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Abstract

Bayesian modelling has attracted great interest in cognitive science and offered a flexible
and interpretable way to study cognitive processes using functional magnetic resonance
imaging data. In this chapter, a spatial Bayesian hierarchical model is applied to an
event-related fMRI study of cognitive control using the Simon test. We consider a sparse
spatial generalized linear mixed-effects model to capture the spatial dependence among
activated voxels and temporal parameters and to benefit computationally by reducing
dimensionality. We demonstrate that the proposed model has the capability of
identification of the brain areas related to cognitive tasks. Moreover, the reduction in
the false positive rate is observed in the simulation study, and the relevant brain regions
involved in processing cognitive control are clearly detected in a real-life fMRI example.

Keywords: Bayesian, functional magnetic resonance imaging, Markov chain Monte
Carlo, spatial generalized linear mixed-effects model

1. Introduction

Functional magnetic resonance imaging (fMRI) has increasingly become an important and
popular modality that allows researchers to investigate brain activity resulting from a particu-
lar stimulus [1]. In an fMRI experiment, a subject is asked to perform a task by responding to a
series of stimuli that may involve a motor, sensory or cognitive task, then the MR machine
records the changes in the blood oxygen level dependent (BOLD) of the brain across different
time points, resulting in three-dimensional fMRI time-series images. Numerous statistical
models have been proposed to allow researchers to detect localized regions activated during a
task, to describe the networks required for a particular brain function or to assess physical
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characteristics elicited by cognitive processes in the brain. However, the growth in the com-
plexity, thesignificantsizeand thehierarchical structure offMRIdatamakeitdifficulttocomprise
a fully efficient computationally feasible statistical model to accurately explain the temporal
and spatial characteristics of the data.

The standard approach used on fMRI data is known as statistical parametric mapping (SPM)
[2], which applied either a voxel-wise t-test or F-test statistics. In order to obtain an activation
map of the brain, the next step is to threshold the test statistics at a given overall error rate that
leads to a major multiplicity problem. The most common way of solving this problem is to use
Gaussian random field theory [3]. This technique is based on the assumption of a stationary
Gaussian random field, which may not be satisfied in fMRI settings. Another limitation is that
most current methods ignore at least one of the spatial or temporal relationships between
observations. Ignoring either spatial or temporal correlations in the model leads to seriously
biased conclusions [4].

This article introduces a novel Bayesian modelling approach to fMRI data analysis. Bayesian
approaches have great potential in applications because they allow a flexible modelling of
spatial and temporal correlations in data [5]. We consider a Bayesian spatiotemporal model in
a computationally feasible manner to detect brain regions that are activated by the external
stimulus in fMRI. Accurate and powerful single-subject task-related activation models are
required in order to develop effective imaging biomarkers, which constitutes the primary
scientific problem. Moreover, the Bayesian paradigm provides an attractive inferential
framework that can directly incorporate the physical characteristics of an experiment. Our goal
is to put forward a model and inferential framework by which to investigate task-specific
changes in the BOLD signal. Clearly, the model must account for the spatial relationships
between the voxels, but there are other possible sources of variation that should not be ignored.
Ultimately, we develop a hierarchical Bayesian model, which not only takes into account the
spatiotemporal and temporal drift relationships in the data under consideration, but also easily
investigates the role of specific regions that integrate brain activity to coordinate cognition and
behaviour.

The applied Bayesian hierarchical approach contains several characteristics [4, 6]. Latent
binary variables are introduced to indicate activation/inactivation of voxels. The spatial
generalized linear mixed model (SGLMM) [7, 8] is considered to capture the spatial depend-
ence of the latent binary variables. In addition, the autoregression (AR) model is used to model
the temporal dependence of signal changes. Several studies have found that spatial depend-
ence also appears in the temporal parameters in AR models [4, 9]. Thus, neglecting the spatial
dependence of temporal correlations moderates the computational intensity, but the simpli-
fication may produce a biased estimation of the temporal coefficients and consequently may
result in the spurious detection of brain activities [10]. Therefore, we also consider the spatial
linear mixed-effects model to spatially regularize the AR parameters.

