniform and differ at each generation; 
this is the essence of the action of GA. Consequently the entropy of the mapping Ti 

decreases. In the limit case when the number of steps tends to infinity one could expect that 
the terminal population will be composed of r copies (exactly speaking, according to (39) { a 
cartesian product) of the same element (an optimal solution). However, this case will be 
possible only in the case of the pointwise asymptotic stability of GA. In general, the entropy 
will tend to minimum. 
Entropy as a function of the probability of mutation and selectio grows with the growing 
mutation probability and decreases when the selection pressure grows. Then the entropy 
could realize a measure of interactions between mutations and selection operators. Entropy 
also depends on the number of elements in population and it is decreasing when the 
population grows. The entropy value of the trajectory could be linked with computational 
complexity of the evolutionary algorithms. 
Now several questions arise. Does an optimal form of the entrop change exist? What is its 
limit value, if it is different from zero for the optimisation process performed by GA ? Does 
an optimal process of the entropy change exist along which an optimal value of the solution 
can be reached? 
Since the determination of the probability of the mapping Ti, as well as the entropy Hi, in an 
analytical way is rather difficult to be performed, we are proposing to substitute them with 
a fractal dimension which is related to the entropy [10] and can characterize non-
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deterministic features of GA. It should be mentioned that in [8] general statistical and 
topological methods of analysis of GAs have been introduced from another viewpoint. 

Theorem 9. (Ornstein [10]) Every two Bernoulli shifts with the same entropy are isomorphic.        ! 

Lemma 1. (Choe [16])) Let  be the (p, 1- p) Bernoulli shift space that is regarded 

as the unit interval [0, 1) endowed with the Euclidean metric. Let Xp denote the set of all binary 

sequences x ∈ X such that 

 

then Hausdorff dimension of the set Xp is equal to the entropy -p log2 p- (1 - p) log2(1 - p) of the 

Bernoulli shift transformation. Similar results can be obtained for a Markov shift space.                    !  

Moreover one can use the Hausdorff dimension or its approximation as an invariant of 
equivalence of algorithms. 

7. Fractal dimensions 

To be more evident, let us recall the notion of the s-dimensional7 Hausdorff measure ([5]) of 

the subset E ⊂ Rl, where s ≥ 0. If E ⊂ Ui Ui and the diameter of Ui, denoted by (Ui), is less 

than ε for each i, we say that {Ui} is an ε - cover of E. For ε > 0, let us define 

 
(43)

where the in_mum is over all ε-covers {U i} of E . The limit of as ε → 0 denoted by Hs(E), 

is the s-dimensional Hausdorff measure of E. 

Let us notice that in the space R l one can prove that Hl(E)= klLl(E), where Ll is the l-

dimensional Lebesgue measure and kl is a ratio of volume of the l - dimensional cube to  

l - dimensional ball inscribed in the cube. 

It is evident that (E) increases as the maximal diameter ε of the sets Ui tends to zero, 

therefore, it requires to take finer and finer details, that might not be apparent in the larger 

scale into account. On the other hand for the Hausdorff measure the value Hs(E) decreases as 

s increases, and for large s this value becomes 0. Then the Hausdorff dimension of E is 
defined by 

 (44)

and it can be verified that . 

Working with compact subsets of a metric space (X, d) new dimension is introduced. This 
dimension is also less accurate than the Hausdorff dimension. To calculate this dimension 

                                                 
7 This s has nothing to do with s introduced in Section 2. 
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for a set S ⊂ X imagine this set lying on an evenly-spaced grid. Let us count how many 
boxes are required to cover the set. The box-counting dimension is calculated by observing 

how this number changes as we make the grid finer. Suppose that N(ε ) is the number of 

boxes of the side length ε required to cover the set. Then the box-counting dimension is 

defined as: 

 
(45)

In Appendix more detailed presentation of properties of the Hausdorff and box-counting 
dimensions is included. Harrison in [5] recommends the box-counting dimension to be used 
only for closed sets, although even for compact sets it can differ from Hausdorff dimension 

and, moreover, the box dimension gives the most natural result than the measure Hs. 

