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Abstract

In this chapter, we consider theoretical and implementation difficulties in application
of the hierarchical  modelling and hp-adaptive finite element approach to elasticity,
dielectricity and piezoelectricity. The main feature of the applied methodology is its
generalizing character  which is  reflected by application of  the  same or  analogous
algorithms to three mentioned physical problems, including multi-physics problem of
piezoelectricity, simple and complex physical description as well as simple and complex
geometries. In contrast to the most common approaches dealing with a single physical
phenomenon, described by a single physical model, within a single geometrical part,
this  chapter  presents  the ideas  which brake and overcome such a  simplicity.  This
presented  chapter  generalizes  author’s  hitherto  accomplishments,  in  hierarchical
models and hp-approximations of linear elasticity, onto dielectricity and piezoelectricity.
The same refers to error estimation and adaptivity control. In this context, the main
similarities and differences of three physical problems are of interest in this work.

Keywords: physical complexity, elasticity, dielectricity, piezoelectricity, geometrical
complexity, model complexity, hierarchical modelling, finite elements, hierarchical ap-
proximations, error estimation, hp-adaptivity

1. Introduction

In this chapter of the book we extend our hitherto propositions concerning 3D-based hier-
archical models of liner elasticity onto 3D-based linear dielectric and piezoelectric media. In
the case of hierarchical models of linear elasticity we apply 3D-elasticity model, hierarchical
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shell models, first-order shell model and the solid-to-shell or shell-to-shell transition models.
In the case of dielectricity we utilize 3D-dielectricity model, and the 3D-based hierarchical
dielectric  models  as  well.  The  piezoelectric  case  needs  combination  of  two  mentioned
mechanical and electric hierarchies, so as to generate the hierarchy of 3D-based piezoelectric
models. Any combination of the mentioned elastic and dielectric models is possible. As far as
the  hp-discretization  is  concerned  we  extend  the  ideas  of  hierarchical  approximations,
constrained approximations and the transition approximations of the displacement field onto
electric potential field of dielectricity or the coupled electro-mechanical field of piezoelectricity.
The mentioned approximations allow p-adaptivity (three-dimensional or longitudinal),  q-
adaptivity (transverse one), h-adaptivity (three-dimensional or two-dimensional ones) and
M-adaptivity (model adaptivity). The error assessment in three classes of problems is based
on  the  equilibrated  residual  methods  (ERM)  applied  to  total  and  approximation  error
estimations. The modelling error is obtained as a difference of the previous two errors. The
estimated  error  values  are  utilized  for  adaptivity  control.  The  adaptive  procedures  for
dielectricity and piezoelectricity are obtained through the generalization of the three- or four-
step strategies applied so far to the elasticity case. The difficulties in generalization of the
above-mentioned methods of hierarchical modelling, hp-approximations, error estimation and
adaptivity  control  onto  electrical  and electro-mechanical  problems are  addressed in  this
chapter.

2. Considered problems

In the chapter we consider five problems. The first three correspond to stationary problems of
mechanical, electric and electro-mechanical equilibrium of the elastic, dielectric and piezo-
electric media, respectively. The last two problems deal with free vibration problems of linear
elasticity and linear piezoelectricity.

2.1. Elastostatic problem

Let us start with the standard formulation of the linear elasticity [1]. The problem local
equations include equilibrium, constitutive and geometric relations:

,
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= 1 / 2( ),

ij j i

ij ijkl kl

ij i j j i

f
D

u u V

s

s e

e

+

+ Îx
(1)

where �����, ���, ���, i,j,k,l = 1,2,3 are the elasticity constants tensor, and the stress and strain
tensors, respectively. The given vector of mass load is denoted as fi , while ui is the unknown
vector of displacements. The above equations hold in volume V of the body.

The standard boundary conditions for stresses and displacements are:
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where nj denotes components of the normal to the body surface S, composed of its loaded SP
and supported SW parts: � = �� ∪ ��. The vectors pi and wi represent the given stresses and

displacements on SP and SW, respectively.

The equivalent variational formulation results from minimization of the potential energy of
the elastic body:

, , = +ò ò òijkl i j k l i i i iV V SP
D v u dV v f dV v p dS (3)

where vi represent admissible displacements conforming to the displacement boundary
conditions.

The above variational functional can be utilized in the derivation of the global finite element
equations of the form:

,q hp
M V S= +K q F F (4)

where ��, ��, ��, are the stiffness matrix within the mechanical equilibrium problem, and the

vectors of the nodal forces due to volume and surface loadings. The term ��, ℎ� stands for the
nodal displacement degrees of freedom (dofs). The applied hierarchical q,hp-approximation
of displacements will be addressed in the next sections.