In fMRI data, the posterior inferences are based on the estimations of parameters; however,
the posterior distribution is typically extremely large, and is unavailable in analytic form.
Hence, we employ Markov chain Monte Carlo (MCMC) [11] sampling techniques that combine
Metropolis-Hastings [12] schemes to generate samples from the posterior distribution for the
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purpose of performing inferential tasks. To reduce the computational burden and accelerate
the sampling procedure, we parcel the brain so that sampling procedures can be performed
in parallel. In addition, prior information on activation in the form of spatially informative
variables, e.g. the grey and white areas of the brain, can be incorporated into the model.

2. Statistical modelling

In this section, we introduce the proposed statistical model in the analysis of fMRI data. To
make inferences about task-related change in underlying neuronal activity, a general linear
model is used to model BOLD signal changes for each voxel. In addition to the essential
temporal dependence of BOLD signals in a voxel itself, the BOLD signal changes show spatially
contiguous and locally homogenous among voxels [11]. Shmuel et al. [13] in the visual fMRI
study have demonstrated BOLD response seems to be well approximated by separable
spatiotemporal model. Thus, for computational convenience, we consider a Bayesian separable
spatiotemporal model for BODL signal changes to simultaneously account for the temporal
dependence in nearby time points and spatial dependence in local neighbouring voxels.

Let y,=(y,1, ---, Yor), be a T x 1 column vector and denote the observed BOLD signals from a

voxel v=1, ..., V at time ¢, t=1, ..., T. Following [14], we model the BOLD response for a
particular voxel v with a linear regression model defined as

yv:Xvﬂv+vav+8v; 8v~NT(0’ O-le)’ (1)

where X is the design matrix, each column of which consists of values obtained from an

impulse stimulus function [15, 16] with respect to a task convolved with the hemodynamic
response function (HRF); g, is a px1 vector and corresponds to the effect of stimuli on the

BOLD signal changes. The temporal correlation is modelled by p,, being an r x 1 autoregression

coefficient vector, with L , a T xr matrix of lagged prediction errors [2, 14]. We assume that
the error terms €»in (1) are independently normally distributed N, (O, ol T) with a mean vector

0 of length T and a covariance matrix o °I across voxels, where I isa T x T identity matrix [14].

In the Bayesian framework, the parameters are hierarchically assigned and the corresponding
priors are defined, including spatial prior being introduced to capture the spatial dependence
of brain activities among voxels.

For the purpose of detecting the activation of a voxel, a vector of binary random variables
Vo=(Vors oo yvp)' is introduced to indicate whether the voxel v is in response to a sequence of

input stimuli. The voxel v is considered active to the stimulus j if y,;=1 and, on the other hand,
inactive if y,,=0. Given that y,,, we assume B, has a spike and slab mixture prior of two normal

distributions [17] given by
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2 2 2
Bojl 70; - ijN(o,chrw)+(1—yuj)N(o,ruj) %)

where N (i, 62) is denoted as a normal distribution with a mean y and a variance ¢ % In Eq. (2),

a; by
we let cvi- being fixed and assume Té- to have an inverse gamma distribution 15 (?'?) [4]. We

consider that X~G(a, b) if the probability density function of X is defined by just below Eq. (3)

a
f(x|a,b) = b—x_a_le_b/x,x >0, (3)

I(a)

where l"(a)=_|.O y“le Vdy. We set cv? to be large resulting in the nonzero estimate of g, so that

the stimulus j is considered to activate the voxel v. As George et al. [17] suggested, cvi- should

be taken less than 10* to avoid the computational problems and we find that CU§=1O is a

reasonable choice in our simulation studies and real fMRI example.