8. Dimension of trajectory 

By inventing the fractal (Hausdorff) dimension the trajectory of GA's or its attractor can be 
investigated. Algorithms could be regarded as equivalent if they have the same 
computational complexity while solving the same problem. As the measure of 
computational complexity of genetic algorithm, we propose a product of population's size 
and the number of steps after which an optimal solution is reached. This measure of 
computational complexity of genetic algorithms joins the memory and the temporal 
complexity. 
During the execution of genetic algorithms, a trajectory is realized and should "converge" to 
some attraction set. It is expected that an ideal genetic algorithm produces an optimal 
solution which, in the term of its trajectory, leads to an attractor which is one{ element set. 
On the other hand, for an algorithm without selection the attractor is the whole space. Then, 
we could say that algorithms are equivalent when they produce similar attractors [6]. 
Our proposal is to use fractal dimensions to measure the similarity of attractors on the base 
of Lemma 1. 
Definition 10. Two genetic algorithms are equivalent if they realize trajectories with the same 
fractal dimension. 
Hence, instead of the entropy, the fractal dimension will be use as an indicator, or better to 
say - a measure of the classifications of GAs. 
The transfer from the entropy to the new indicator can be made with the help of particular 
gauges. The first gauge could be the so-called ρ-entropy based dimension introduced by 
Pontrjagin and Schnirelman in 1932 (and repeated by Kolmogorov and Tihomirov in 1959), 

in the following way: among all collections of balls of radius ρ that cover a set E in R l ( or in 

more general case, in some metric space) is by definition one that requires the smallest 
number of balls. When E is bounded, this smallest number is finite and can be denoted by 
N(ρ) and called ρ - entropy. Their dimension, called the lower entropy dimension, was 
defined by 

 

(46)
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The second gauge is the so-called information dimension of the trajectory defined by: 

 

(47)

where W(ε) is the number of elements of the trajectory which are contained in a l - 

dimensional cube with the edge length equal to ε, and  is the probability of finding 

of i - th element, and Ni - number of points in i-th hypercube, N - number of trajectory points. 
In further analysis we are going to replace (47) and (45) with its approximation, namely the 
box or capacity dimension. 
In [6] the box counting dimension de_ned in [3] has been introduced with its approximated 
formula (cf. (2) in [6]). 

Here we use another approach to the approximation. Let N(T, ε) be the minimum number of 

r-dimensional cubes with the edge length equal to ε , that covers the trajectory T ⊂ X , and X 

is a l- dimensional search space. To be more evident let us consider the case when ε = 2-k and 

diminish the length of cube edges by half. Then the following ratio will approximate the box 

counting dimension of trajectory T 

 
(48)

due to the fact that log2 x = log2 e ln x. The approximated expression (48) of the box 

dimension counts the increase in the number of cubes when the length of their edges is 
diminished by half. 

8.1 Compression ratio 
It is our conjecture that some characteristic feature of the trajectory of GA can be obtained by 
analysing the ration of the compressed trajectory to itself. We decided to investigate 
Lempel-Ziv compression algorithm [17] applied to populations executed by various genetic 
algorithms. We implemented five De Jong's functions with 10 different parameters sets. 
Each experiment was run 10 times. All together we obtained 500 different trajectories. The 
following settings of algorithms were considered 
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where EXP is the experiment number; CROS is type of crossover operator (one point, two 
point, uniform); PC and PM are probabilities of crossover and mutation, respectively; and 
SEL is type of selection operator (tournament, rank, and proportional). In each experiment 
the population consisted of 25 points and the genetic algorithm was realized on 100 
generations (points). 
We have performed numerous experiments on compressing particula generations with 
Lempel-Ziv algorithm of various bit resolution. We have measured number of prefixes 
resulting from compression process and corresponding compression ratio in scenarios of 
two types. The first one has considered single generations, and for each trajectory we have 
obtained corresponding trajectory of number of prefixes used. In the second scenario, each 
next generation was added to all past generations forming an ascending family of sets of 
generations. Compressing elements of such family gave an overall picture how number of 
prefixes used in the compression stabilizes over time. 

8.2 Experiments with dimensions 
The first experiments with attractors generated by GAs and the expression (48) have been 
performed by our co-worker in [6]. His results allow us to claim that the present approach 
can be useful in the GA's dynamics research. 
In our paper we include new calculation results. 12 benchmark functions were used (cf. [13, 
7]) in the analysis. Experiments were performed for different dimension: 10, 15, 20 bits with 
operator parameters and Popsize. Then the box counting dimension was used to calculate 
the trajectory dimension. 
 