2.2. Electrostatic problem of dielectrics

The standard local formulation of linear dielectricity [2] consists of the Gauss law, here
corresponding to the lack of volume charges, the constitutive relation and the electric field ��
definition:
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(5)

Above, ���, i,j = 1,2,3 stands for the dielectric constants tensor, while �� denotes the electric

displacement vector. The scalar term � represents the electric potential field, searched in the
volume � of the dielectric.
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The boundary conditions for the electric displacements and electric potential read:
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where � and � are the given scalar values of the surface charge and electric potential on the
parts �� and ��, respectively, of the surface � of the dielectric body (� = �� ∪ ��).
The corresponding variational formulation which reflects minimization of the potential electric
energy can be described as follows:

, , =ij i jV SQ
dV c dSg y f yò ò (7)

with � being the admissible electric potential conforming to the second boundary condition
of Eq. (6).

The finite element formulation can be expressed as follows:

,
   

h
E Q

r p =K Fj (8)

where �� is the characteristic matrix of dielectricity, �� denotes the characteristic nodal vector

of electric charges and ��, ℎ� stands for the unknown nodal vector of electric potentials. The
hierarchical ρ,hπ-approximation of the potential will be explained later on in this chapter.

2.3. Stationary electro-mechanical problem

Formally, the local formulation of the piezoelectric problem of electro-mechanical equilibrium
[3] can be treated as a combination of the linear elasticity and linear dielectricity Eqs. (1) and (5):
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What couples both sets of equations are the modified constitutive relations, where the coupling
piezoelectric constants tensor ���� appears.
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The boundary conditions of the coupled problem are:
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The variational functional of the electro-mechanical problem consists of the terms of function-
als (3) and (7) completed with the terms describing the piezoelectric coupling through the
tensor ����, i.e.
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The above variational formulation leads to the following finite element equations
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where �� is the characteristic matrix of piezoelectric coupling.

The above finite element equations correspond to a very general case when both the direct and
inverse piezoelectric phenomena are present. Substitution of the second Eq. (12) into the first

one leads to the single combined equation from which the nodal displacements ��, ℎ� can be
calculated. The opposite substitution gives the combined equation from which the nodal

electric potentials ��, ℎ� can be extracted. The first situation corresponds to the so-called
actuation action of the piezoelectric, while the second one to the sensing action of the piezo-
electric body. These two modes of action can be associated with the direct and inverse piezo-
electric phenomena, respectively.

2.4. Mechanical problem of free vibration

The local formulation of the free vibration problem of linear elasticity is composed of the
following equations
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where  is a density of the elastic body, while �̈� represents the acceleration vector. The

displacements are of harmonic character, i.e. ui = ai sin ωt, with � standing for the unknown
natural frequencies of the body and �� denoting the searched displacement amplitudes.

The boundary conditions are:
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The variational formulation of the free vibration problem takes advantage of the Hamilton’s
principle and reads

2
, , = 0-ò ò ñijkl i j k l i iV V

D v a dV v a dVw (15)

The finite element formulation derived from the above variational functional represents a set
of uniform algebraic equations. Such a set possesses a solution if the following characteristic
equation is fulfilled:

2det( ) 0M w- =K M (16)

From this equation � natural frequencies ��, � = 1,2,…,� can be calculated, where � is the total

number of degrees of freedom of the vibrating elastic body. Above, M represents the mass (or
inertia) matrix.

For each natural frequency �� the nodal vector of displacement amplitudes ���, ℎ� can be

determined with use of the below finite element equations:
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The second relation above is the normalization condition, completing � − 1 geometrically
independent finite element equations of the first relation.

2.5. Coupled problem of free vibration

We start here with the local (strong) formulation of the undamped vibration problem of the
piezoelectric medium
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completed with the following boundary conditions of the coupled electromechanical field
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In the case of stationary mass �� = ��(�) and surface �� = ��(�) loadings and charges � = �(�),
and the stationary displacement �� = ��(�) and electric potential � = �(�) boundary conditions

as well, the problem converts into two independent ones. The first of them is exactly the
stationary task of the electro-mechanical equilibrium defined with the local formulation (9)
and (10). The corresponding variational and finite element formulations are exactly described
with Eqs. (11) and (12), respectively. The solution in displacements �� = ��(�) to this stationary

problem determines the equilibrium state around which the free vibrations of the piezoelectric
are performed. This solution allows the determination of the initial stresses ��� = ���(u) which

are taken into account in the second problem of free vibration.

The local formulation of the mentioned free vibration problem of the piezoelectric can now be
determined in the following way:
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where the displacement and the coupled potential fields are: ui = ai sin ωt and ϕ = α sin ωt,
respectively, with �� and � standing for the displacement and potential amplitudes.