Since the response at a particular voxel is likely to be consistent to the responses of neigh-
bouring voxels, we apply SGLMM [7, 35] to capture the spatial relationship. We assume
7;=(r1j, -, 7y;) are independently distributed in accordance to the Bernoulli distribution

rlv]'
1- Mo
constant intended to incorporate the expert knowledge or anatomical information and ¢; is a

Vi | 15~ Ber (n,;) with a logistic link logit(n,;)=a,; +m 'Z,qb]-, where logit(nv]-)=ln( ) and a,; is a

vector of spatial random effects. The spatial dependence between the binary variables is
implicitly captured by ¢; assuming to have

¢;1~N (0, (g m'Qm) ™), @)

where m, is vy, row of M, an V x g matrix consisting of multi-resolutional spatial basis vectors
that are able to explain spatial variation sources. The columns of M, consist of the g principal
eigenvectors with respect to the first g largest eigenvalues from the adjacency matrix A of
voxels, an V xV matrix with the (v, s),, element in Eq. (5), defined as

0 v=s

A(v,s)={1 (5)

’
v~_s

where v ~s indicates s and v are neighbours. In the three-dimensional fMRI data analysis, a 26-
adjacent neighbourhood is considered [8]. Typically, g is less than V/2 or equal to the number
of eigenvalues greater than 0.05. This choice can reduce the dimensionality significantly but
still maintains the spatial structure of the data. The graph Laplacian matrix Q =diag(A1)-A
relates spatial basis vectors to represent the image data [18] and 1 is a 4x1 column vector of
ones. We assume a conjugate prior for the smoothing parameter given by
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a, b_K
KJ-NQ[?, ) ] (6)

To avoid generating artefactual spatial structure in the posterior distribution, [19] suggested
a.=1and b_=4000 in Eq. (6). We refer X~G(a, b) if the probability density function of X is defined
in just below Eq. (7)

f(x|a,b) =

xa—le—x/b’x > 0. (7)

It is also found that the temporal correlations between voxels tend similar [4]. Such spatial
dependence is modelled by a spatial linear mixed-effects model. For computational conven-

1 + PU’
-, and assume
Poy~N (m P, /\rz). For the spatial random effect for the temporal parameter p, is assumed to

be

ience and simplicity, we make a transformation of p, such that p ,=log

@rlw,.~(0, (0, M'QM)™1), (8)

where ¢, is the spatial random effect for the rth order of the temporal parameters, and M and

a, by,
Q in Eq. (8) are the same as those listed in Eq. (4). Finally, we assume that wr~G (7' 2 ),

296 (% ba 296 (% 2o . .
4r~3G (2 ' 2) and 7 79 (2 ’ 2). The values of a’s and b’s in the gamma or inverse gamma

distributions are determined by the user to reflect the strength of one’s prior belief before
observing the data.

3. Posterior inference

To explore parallel computation, which allows us to substantially speed-up expensive
operations in the MCMC iteration, we partition the brain into non-overlapping areas such as
rectangular three-dimensional lattices or Brodmann areas. We then carry out the statistical
model in Section 2 to analyse the partitioned data. In this chapter, for simplicity, we use
Brodmann’s map to parcel the brain into distinct regions before implementing the proposed
model to the real fMRI data. In addition, separate regions divided by a data-drive segmentation
procedure using functional clustering can be considered. Next, we introduce the likelihood
function and the priors combining the parcellation procedure to form the posterior distribution
for inference.

Suppose that a brain can be divided into G parcels, where the gth parcel contains V, voxels,
g=1, ..., G and where we denote the voxel-level parameters as 6,=(8,, p,, 7, 02) and the
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parcel-level parameters as ®g=((p, K, T2 A2 ¢, w). The posterior distribution is obtained by
combining the priors n(6,, ®,) and the likelihood L (6, | y,), which are defined in Egs. (9) and
(10) as follows [8, 20]:

{0.0,)-

v

ot 9)

[I7(p)x ( ) (B.17, ﬁ”(%'@)”(%|Kj)”(Kj)”(Tj)H”(ﬂk)”(‘pk|a’k)”(a’k)

y —_— e
5 \% v-y . (10)

L(9v|yv):[

2ro,

Due to the intractability of the posterior, Gibbs and Metropolis-Hastings updates [20, 34] are
applied to sample the posterior distribution for estimation and inference of the model
parameters.