 

Fig. 1. Final joint results of fractal dimension 

As far as the analytical approach and the formal definitions of dimensions (43) and (47) are 
concerned their computer implementation needs additional investigations. Computer 

accuracy is finite, hence all limits with e tending to zero will give unrealistic results. For 

example, if in (47) the calculation drops below the computing accuracy the expression value 
becomes zero or undefined. It means that we have to stop taking limit values in early stage. 
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Hence, the questions arise: to which minimal value of e the calculation should be performed 

and whether and how the relations with limits should be substituted with finite, non-
asymptotic, expression? This, however, will be the subject of our further research. 
The main idea of our experiments was the verification and confrontation of our theoretical 
considerations and conjectures with real genetic algorithms. 
 

 

Fig. 2. Average results of fractal dimension 

 

Fig. 3. Joint results of fractal dimension 

On the basis of our experiments we can conclude that: 
1. Selection. 
Change of the selection methods while preserving the other parameters does not effect the 
values of fractal dimension. 
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2. Crossover. 
When the number of crossover positions is changing the fractal dimension is growing with 
roulette selection method and is decreasing when selection is a tournament. 
3. Populations. 
Fractal dimension is growing with the number of individuals in population. 
4. Mutation probability changes have small implication on the value of fractal dimension. 
The analysis of the experimental result. 
The value of box-counting dimension of the trajectory of genetic algorithms is not random. 
When we use the same fitness function and the same configurations, then the box 
dimensions become clustered near the same value. Whole trials of the independent running 
attains the same values. Moreover with the different functions but the same configuration 
we deal with the conservation of box-counting dimension clustering. 
Average values of the box-counting dimension for the united trajectories of the algorithms 
from the same trial were similar to these which were calculated by averaging of the 
dimension of individual trajectories. This fact acknowledges the conjectures that box-
counting dimension could characterize the complexity of algorithms. Box-counting 
dimension describes the way of evolution during search. Algorithms which attain the 
maximum in a wide loose set have bigger dimension than others which trajectories were 
narrow, with small differences between individuals. 
One can say that bigger box dimension characterizes more random algorithms. The main 
result of the experiments states that fractal dimension is the same in the case when some 
boxes contains one individual as well as when these boxes contain many elements 
(individuals). Box dimension does not distinguish the fact that two or more elements are in 
the same place. They undergo counting as one element. The value of dimension should 
depend on the number of elements placed in each box. Our main conclusion is that good 
characterization is the information dimension. 

9. Conclusions 

One of the main results reported in this Chapter is the limiting algorithm and populations' 
distribution at the end of infinite steps. Theorem 5 does not tell about the form of the next 
population when actual population is known; it gives rather the limit distribution of all 
possible populations of the algorithm considered. The limiting algorithm describes globally 
the action of the genetic algorithm. It plays the role of the law of big numbers, known from 
the probability theory, however, for genetic algorithms. Knowledge the limiting algorithm 
could help in standard calculations: just in one step one could obtain the limit distribution. It 
could accelerate calculations and gives chance to omit the infinite numbers of calculation 
steps. 
If the limiting algorithm is known an extra classification tool is for our disposal, and new 
hierarchial classification method can be suggested. It will base not only on entropy, fractal 

and dimensions of trajectory, but on transition matrix T , its eigenvalues, eigenvectors and 

limiting matrix Q . This hierarchie could be as follows: 

• Two genetic algorithms are equivalent if their transition matrices are the same. 

• Two genetic algorithms are equivalent if they have the same limit distribution π. 

• Two genetic algorithms are equivalent if their limiting algorithm, described by the 

matrix Q  is the same. 
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• Two genetic algorithms are equivalent if the entropy of their trajectories is the same. 

• Two genetic algorithms are equivalent if the fractal (box-counting, information, 
Hausdorff) dimensions of their trajectories are the same. 

• Two genetic algorithms are equivalent if they generate the same order in populations. 
We can see that the proposed scheme of classification referes to concepts known in the 
probability theory and the theory of dynamical systems. The open question is the role of 
different concepts and their importance. Is it possible to introduce the order relations in the 
proposed scheme? This will be investigated in the next publications. 
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11. Appendix 