The above set of differential equations has to be completed with the boundary conditions of
the form
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The equivalent variational formulation of the problem reads
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while the corresponding finite element equation describing free vibration of the initially
stressed piezoelectric medium is
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where ��, ℎ� and ��, ℎ� represent the nodal, displacement and electric potential, amplitude
degrees of freedom, while �� stands for the so-called geometric stiffness matrix due to the

initial stresses.

As the above set of linear algebraic equations is homogeneous, the solution to it can be obtained
if and only if the following characteristic equation:
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1 2det( ) = 0T
M G C E C w-+ + -K K K K K M (24)

is fulfilled. This equation has been obtained after substitution of the second relation (23) into

the first one. This allows to remove electric potential amplitudes ��, ℎ� from the combined
equation. From this equation � = 1,2,…,� natural frequencies �� can be obtained, where �is

the total number of degrees of freedom within the mechanical field.

The corresponding � normalized mode shapes can be obtained from

1 2
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( 1
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T q

q
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M G C E C n n

q hp T
n

hp
n

w-+ + - = 0K K K K K M q

q M q
(25)

where the normalization condition, the same as in (17), has been applied.

3. Complexity of the modelling

There are three types of complexity considered in this chapter. The first one deals with physical
complexity which consists in the presence of more than one physical phenomenon in the
problem. The second complexity refers to geometry of the domain under consideration. The
geometry is regarded as a complex one if more than one type of geometry is applied. One may
deal with a three-dimensional geometry, thin-walled geometry and transition geometry, for
example. The third type of complexity is model complexity. In this case, one employs more
than one model for description of at least one physical phenomenon under consideration.
Combination of these three types of complexity can be regarded as a unique feature of the
presented research.

The examples of such complex modelling are electro-mechanical systems composed of
geometrically complex elastic structures, joined with the geometrically complex piezoelectric
actuators or sensors. In the general case of arbitrary geometry, such systems may require
complex mechanical and electro-mechanical description.

3.1. Physical complexity

There are two physical sub-systems present in the considered electro-mechanical systems. The
first sub-system concerns bodies subject to elastic deformation and representing structural or
machine elements, while the second one concerns piezoelectric bodies acting as actuators or
sensors, where the direct or inverse piezoelectric phenomena take place.

3.2. Geometrical complexity

In both, mechanical and piezoelectric, sub-domains we deal with the complex geometry of the
structural and piezoelectric elements. In the case of the structural elements, they can be three-
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dimensional bodies, bounded with surfaces, thin- or thick-shell bodies [4] and solid-to-shell
transition bodies. In the case of the piezoelectric members, they can be of three-dimensional,
symmetric-thickness or transition character. The shell or symmetric-thickness elements are
defined by means of the mid-surface and thickness concepts. In the case of both transition
members, we deal with three-dimensional geometry, bounded with surfaces, apart from the
boundary to be joined with the shell or symmetric-thickness elements. On this superficial
boundary part the mid-surface and the symmetric thickness function have to be defined.

3.3. Model complexity

In the case of the mechanical sub-system complex geometry, the mechanical description may
include: three-dimensional elasticity model, hierarchical shell models, the first-order shell
model and the solid-to-shell or shell-to-shell transition models. The latter two models allow
joining the first-order shell domains with the 3D elasticity and hierarchical shell ones, respec-
tively. In the case of the piezoelectric sub-system, the dielectric model can either represent
three-dimensional dielectricity or hierarchical symmetric-thickness dielectric models. The
piezoelectric model can be any combination of the listed elastic and dielelectric models.

4. The applied methodology

There are five related aspects of the presented methodology of adaptive hierarchical modelling
and adaptive ℎ�-finite element analysis of elastic, dielectric and piezoelectric bodies. The first
of them is the 3D-based approach proposed in [5]. The second issue, i.e. hierarchical mechanical
models were initiated in [6], further developed in [7] and finalized in 3D-based version in [8],
while the electric models were introduced in [9] for laminated piezoelectrics and in [10] for
dielectrics. General rules of the next aspect of hierarchical approximations were given in [11].
Such approximations for hierarchical shells were developed in [7] and for complex struc-
tures in [8]. The latter work generalizes the former attempts given in [12–15]. Approximations
for piezoelectric problems were elaborated in [9, 16]. The next issue of error estimation by the
equilibrated residual method [17] for 3D elasticity was addressed in [18], for the hierarchical
shells in [19], for the 3D-based first-order shells in [20, 21] and for the 3D-based complex
structures in [22]. Application of the method in electric problems was proposed in [23]. Finally,
adaptivity control with the three-step strategy for simple structures was presented in [24],
while adaptivity for simple piezoelectrics was introduced in [25]. The first work was extended
onto the 3D-based complex structures in [22].