The posterior quantities of interest are P(y,;=1| y) for the activation map and E(B,; | y) for the

magnitude of the effect caused by the stimulus j on the BOLD signal changes for voxel v. They
can be directly estimated based on MCMC samples by

A 1 ¥ . P
Py, =11y) :ﬁzjvg ‘and £(B, | ») =H§ﬂ§/ ), a1

where y %" and (" are the mth sample from a total M MCMC samples for y,; and g, respec-
AN

tively. The distribution of P(y,;=1 y) in amap provides a way to visually inspect brain regions

with peak, high, low and practically no activation. In addition, E(8, | y) in Eq. (11) offers

researchers to view the strength of response in the brain to the stimulus.

The construction of the binary activation map is obtained by thresholding the posterior
probability of y,,=1. A threshold value ¢ needs to be used in the detection of brain activity, that
is, a voxel v is defined as active to a stimulus j if P(yv] =11y)>c. However, threshold determi-
nation lacks agreement among investigators. Under certain conditions, a median selection
criterion, ¢=0.5, results in the minimum prediction risk [21]. Smith et al. [6] and Lee et al. [4]
defined a threshold by matching a Bayes factor approximation to a likelihood ratio test for
activation such that ¢=0.8722 at a 5% level of significance. Additional to both, Kalus et al. [22]
applied the false discovery rate (FDR) [23] to determine a threshold. In practice, it would be
reasonable to construct activation maps for a grid of thresholds and to evaluate elicited results
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with neuroscience experts. In our experience, activation maps seem to be comparably robust
against an exact choice of the threshold.

4. Simulation studies

We conduct stimulation studies to investigate the performance of the proposed model on the
detection of brain activity. We measure the accuracy of the classification of voxels as either
active/inactive and show the proposed model to be robust with regard to different spatial
structures. Finally, we illustrate the implementation of the proposed model to a simulated
fMRI data that mimics a study in face repetition effects in memory tests [24].

4.1. Benchmark example

Consider a 30x30 binary activation image y,, v 1, ..., 900, generated independently from

7/V|77v~Be’”(77v)> (12)

where logit(n,)=a, +m ¢ and
b K~ N(o,(KM'QM)‘l). (13)

We let a,=0, «=0.5, where M is a 300x900 matrix whose columns are 4=300 principal eigen-
vectors of the adjacency matrix, A, for the image corresponding to the first 4=300 largest
eigenvalues. Moreover, m ' is the vy, row of M, and Q =diag(A1)-A.

We consider an AR(1) temporal correlation between time points within voxels. For each voxel

1+p, 15
1=, and p, are generated from

v, let p,=log

Pr~N(mLp,2?) and ¢|w~N(0, (wM'QM)™1). (14)

We let A%2=0.1 and w=2.

We consider a stimulus and the block and event-related designs with a total number of time
points spanning 400 and repetition time (TR) equal to 2s. In the block design, the duration time
is 20s. In the event-related design, the stimulus is randomly assigned. The stimulus function
is convolved with a HRF modelled by a double gamma function [15] to create the design matrix
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X,. The stimulus functions and the corresponding design matrices for the block and event-

related designs are shown in Figure 1(a) and (b), respectively.

e ;"u LIV
J'U" .L/; |~|l'v|/_' ‘/J ‘/JIII‘UU /lul \‘ Hl \l

Time i secanis)

(a) Block design. (b) Event-related design.
Figure 1. The stimulus functions and the predicted BOLD signal changes used in the Benchmark example.

Given X, v,, p,, the BOLD signal changes y, are generated from a normal distribution with a

covariance 0.A,, where 02=1 and the (1, v), element of A is p “', and a mean of X p,, where

3if oy, =1
v={ " (15)

0 if y,=0.