Fractal and box - counting dimensions 

To make the definitions more evident let us notice that for the graph Γf of a smooth, i.e. C1, 

real function f of one variable we have dimH(Γf ) = 1, while if the function f is Cε (i.e. Hölder 

continuous of class ε) then dimH(Γf ) ≤ 2 - ε. The Hausdorff dimension of the Peano curve has 

dimension 2 while the Hausdorff dimension of the Cantor middle set is log2=log3, while its 

topological dimension DT is zero. In most cases Hausdorff dimension ≥ the topological one. 
In its classical form a fractal is by definition a set for which the Hausdorff dimension strictly 
exceeds the topological dimension. 
Topological dimension takes non-negative integer values and is invariant under 
homeomorphism, while the Hausdorff dimension is invariant under bi-Lipschitz maps 
(sometimes called quasi-isometries). For self-similar sets ([5, 3]) that are built from pieces 
similar to the entire set but on a finer and finer scale, and can be regarded as an invariant set 

for a finite set of contraction maps on Rl, the Hausdorff dimension is the same as its 

similarity dimension8  It is the theory of fractal and its main object of interest, namely 
iterated function systems where fractal dimensions are commonly in use [2]. Deterministic 
and random algorithms are constructed for computing fractals from iterated function 
systems. However, such procedure are mostly implemented for 2D case, i.e. for fractals in 

R2. For genetic algorithm applications such tools are of small importance. More 

investigations on the similarities between genetic algorithms and iterated function systems 
with probabilities ([2]) are needed. 
In fractal geometry, the Minkowski dimension is a way of determining the fractal dimension 

of a set S in a Euclidean space Rn, or more generally of a metric space (X, d). This dimension 
is also, less accurately, sometimes known as the packing dimension or the box-counting 

                                                 
8 Let frig be the contraction ratios of the family of contraction maps (S1, S2,…,Sm) and E be 

the invariant set for this family, then the unique positive number s such that  is 

the similarity dimension of E ([5]). 
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dimension. To calculate this dimension for a fractal S, imagine this fractal lying on an 
evenly-spaced grid, and count how many boxes are required to cover the set. The box-

counting dimension is calculated by seeing how this number changes as we make the grid 

finer. Suppose that N(ε) is the number of boxes of side length ε required to cover the set. 

Then the box-counting dimension is defined as: 

 
(49)

If the limit does not exist then one must talk about the upper box dimension and the lower 

box dimension which correspon to the upper limit and lower limit respectively in the 
expression above. In other words, the box-counting dimension is well defined only if the 
upper and lower box dimensions are equal. The upper box dimension is sometimes called 
the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski 
dimension, while the lower box dimension is also called the lower Minkowski dimension. 
Both are strongly related to the more popular Hausdorff dimension. Only in very 
specialized applications is it important to distinguish between the three. See below for more 
details. Also, another measure of fractal dimension is the correlation dimension. 
Both box dimensions are finitely additive, i.e. if a finite collection of sets {A1,A2,…,An} is 
given then 

 

However, they are not countably additive, i.e. this equality does not hold for an infinite 
sequence of sets. For example, the box dimension of a single point is 0, but the box 
dimension of the collection of rational numbers in the interval [0, 1] has dimension 1. The 
Hausdorff dimension by comparison, is countably additive. An interesting property of the 
upper box dimension not shared with either the lower box dimension or the Hausdorff 
dimension is the connection to set addition. If A and B are two sets in a Euclidean space then 
A + B is formed by taking all the couples of points a, b where a is from A and b is from B and 
adding a + b. One has 

 

Relations to the Hausdorff dimension The box-counting dimension is one of a number of 
definitions for dimension that can be applied to fractals. For many well behaved fractals all 
these dimensions are equal. For example, the Hausdorff dimension, lower box dimension, 
and upper box dimension of the Cantor set are all equal to log(2)/ log(3). However, the 
definitions are not equivalent. The box dimensions and the Hausdorff dimension are related 
by the inequality 

 (50)

In general both inequalities may be strict. The upper box dimension may be bigger than the 
lower box dimension if the fractal has different behaviour in different scales. For example, 
examine the interval [0, 1], and examine the set of numbers satisfying the condition for any 
n, all the digits between the 22n-th digit and the 22n+1-1-th digit are zero. The digits in the 
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"odd places", i.e. between 22n + 1 and 22n+2 -1 are not restricted and may take any value. This 
fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be 

easily verified by calculating N(ε) for ε = 2
10

n

− and noting that their values behaves 

differently for n even and odd. To see that the Hausdorff dimension may be smaller than the 
lower box dimension, return to the example of the rational numbers in [0, 1] discussed 
above. The Hausdorff dimension of this set is 0. 
Box counting dimension also lacks certain stability properties one would expect of a 
dimension. For instance, one might expect that adding a countable set would have no effect 
on the dimension of set. This property fails for box dimension. In fact 