4.1. 3D-based approach

The applied 3D-based approach [5, 8] lies in application of only three-dimensional degrees of
freedom (dofs) regardless of the applied mechanical or electric models. This means that the
conventional mid-surface dofs of the shell models, i.e. mid-surface displacements, rotations
and other generalized displacement dofs of the mid-surface, are replaced with the equivalent
through-thickness displacement dofs similar to the three-dimensional dofs of the 3D elasticity

Perusal of the Finite Element Method10



model. Also the mid-surface dofs of the two-dimensional dielectric theory are replaced with
the through-thickness electric potential dofs of the three-dimensional dielectrics.

The equivalence of the displacement mid-surface dofs and the through-thickness dofs can be
expressed through:

3 3
0 0

     ( ) 
I I

m m m
j j m j

m m

u s t ux x
= =

¢ ¢ ¢ ¢ ¢= =å å (26)

where  represents the local, tangent (� = 1,2) and normal (� = 3), displacement fields. The
terms  and tm  stand for the mth power of the local, normal coordinate  (  = 0 on the
mid-surface) and the mth polynomial through-thickness function of this coordinate, respec-

tively. The mid-surface and through-thickness displacement dof functions are denoted as 

and , respectively, with m = 1,2,…,I and � being the order of the shell theory.

In the case of the electric potential field, the analogous equivalence can be seen in:
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J J
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m

m m

tf x d x f (27)

where � denotes the scalar field of the potential, while �� and �� represent mth (m = 1,2,…,J)
mid-surface and through-thickness potential dof functions, while � is the order of the two-
dimensional dielectric theory.

4.2. Hierarchical models

In the case of the mechanical elastic models the hierarchy M of the 3D or 3D-based models �
is [5, 8]:

{3 , , , 3 / , / }M,  M D MI RM D RM MM I RMÎ = (28)

where 3D represents three-dimensional elasticity, �� denotes hierarchical higher-order shell
models, �� is the first-order Reissner-Mindlin shell model, while 3�/�� and ��/�� denote
the solid-to-shell or shell-to-shell transition models. It is worth mentioning that the second and
last models form the following sub-hierarchies:

= { 2, 3, 4, },
/ = { 2 / , 3 / , 4 / , }

MI M M M
MI RM M RM M RM M RM

K
K (29)

with � being the order of each particular theory.
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The hierarchical character of the above models results from the mentioned order � of the
applied 3D-based theories, i.e.

= =1,
= 2 / , 3 / , 4 / , = 2,3,4, , = 1

= 2, 3, 4, = 2,3,4, ,
= 3 / , = 1

= 3 ,

Þ º
Þ
Þ º
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K K
K K

M RM I K I
M M RM M RM M RM I K

M M M M I K I
M D RM I K

M D I K I

(30)

Note that for the pure models (��,��, 3�) � ≡ �, while for the transition ones (��/��, 3�/��)� ≠ �.
The hierarchy of 3D-based models possesses the following property:

( )/ ( ) 3

, ,=1,
=lim lim I K M D

U V U VK I I®¥
u u (31)

guaranteeing that the solutions ��/�(�) obtained with the subsequent models tend in the limit

to the solution �3� of the three-dimensional elasticity (the highest model of the hierarchy),
when � ∞. In the above relation the norm of the strain energy � is applied in order to compare
the solutions. The norm is defined as follows:

/ ( ) / ( ) / ( )

,

1= ( ) ( )
2

I K M T I K M I K M
U V V

dVòu u us e (32)

where � and � are the stress and strain vectors, respectively.

In the case of the dielectric theories the hierarchy E of the 3D-based models �:

E,   E {3 , }E D EJÎ = (33)

is composed of the three-dimensional theory 3D and the set:

= { 1, 2, 3, }EJ E E E K (34)

of the 3D-based hierarchical dielectric models ��, where � is the order of the corresponding
dielectric theory.

The hierarchy can be ordered with respect to the order � in the following way:

Perusal of the Finite Element Method12



= 1, 2, 3, = 1,2,3, ,
= 3 ,

E E E E J L J
E D J L J

Þ º
Þ ®¥ º
K K

(35)

and is characterized with the following property:

( )/ ( ) 3
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=lim lim J L E D

W V W VL J J
f f

®¥
(36)

which says that the solutions ϕJ/L(E) based on the subsequent models of the hierarchy give in
the limit (� ∞) the solution ϕ3D of the highest model of the hierarchy, i.e. the model of three-
dimensional dielectricity. In the case of the applied pure models, �� and 3D, L ≡ J.