We then apply the proposed model to detect the activation areas, that is, to identify which
voxel has y,=1. We ran MCMC chains with 100,000 iterations in order to ensure the largest

Monte Carlo standard error (MCSE) [25] of all posterior probabilities of y,=1, less than 0.01.

We obtained posterior activation maps by setting the posterior probability threshold at 0.8722,
AN

that is, the voxel is categorized as active if P(y,=111y)>0.8722, and it is categorized as inactive

otherwise [26]. To measure the performance of our proposed model, we calculate the true
classification rate (TCR), the true positive rate (TPR) and the false positive rate (FPR), which
are defined as

number of correctly classified voxels

TCR = ; (16)

number of voxels

number of active voxels correctly claimed as active

TPR = ; (17)

number of active voxels
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FPR — number of inactive voxels correctly claimed as active

18
number of inactive voxels (18)

Table 1 shows the proposed method performs well with regard to detecting the active voxels
where only a small number of active voxels are falsely identified as inactive in both designs.
Over 10 replications, the model with consideration of spatial dependence performs better on
the detection of activations. Especially, FPR reduces around 50%.

(a)

Block design (%) Event-related design (%)
TCR 92.44 (90.28-96.67) 91.12 (91.82-96.00)
TPR 99.97 (99.94-100) 99.97 (99.94-100)
FPR 6.98 (3.45-8.75) 6.54 (3.54-8.66)
(b)
Block design (%) Event-related design (%)
TCR 96.33 (95.89-97.56) 95.78 (95.12-97.50)
TPR 99.99 (99.97-100) 99.99 (99.97-100)
FPR 3.42 (1.12-5.27) 3.22 (1.32-4.78)

The values within the parentheses are the range of different rates over 10 replications.

Table 1. The percentage of correct classification of voxels with a threshold at 0.8722 for considering the spatial
dependence in (a) and without considering spatial dependence in (b) for temporal parameters in the model.

4.2. Structures with spatial dependence

To demonstrate that the proposed model is able to handle the different binary and temporal
image spatial dependencies, we generate a dataset that is the same as the benchmark example
in the paper of [27]. We create a 20x20 binary image as shown in Figure 2(a), where the areas
in red indicate that the voxels are active, and otherwise, they are not. Moreover, the values of
ps are generated from a uniform distribution between —0.3 and 0.3 for the non-active areas.
However, we assign the fixed values -0.5, 0.5, and 0.75 to p in each active area, respectively,
as shown in Figure 2(b). This is designed to investigate the patterns of temporal dependencies
within the different areas. Similar to the settings discussed in Section 3.1, we consider both

block and event-related designs with one stimulus. First, 8,’s generated from U(2, 5) and o,

from U(1, 3). The design matrix X, and temporal correlation matrix A, are defined to be the
same as in Section 3.1. Given X, v,, p,, B,, and ovz the BOLD signal changes are generated from

a normal distribution with a mean X g, and a covariance oA . We carry out the proposed

approach to detect the activation and estimate the parameters of interest. For ease of visuali-
zation of the results, we provide one of the estimated binary images without thresholding and
the corresponding estimated image, as shown in Figure 2(c). By visually inspecting estimated
values of ps in Figure 2(d) compared to the simulated ones in Figure 2(b), we are confident
that the spatial dependences also can be captured by the model.

65
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After thresholding by a value determined by controlling FDR as 0.05, the accuracy of the
classification of voxels measured by TCR is 99.25%, and the FPR is 4.84% with consideration
of the spatial dependence of the temporal correlations over 10 replications. On the other hand,
when the threshold is taken to be equal to 0.8722, TCR is 99.17% and FPR is 5.01%. Therefore,
the proposed model can be applied to detect the activation of brain image data even for
different spatial dependence structures.