 
It is possible to define the box dimensions using balls, with either the covering number or 

the packing number. The covering number Ncovering(ε) is the minimal number of open balls of 

radius ε required to cover the fractal, or in other words, such that their union contains the 

fractal. We can also consider the intrinsic covering number '

covering
N (ε), which is defined the 

same way but with the additional requirement that the centers of the open balls lie inside 

the set S. The packing number Npacking(ε) is the maximal number of disjoint balls of radius ε 

one can situate such that their centers would be inside the fractal. While N, Ncovering, 
'

covering
N and Npacking are not exactly identical, they are closely related, and give rise to identical 

definitions of the upper and lower box dimensions. This is easy to prove once the following 
inequalities are proven: 

 (51)

The logarithm of the packing and covering numbers are sometimes referred to as entropy 

numbers, and are somewhat analogous (though not identical) to the concepts of 
thermodynamic entropy and information-theoretic entropy, in that they measure the 

amount of "disorder" in the metric space or fractal at scale ε, and also measure how many 

"bits" one would need to describe an element of the metric space or fractal to accuracy ε. 

Sometimes it is just too hard to find the Hausdorff dimension of a set E, but possible for 

other definitions that have some restriction on the ε -covers considered in the definition. We 

recall here the most common alternative. It is the box dimension, introduced by 
Kolmogorov in 1961 (cf.[5]), and which is defined in the same way as Hausdorff dimension 

except that in the definition of measure only balls (discs) in Rl of the same radius ε are 

considered for covers of E. It follows that box dimension of E is always ≥ dim(E). Moreover 
the box dimension of the closure of E is the same as for the set E itself. Since the box-
counting dimension is so often used to calculate the dimensions of fractal sets, it is 
sometimes referred to as “fractal dimension”. We prefer the term box dimension, however, 
because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff 
dimension, or even other measures of dimension such as the information dimension or 
capacity dimension. 
Sometimes box counting dimension is referred to as “similarity dimension” in the context of 
self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow 
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up a small copy to get the whole set. If there are exactly N such small copies that make up 
the entire set, the box dimension is easily seen to be lnN/ ln r . 

Let us consider the  be the set of rational numbers in the interval 
[0, 1], that is p ≤ q are relatively prime integers. Since the rationals are dense in [0, 1], any 

interval we choose contains some. This means for every ε we need  boxes to cover 

the whole Q. Consequently . Thus the box dimension of the 

rational numbers is 1. 

The last example will be given by the new set P = {x ∈ [0, 1]} x has a decimal expansion 

which does not contain 4 nor 5. Notice that 0.4 has the two representations, namely .4 and 

.39999(9). The set P is disconnected: it does not contain the open interval (0.4, 0.6). We shall 

see that the set is closed and also self-similar: any small piece of it can be scaled up to look 
like the whole thing just by multiplying by an appropriate power of 10. It can be proven that 

 

At the same time the topological dimension of P is zero. 

12. References 

Baker G.L. and Gollub J.P.: Chaotic Dynamics: an Introduction, Cambridge Univ. Press, 
Cambridge, 1992. 

Barnsley M. F.: Lecture notes on iterated function systems, in Chaos and Fractals.The 
Mathematics Behind the Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L. 
Denamney and L. Keen (eds.) American Mathematical Society, Providence, Rhode 
Island, pp. 127-144, 1989. 

Falconer K.J.: Fractal geometry, Math. Found. Appl. John Wiley, Chichester, pp.15 -25, 1990. 
Friedman N.A., Ornstein D.S.: On isomorphisms of weak Bernoulli transformations, Adv. in 

Math. , 5, pp. 365-394, 1970. 
Harrison J.: An introduction to fractals, in Chaos and Fractals. The Mathematics Behind the 

Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L. Denamney and L. Keen 
(eds.) American Mathematical Society, Providence, Rhode Island, pp. 107-126, 1989. 

Kieś P.: Dimension of attractors generated by a genetic algorithm, in Proc. of Workshop 
Intelligent Information Systems IX held in Bystra, Poland, June 12-16, pp. 40-45, 2000. 

Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd, rev. edition, 
Springer, Berlin, Heidelberg et al., 1996. 

Ossowski A.: Statistical and topological dynamics of Statistical and topological dynamics of 
evolutionary algorithms, in Proc. of Workshop Intelligent Information Systems IX held 
in Bystra, Poland, June 12-16, pp. 94-103, 2000. 