The norm applied for the model comparisons is based on the electrostatic energy �, i.e.

/ ( ) / ( ) / ( )

,

1= ( ) ( )
2

J L E T J L E J L E
W V V

dVf f fò d E (37)

with � and E being the electric displacement and electric field vectors, respectively.

4.3. Hierarchical approximations

The hierarchical approximations [6, 11] applied to the hierarchy of the 3D-based elastic models
can be defined as follows [5, 8]:
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Above we applied the general notation, �(�),ℎ�, valid for any hierarchical model, and the
equivalent symbols of the approximations for each particular model (on the right side of the
above relations), where ℎ represents the generalized size of the element, � denotes the
longitudinal order of approximation and � ≡ �(�) is the transverse order of approximation,
equivalent to the order of the theory, i.e. �(�) ≡ �(�). The specific approximations are either
two-dimensional (ℎ�) or three-dimensional (ℎ��, ℎ��) or mixed (ℎ��/ℎ�, ℎ��/ℎ�).
The above approximations lead in the limit (1/ℎ ∞, � ∞) to the exact solution of the
appropriate mechanical model � of the order �/�, i.e.
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( ), / ( )

, ,1/ ,
=lim e

q M hp I K M
U V U Vh p È®¥

u u (39)

Combination of the models defined with (30) and the corresponding approximations of (38)
leads to the hierarchical numerical models of the following property:

( ) ( )( ), / ( ) 3

, , ,1, 1/ , 1,
lim lim lim = lim lim =e

q M hp I K M D
U V U V U VK I I h p K I IÈ= ®¥ ®¥ = ®¥

é ù
ê úë û

u u u (40)

As it can be seen above, the solutions to these models tend in the limit to the exact solution of
the highest mechanical model (3�).
By analogy, the numerical approximations of the 3D-based dielectric models are:

( ),

( ),

, 2 =
= 3 , =

E h h

E h h

E EJ J L
E D J L

r p pr

r p pp

f f

f f

Î º ³ Þ

º ®¥Þ
(41)

Above, for the sake of further considerations, the longitudinal approximation order � is
denoted as � and the transverse one � as � ≡ �(�), where �(�) ≡ �(�). The principal property
of the above electric potential approximations reads

( ), / ( )

, ,1/ ,
=lim e

E h J L E
w V W Vh

r p

p
f f

È®¥
(42)

while for the hierarchical numerical dielectric models, being the combination of the electric
models (35) and the above approximations (41), one has

( ) ( )( ), / ( ) 3

, , ,=1, 1/ , =1,
lim lim lim = lim lim =e

E h J L E D
W V W V W VL J J h L J J

r p

p
f f f

È®¥ ®¥ ®¥

é ù
ê úë û (43)

where the limit solutions  and 3D are present.

4.4. Error estimation

It is well known [17–19, 22] that the equilibrated residual methods of error estimation require
solution of the following approximated local (element) problems of mechanical equilibrium:

, , , , ,

\ ( )
B( , ) L( ) ( ) ( ) = 0e

P D

e e e e
Q HP Q HP Q HP Q H P T q hp

S S S
dS

È
- - á ñòu v v v r u (44)
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where B� and L� are the bilinear and linear forms representing virtual strain energy and the
virtual work of the external forces. The last term stands for the virtual work of the inter-element

stress fluxes . The element size in the local problems is denoted as �, the longitudinal
approximation order is �, while the transverse one is � ≡ �(�).
The above three terms can be defined as follows

(45)

with � being the elasticity constants matrix. Thus, Eq. (44) can be written in the language of
finite elements:

(46)

where  denote element stiffness matrix, and element forces vectors due to mass,

surface and inter-element stress loadings, while  and  represent solution and
admissible displacement dof vectors in the local problem. The solution vector is then utilized
in the error estimation. The collection of the element solutions obtained this way leads to the
global error estimate which constitutes the upper bound of the true error [18, 19, 22].

The above approach can be extended onto the mechanical problem of free vibration by
replacing the linear form of (44) by the virtual work of the inertia forces [26]. These forces are:

, where  is the element mass (or inertia) matrix, while the natural frequencies ��
and the vector of the element displacement amplitudes  are taken from the global problem

solution. These forces replace  and  in (45) and (46). Note that now the element solutions,
analogous to this obtained from (46), do not guarantee the upper boundedness of the global
error by its residual estimate.