.
] -

o 2 4 L] L} L 2 14 " L ] x o 2 4 L] & W 12 1 WM v XN

(a) Simulated active-inactive image. The areas in red indi- (e) Simulated ps image.
cate that the voxels are active, v = 1, and otherwise, they
are not, ¥, = 0,

18

os

oo

a5

o0

o 2 a & B W0 12 W 1% W D

(b) Estimated posterior probability of 4 =1 (d) Estimated posterior estimate of p

Figure 2. Simulated and estimated binary and p images.

4.3. Parcellation effect

In the previous simulations, image data was analysed together. In this simulation, we partition
the data and then apply the proposed model to analyse each unit of the partitioned data. Our
goalis to investigate the effect of the parcellation of an image on the estimation of active voxels.
Given the binary image y shown in Figure 3(a), a unit of data is generated with the parameters
being the same as the settings discussed in Section 3.1.

We consider four different parcellations, as shown in Figure 3(a), (b) and (d). Table 2 shows
the values of different measurements over 10 replications. Little difference can be found on
the measures between different parcellations. However, the computational time is dramati-
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cally reduced for case (d), where each parcellation contains fewer voxels. The same results in
block and event-related fMRI experiments.

El

(LRI
I T T T T T Y T T Y Y |

i

002 4 6 8 10

L I S B B S R
0 2 4 6 8 W 12 14 16 16 2 2 24 F 28 D

(a) (b)

e) (d)

Figure 3. Four different parcellation schemes. The areas in red are active areas corresponding to 7, =1. The blue dash-

ed line is used to partition the area into non-overlapping parts.

Parcellation Scheme (a) (b) © (d)

TCR 99.12 (98.61-99.84) %  99.07 (98.68-99.56) %  98.94 (98.03-99.64) %  99.08 (98.76-99.51) %
TPR 100% 100% 100% 100%

FPR 6.35 (1.51-9.97) % 6.68 (3.67-9.36) % 7.45(3.12-13.87) %  5.82 (2.83-9.44) %
Running time ratio 8.75 2.75 2.75 1

The values within the parentheses are the ranges of different rates over 10 replications.

Table 2. The average percentage of correctly classified voxels (TCR), true positives (TPR), and false positives (FPR)
over 10 replications for different image parcellations corresponding to Figure 3(a)—-(d).

4.4. A real-life simulation example

To further demonstrate the capability of the proposed model to accurately identify the
activation regions, we simulate an fMRI dataset from an R package: neuRosim [28]. The
simulated data follows the example of event-related fMRI study [24]. We consider four
different tasks denoted by N1, N2, F1 and F2, which are presented randomly in the experiment.
The onsets for each condition are schematically shown in Figure 4. We then specify three areas
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that are activated by the tasks shown in Figure 5. The simulated four-dimensional fMRI data
consists of 351 scans, each containing three-dimensional image of size 53x63x46 and being
collected in every 2 s resulting the total time for the experiment is 11 min and 42 s.

1 m m wm -
1 m
1 m

M

E] wm am = o o0

wn a0 av = o o0

Fi

ALV IV

00000800
0006060660600
C I AR AR AR RE

Figure 5. Activated regions upon representation of different tasks.

Now we apply the proposed model to analyse the simulated data. We split the array into
disjointed arrays based on the Brodmann level regions. The voxel for all regions ranges from
236 to 969. We collect 1,000,000 samples to estimate the posterior probability of activation in
each voxel. We consider the following probability:

P[m}n Vv = l[yj (19)
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which is used to denote whether the voxel v is activated by any of applied stimuli. Once the
posterior probability is greater than 0.8722, then the corresponding voxel is considered as
activated by a stimulus. The activation maps registered into MNI 152 template (a reference
brain map from the Montreal Neurological Institute) and the areas considered active are in
yellow as shown in Figure 6. In addition to comparing specified activation regions in Figure
5 to those detected in Figure 6, we also calculate the three measures, TCR, TPR and FPR which
are 97.71%, 99.34% and 3.25%, respectively. The results show that proposed model performs
well on classifying the active and inactive voxels.

Figure 6. Estimated probability of activation in response to any face task with activation areas in yellow.