Ott E.: Chaos in Dynamical Systems Cambridge Univ. Press, Cambridge, 1996. 
Ornstein D.S.: Ergodic theory, Randomness and Dynamical Systems, Yale Univ. Press, 1974. 
Vose M.D.: Modelling Simple Genetic Algorithms, Evolutionary Computation, 3 (4) 453-472, 

1996. 
Wolpert D.H. and Macready W.G.: No Free Lunch Theorems for Optimization, IEEE 

Transaction on Evolutionary Computation, 1 (1), 67-82, 1997, http://ic.arc.nasa.gov 
/people/dhw/papers/78.pdf 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

28 

Igel, C., and Toussaint, M.: "A No-Free-Lunch Theorem for Non-Uniform Distributions of 
Target Functions," Journal of Mathematical Modelling and Algorithms 3, 313-322, 2004. 

English, T.: No More Lunch: Analysis of Sequential Search, Proceedings of the 2004 IEEE 
Congress on Evolutionary Computation, pp. 227-234. 2004, 
http://BoundedTheoretics.com /CEC04.pdf 

Szlenk W., An Introduction to the Theory of Smooth Dynamical Systems.,PWN, Warszawa,John 
Wiley&Sons, Chichester, 1984 G.H. 

Choe G. H., Computational Ergodic Theory. Springer, Heidelber, New York 2005 
G. Frizelle G., Suhov Y.M.: An entropic measurement of queueing behaviour in a class of 

manufacturing operations. Proc. Royal Soc. London A (2001) 457, 1579- 1601. 
A. Lasota, Asymptotic properties of semigroups of Markov operators (in Polish), Matematyka 

Stosowana. Matematyka dla Społeczeństwa,PTM, Warszawa, 3(45), 2002, 39-51. 
P. Kieś and Z. Michalewicz, Foundations of genetic algorithms (in Polish), Matematyka 

Stosowana. Matematyka dla Społeczeństwa , PTM Warszawa 1(44), 2000, 68{91.  
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 

1996. 
M. D. Vose, The Simple Genetic Algorithm: Foundation and Theory, MIT Press, Cambridge, MA, 

1999. 
A. Lasota, J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. 

Amer. Math. Soc. 273 (1982), 375{384. 
J. E. Rowe, The dynamical system models of the simple genetic algorithm, in Theoretical 

Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, Alex Rogers (Eds.), 
Springer, 2001, pp.31-57. 

R. Schaefer, Podstawy genetycznej optymalizacji globalnej (in Polish), Wydawnictwo 
Uniwersytetu Jagiellońskiego, Kraków 2002. 

R. Schaefer, Foundations of Global Genetic Optimization, Series: Studies in Computational 
Intelligence, Vol. 74, Springer, Berlin, Heidelberg, 2007, 

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. 
Sci. Math., 43 (1995), 245-262. 

J. Socała, Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice, 
Ann. Polon. Math., 68 (1), (1998), 1-16. 

J. Socała, W. Kosiński, S. Kotowski, On asymptotic behaviour of a simple genetic algorithm 
(in Polish: O asymptotycznym zachowaniu prostego algorytmu genetycznego), 
Matematyka Stosowana. Matematyka dla Społeczeństwa , PTM, Warszawa,6 (47), 2005, 
70-86. 

J. Socała, W. Kosiński, Lower-bound function method in the converegence analysis of 
genetic algorithms, (in Polish: Zastosowanie metody funkcji dolnej do badania 
zbieżności algorytmów genetycznych, Matematyka Stosowana. Matematyka dla Spo 
leczeństwa, PTM, Warszawwa, 8 (49), 2007 , 33-44. 

J. Socała, W. Kosiński, On convergence of a simple genetic algorithm, ICAICS, 9-th 
International Conference on Artifical Intelligence and Soft Computing, 2008, LNAI, 
Springer, Berlin, Heidelberg, poz.366, in print. 

J. Socała, Markovian approach to genetic algorithms, under preparation. 
S.Kotowski, W. Kosiński, Z. Michalewicz, J. Nowicki, B. Przepiórkiewicz, Fractal dimension 

of trajectory as invariant of genetic algorithms, ICAICS, 9-th International Conference 
on Artifical Intelligence and Soft Computing, 2008, LNAI, Springer, Berlin, Heidelberg, 
poz.401, in print. 

S. Kotowski, Analysis of genetic algorithms as dynamical systems (in Polish: Analiza 
algorytmów genetycznych jako układów dynamicznych, under preparation, 2008. 

www.intechopen.com



Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Witold Kosiński, and Stefan Kotowski (2008). Limit Properties of Evolutionary Algorithms, Advances in

Evolutionary Algorithms, Xiong Zhihui (Ed.), ISBN: 978-953-7619-11-4, InTech, Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/limit_properties_of_evolutionary_algo

rithms



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