In the case of electrostatic dielectricity, the local problems of the equilibrated residual method
take the form [23]:

P, P, P, P, ,

\ ( )
b( , ) 1( ) ( ) = 0e

Q F

e e e e
H H H H h

S S S
h dSr pf y y y fP P P P

È
- - á ñò (47)
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with the bilinear and linear forms,  and , representing virtual electrostatic energy and the
virtual work of external charges. The right term above is equal to the virtual work of the

equilibrated charge flux . The indices �, Π, P ≡ P(�) stand for the element size and
the element longitudinal and transverse approximation orders.

Taking into considerations the below definitions:

(48)

where γ is the dielectricity constants matrix, one can transform (47) into the following local
finite element equation

(49)

Above  denote element dielectricity matrix, and element vectors due to surface and

inter-element charges, while  and  are the solution and admissible electric potential
dof vectors of the local problem. This element solution is applied to the error estimation of the
dielectric problems. The global error estimate obtained with use of the above element solutions
upper-bounds the true global error.

4.5. Adaptive strategy

The adaptive strategy for the complex problems of elasticity is based on the Texas Three-Step
Strategy [24]. The latter strategy consists in solution of the global problem thrice on the so-
called initial, intermediate and final meshes. The intermediate mesh is obtained from the initial
one based on the initial mesh estimated values of element errors and the hp convergence theory
relating these errors to the discretization parameter ℎ. Thanks to this the h-adaptation is
performed. The final mesh is obtained from the intermediate one in the analogous way through
p-refinement. This process takes advantage of the intermediate mesh estimated errors and the
relation between these errors and the discretization parameter p. The original strategy can be
enriched with the fourth step [5, 27], called the modification one, which is performed on the
initial mesh and is applied when the unpleasant numerical phenomena due to the improper
solution limit, numerical locking or boundary layers appear in the mechanical problem. The
purpose of this additional step is to get rid of the numerical consequences of the mentioned
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phenomena before the error-controlled hp-adaptivity is started. The control of this step is based
on the sensitivity analysis of the local (element) problems solutions to these three phenomena.

The above four-step strategy can be easily extended onto the complex dielectric problems. It
has to account only for the boundary layer phenomenon within the modification step, as two
other phenomena do not appear in the problems of dielectrics. Other steps do not change.

5. Problems within the methodology

In this section of the chapter we consider the main difficulties in generalization of the hier-
archical models, hierarchical approximations, equilibration residual method of error estima-
tion and three- or four-step adaptive strategies, presented in the previous sections for the
problems of elasticity and dielectricity, onto coupled problems of piezoelectricity.

5.1. Hierarchical model and approximation issues

The first task here is to compose the elastic and dielectric models, defined with (28) and (33),
respectively, into one consistent hierarchy of the piezoelectric media. Our proposition on how
to perform this task follows from the main feature of both component hierarchies which are
characterized with the independently changing orders � and � of the elastic and dielectric
models, as shown in (30) and (35). Because of this we can propose the definition

( ){ }P,  P , :  M,  EÎ = Î ÎP M E M E (50)

which determines the hierarchy P of piezoelectric models � as composed of all combinations
(M,E) of the elastic � and dielectric � models. Even though the following property:

( ){ }/ ( ) / ( ) 3 3

, ,=1, =1,
lim lim lim lim ( , ) ( , )

®¥ ®¥

é ù =ê úë û
I K M J L E D D

Z V Z VK I I L J J
f fu u (51)

is valid in the limit, the ordering of the coupled electro-mechanical solutions measured in the
energy norm is not unique due to different signs of the strain (or elastostatic) �, electrostatic� and coupling � parts of the co-energy: � = �− �+ �, i.e.

/ ( ) / ( )

,

1( , ) = | 2 |
2

f - +òI K M J L E T T T
Z V V

dVu E E D CEg e e e (52)

where � = �(�I/K(M)) and E = E(ϕJ/L(E)), while C is the coupling (piezoelectric) constants matrix.

The most general case of the ℎ�-approximation within the coupled field of displacements and
electric potential may include totally independent ℎ and � approximations within the me-
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chanical and electric fields. However, such an approach requires the vice-versa projections of
the displacements and potential solutions between the independent ℎ-meshes of each field.
The approach results in the additional projection error which should be included in the error
estimation. Because of this we propose the simplified approach which consists in application
of the common ℎ mesh and the independent � and � approximations within the displacements
and electric potential fields. This assumption leads to the following limit property of the
coupled solution

( )( ), ( ), / ( ) / ( )

, ,1/ , 1/ ,
lim lim ( , ) ( , )e

q M hp E h I K M J L E
Z V Z Vh p h

r p

p
f f

È®¥ ®¥
=u u (53)

It should be noticed that the monotonic character of the co-energy of the consecutive approx-
imate solutions is not guaranteed here due to the coupled character of the electro-mechanical
field.