5. Application

We apply the spatial Bayesian variable selection approach discussed in Section 2 to real fMRI
data, a study of the Simon effect [29]. In this Simon task, participants responded to one colour
with the right hand, and to the other colour with the left hand. Congruence in this aspect means
that a colour appears on the default side (congruent condition), or it may appear on the
opposite side (incongruent condition). One participant’s brain image data is selected to be
analysed for the purpose of illustration. The four-dimensional fMRI BOLD image data was
pre-processed using FSL from Oxford Centre for Functional MRI of the Brain [30], including
motion correction, realignment, slice timing correction, spatial smoothing and high-pass
filtering, before being analysed using our model. Incorrect trials were removed. The four tasks
in this experiment were convolved with a double gamma function. We divided the pre-
processed data into 48 Brodmann areas. The statistics of interest were registered into a standard
template MNI152 for ease of visualization. We used a first-order temporal autocorrelation
throughout the study.

69
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We consider a voxel to be active when the posterior probability of y, is greater than ¢, which

is either a deterministic value of 0.8722 [4] or is determined by an FDR equal to 0.05 [22].
However, in this event-related fMRI, 0.8722 seems too conservative, so the value of ¢ is
determined corresponding to an FDR equal to 0.05. The activation maps for different tasks are
shown in Figure 7(a)-(d).

One interesting question is to compare active domains corresponding to congruency. Posterior
probabilities helped us find the following inequality between the incongruent and congruent
tasks groups:

P (ﬂright-incon + ﬂleft-incon > ﬂright-con + ﬁleft-con b})a (20)

where B, is the magnitude of corresponding effect on the BOLD signal changes. The posterior

activations are shown in Figures 8 and 9 when posterior probabilities are thresholded by a
critical value corresponding to FDR equal to 0.05. The active regions include frontal and
occipital lobes detected by the models with and without consideration of spatial dependence
of temporal correlations. These results are consistent with other studies [31, 32]. However,
more active areas were detected by the model without consideration of spatial dependence of
temporal correlations. For something like the Simon task, it is expected that the lateral
prefrontal cortex to be activated as they are parts of the cognitive control network/multiple
demand network, while the medial prefrontal cortex is part of the default mode network [33].
Therefore, it is possible that the activation in the medial part may be some spread of activity
and therefore false positives. This is an important example that illustrates considering the

Figure 7. The activation areas with a posterior probability greater than ¢, corresponding to FDA = 0.05, shown in red
for different tasks.
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spatial dependence of temporal correlations may improve the estimation and reduce the some
spurious detection of activation.

Figure 8. Areas shown more activity in incongruent than congruent task without consideration of spatial dependence
of temporal correlations in the model.

Figure 9. Areas shown more activity in incongruent than congruent task with consideration of spatial dependence of
temporal correlations in the model.

6. Discussion and conclusions

In this work, we applied a new approach to performing Bayesian variable selection with
consideration of spatial dependencies from both regression and temporal coefficients in single-
subject event-related fMRI data. Through simulations, improvement in the detection of brain
activity was observed for a wide range of different spatial structures, parcellations and
experimental designs. We found that the proposed approach potentially decreases false
positive rates as shown in Table 1 in the simulation and Figure 9 in the real example. In
addition, prior information from brain structure and function for subject-level inference can
be incorporated into the analysis.

It is worth noting that the proposed Bayesian approach partitions a brain into several regions
before implementing the model to the fMRI data. In addition to Brodmann areas, several
parcellations of the brain into distinct regions are available, such as the separate regions
divided by a data-drive segmentation procedure using functional clustering. From the
simulation study, we found the computational burden to be greatly reduced by the joint use
of parcellation and an SGLMM. In particular, the probability of activation and activation
magnitudes were readily computed without requiring an adjustment for multiple comparisons
in a post-processing step. For broader goals, it would be of interest to extend the model to
group studies. In addition, we are confident that Bayesian approaches represent an important
direction in fMRI and in high-dimensional research in general.
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