Practical realization of the above concepts of hierarchical modelling and approximations is
implemented by means of the ℎ��- and ℎ��-adaptive piezoelectric finite elements, presented
in Figure 1. As said before, ℎ represents the assumed characteristic element size, common for
both fields, while � and � denote independent longitudinal approximation orders within the
displacements and electric potential fields. The transverse approximation orders � and � of the
mechanical and electric fields, respectively, are equivalent to the independent hierarchical
orders � and � of the elastic and dielectric models, i.e. � ≡ �, � ≡ �.
The normalized versions of the prismatic adaptive elements are presented above, where the
3D-based solid (or hierarchical shell), transition (an example of) and first-order shell mechan-
ical elements are combined with the three-dimensional (or 3D-based symmetric-thickness)
dielectric elements. In the figure the normalized coordinates are defined as �1,�2,�3 ∈ (0,1),
while the vertex, mid-edge, mid-base, mid-side and middle nodes of mechanical character are
denoted as either �1, �2, …, �21 or �1, �2, …, �18 or �1, �2, …, �14, while the corresponding

electric ones are marked with �1, �2, …, �21.

5.2. Problems within error estimation

In order to generalize the equilibrated residual method for piezoelectricity the local elastic (44)
and dielectric (47) problems have to be replaced with the coupled stationary problems
describing the electro-mechanical equilibrium:

, , P, , , ,

\ ( )

, P, P, P, P, P,

\ ( )

B( , ) C( , ) = L( ) ( )

C( , ) b( , ) = l( )

e
P D

e
Q F

e e e e e
Q HP Q HP H Q HP Q HP Q HP T

S S S

e e e e e
Q HP H H H H H

S S S

dS

h dS

f

y f y y y

P

È

P P P P P

È

- + á ñ

+ + á ñ

ò

ò

u v v v v r

u
(54)
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Figure 1. Piezoelectric solid/three-dimensional (top), transition/three-dimensional (middle), shell/three-dimensional
(bottom) elements.
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where  and , while the above coupling forms are determined as
follows:

(55)

Definitions (45), (48) and (55) allow to rewrite (54) in the finite element language:

(56)

The main disadvantage of the local solutions  and  obtained from the above set of
equations is that they do not lead to the upper bound of the global approximation error of the
global problem (12) due to the coupled character of piezoelectricity. Note that the upper bound
property is present in the cases of pure elasticity and pure dielectricity. In these circumstances
we propose the simplified approach which consists in decoupling of the local mechanical and
electric fields:

(57)

The simplified solutions of the above two decoupled problems is suggested for serving the
approximated error assessment of the coupled field.

In the case of the coupled free-vibration problem we propose to apply the same approach as
for the purely elastic vibrations. This means that the inertia forces introduced in Subsection
4.4 have to replace the volume and surface forces in the first equations (56) and (57). The

element constitutive stiffness matrix  in both equations has to be changed for the following

sum:  + , where  stands for the element geometric stiffness matrix due to the initial
stresses which correspond to the electro-mechanical equilibrium. Because of this one may skip

the electric charges  in the second equations (56) and (57).

5.3. Adaptivity control matters

The main problem with the piezoelectricity in the context of adaptivity control of the three- or
four-step ℎ�-adaptive procedure is that the convergence theorem for the finite element
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approximation of the coupled piezoelectric field is not at one’s disposal. In these circumstances
we propose to use the ℎ�-convergence exponents of the elasticity and dielectricity problems
for the mechanical and electric components of the coupled field.

With this assumption in mind we generalize the adaptive scheme applied successfully for the
complex elastic structures [28]. It can also be adopted for the dielectricity problems. The
generalization is presented in Figure 2 in the form of a block diagram, where � = 1,2,3,4
represent the consecutive steps of the algorithm—the initial, modification, intermediate and
final ones.

Figure 2. Four-step hp-adaptive scheme for complex piezoelectric or piezoelectric-elastic problems.

6. Conclusions

In the presented chapter we showed how to generalize hierarchical modelling, ℎ�-adaptive
hierarchical approximations, the equilibrated residual method of error estimation and the four-
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step adaptive procedure, originally applied to elasticity and possible also in dielectricity, for
the coupled pieozoelectric problems.

We suggest to combine the hierarchical models for complex elastic structures with the
analogous models of dielectricity in order to obtain all coupled combinations of the component
mechanical and electric models. In the case of the approximations, we suggest to apply the
common ℎ-mesh and independent p and � approximations for the displacement and electric
potential fields.

In the error estimation, we propose to decouple the mechanical and electric fields in the local
problems of the residual approach.

Our four-step ℎ�-adaptive algorithm is based on the convergence theorems for the purely
elastic and purely dielectric problems. These theorems are applied to the intermediate and
final meshes generation.
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Nomenclature

�� – displacement amplitude vector components (� = 1,2,3),�� – a node with displacement degrees of freedom (dofs), � = 1,2,…,21,
b� – a bilinear form representing the element virtual electrostatic energy,�� – a node with electric potential dofs, � = 1,2,…,21,
B� – a bilinear form representing the element virtual strain energy,

c – the electric surface charge,

 – a bilinear form representing the element coupling electro-mechanical energy,���� – components of the piezoelectricity tensor (i,k,l = 1,2,3),� – the piezoelectric constants matrix,�� – components of the electric displacement vector (� = 1,2,3),� – the electric displacement vector,����� – elasticity tensor components, i,j,k,l = 1,2,3,
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� – the elasticity constants matrix,� – the number of an element,� −a dielectric model,

E – the hierarchy of dielectric models,�� – electric field vector components (� = 1,2,3),� – the electric field vector,�� – mass load vector components (� = 1,2,3),� – the mass load vector,

 – the inter-element charge vector,

 – the element mass forces vector,

 – the element charge vector,

 – the inter-element stress forces vector,

 – the element surface forces vector,�� – the global mass forces vector,�� – the global surface forces vector,�� – the global charge vector,ℎ – measure of the element size,

 – the equilibrated inter-element charge,� – a measure of the element size in the local problem,� – the order of the hierarchical mechanical model,� – the order of the hierarchical dielectric model,

 – the element piezoelectric (coupling) matrix,

 – the element dielectric matrix,

 – the element geometric stiffness matrix,

 – the element (constitutive) stiffness matrix,
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�� – the global piezoelectric (coupling) matrix,�� – the global dielectric matrix,�� – the global geometric stiffness matrix,�� – the global (constitutive) stiffness matrix,

 – a linear form equal to the element virtual work of the external charges,

 – a linear form representing the element virtual work of the external forces,

 – the element mass (inertia) matrix,� – the number of a dof function,� – mechanical model,M – the hierarchy of mechanical models,� – the global mass (inertia) matrix,� – the number of a natural frequency,�� – vector components (� = 1,2,3) of the normal to the body surface,� – the global number of dofs (degrees of freedom),� – the element approximation order or the longitudinal order of approximation for displace-
ments,�� – surface load vector components,� – the longitudinal order of approximation for element displacements,� – piezoelectric model,P – the hierarchy of piezoelectric models,� – the surface load vector,� – the transverse order of approximation for displacements,��, ℎ� – the global displacement (or displacement amplitude) dofs vector,

 – the element displacement (or displacement amplitude) dofs vector,� – the local problem transverse order of approximation for displacements,

 – a vector of the equilibrated inter-element stresses,

 – a mid-surface displacement dof function,

Perusal of the Finite Element Method24



� – the surface of a body (or medium),�� – the body surface part with given electric potential,�� – the loaded part of the body surface,�� – the electrically charged part of the body (or medium) surface,�� – the body surface part with given displacements,

t – time,�� – the mth polynomial through-thickness function,� – the vector of global displacements,�� – the global displacement components, � = 1,2,3,

��,�� – the displacement vector in the local (element) problem,

 – local components (� = 1,2,3) of the displacement vector,

 – a through-thickness displacement dof function,�̈� – acceleration vector components, � = 1,2,3,�� – admissible displacement (or its amplitude) vector components (� = 1,2,3),
��,�� – the admissible displacement vector in the local (element) problem,

 – the admissible displacement dof vector of an element,� – volume of a body (or medium),�� – given displacement vector components (� = 1,2,3) on the body surface,� – global Cartesian coordinate vector,��� – components of the dielectricity tensor (�,� = 1,2,3),
γ – the dielectricity constants matrix,�� – the �th mid-surface electric potential dof function,��� – strain tensor components (�,� = 1,2,3),� – the strain vector,�� – normalized coordinates of an element (� = 1,2,3),

 – the local normal coordinate,
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� – the longitudinal approximation order of electric potential,Π – the element longitudinal approximation order of electric potential,� – the transverse approximation order of electric potential,

 – mass density of the body,P – the element transverse approximation order of electric potential,��� – initial stress tensor components (i,j = 1,2,3),

��� – stress tensor components (i,j = 1,2,3),

� – the stress vector,

��, ℎ� – the global electric potential (or potential amplitude) dofs vector,

 – the local (element) electric potential dofs vector,� – the electric potential,

�� – the mth through-thickness electric potential dof function,� – the given electric potential on the body surface,� – the admissible electric potential,

 – the admissible electric potential dofs vector of an element,� – a natural frequency,�� – the nth natural frequency
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