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Treating Image Loss by using  
the Vision/Motion Link: A Generic Framework 

David Folio and Viviane Cadenat 
CNRS; LAAS; 7, avenue du Colonel Roche, F-31077 Toulouse,  

and Université de Toulouse; UPS: Toulouse. 
France 

1. Introduction 

Visual servoing techniques aim at controlling the robot motion using vision data provided 
by a camera to reach a desired goal defined in the image (Chaumette & Hutchinson, 2006). 
Therefore, if the considered features are lost because of an occlusion or any other 
unexpected event, the desired task cannot be realized anymore. The literature provides 
many works dealing with this problem. A first common solution is to use methods allowing 
to preserve the visual features visibility during the whole mission. Most of them are 
dedicated to manipulator arms, and propose to treat this kind of problem by using 
redundancy (Marchand & Hager, 1998; Mansard & Chaumette, 2005), path-planning 
(Mezouar & Chaumette, 2002), specific degrees of freedom (DOF) (Corke & Hutchinson, 
2001; Kyrki et al., 2004), zoom (Benhimane & Malis, 2003) or even by making a tradeoff with 
the nominal vision-based task (Remazeilles et al., 2006). In a mobile robotics context, the 
realization of a vision-based navigation task in a given environment requires to preserve not 
only the image data visibility, but also the robot safety. In that case, techniques allowing to 
avoid simultaneously collisions and visual data losses such as (Folio & Cadenat, 2005a; Folio 
& Cadenat, 2005b) appear to be limited, because they are restricted to missions where an 
avoidance motion exists without leading to local minima (Folio, 2007). As many robotic 
tasks cannot be performed if the visual data loss is not tolerated, a true extension of these 
works would be to provide methods that accept that occlusions may effectively occur 
without leading to a task failure. A first step towards this objective is to let some of the 
features appear and disappear temporarily from the image as done in (Garcia-Aracil et al., 
2005). However, this approach is limited to partial losses and does not entirely solve the 
problem. Therefore, in this work, our main goal is to propose a generic framework allowing 
to reconstruct the visual data when they suddenly become unavailable during the task 
execution (camera or image processing failure, landmark loss, and so on). Thus, this work 
relies on the following central assumption: the whole image is considered temporarily entirely 
unavailable. This problem can be addressed using different methods such as tracking or 
signal processing techniques. However, we have chosen here to develop another approach 
for several reasons, which will be detailed in the chapter.  
The proposed technique allows to reconstruct the visual features using the history of the 
camera motion and the last available features. It relies on the vision-motion link that is on 
the relation between the camera motion and the visual data evolution in the image.  O
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The chapter is organized as follows. We first state the problem and introduce a new general 
framework allowing to reconstruct the visual features when they become unavailable. Then, 
we apply it to design a controller able to perform a vision-based navigation task despite the 
temporary total loss of the landmark during the mission. Finally, we present simulation and 
experimental results validating the developed approach. We end the chapter by providing a 
comparative analysis of the different proposed methods. 

2. Visual data estimation 

In this section, we address the problem of estimating (all or some) visual data s whenever 
they become unavailable during a vision-based task. Thus, the key-assumption, which 
underlies our works, is that the whole image is considered to be temporarily completely 
unavailable. Hence, methods which only allow to treat partial losses of the visual features 
such as (Garcia-Aracil et al., 2005; Comport et al., 2004) are not suitable here. Following this 
reasoning, we have focused on techniques dedicated to image data reconstruction. Different 
approaches, such as signal processing techniques or tracking methods (Favaro & Soatto, 
2003; Lepetit & Fua, 2006) may be used to deal with this kind of problem. Here, we have 
chosen to use a simpler approach for several reasons. First, most of the above techniques 
rely on measures from the image which are considered to be totally unavailable in our case. 
Second, we suppose that we have few errors on the model and on the measures1. Third, as it 
is intended to be used in a visual servoing context, the estimated features must be provided 
sufficiently rapidly wrt. the control law sampling period Ts. Another idea is to use a 3D 
model of the object together with projective geometry in order to deduce the lacking data. 
However, this choice would lead to depend on the considered landmark type and would 
require to localize the robot. This was unsuitable for us, as we want to make a minimum 
assumption on the landmark model. Thus, we have finally chosen to design a new approach 
to reconstruct the image data when they are entirely lost. It relies on the vision/motion link 
that relates the variation of the visual features in the image to the camera motion. In the 
sequel, we define more precisely this notion and then present our estimation method.  

2.1 The vision/motion link 
In this part, we focus on the vision/motion link. We consider a camera mounted on a given 
robot so that its motion is holonomic (see remark 1). The camera motion can then be 
characterized by its kinematic screw vc as follows:  

 qJv $=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω
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where ( )
ccc

c

c
VVVV F

FC zyx
,,/ =  and ( )
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FF zyx

ΩΩΩ=Ω ,,
0/  represent the  translational and 

rotational velocity of the camera frame wrt. the world frame expressed in Fc (see figure 1). J 

represents the robot jacobian, which relates vc to the control input q$ . 

                                                 

 
1
 In case where this assumption is not fulfilled, different techniques such as Kalman filtering 

based methods for instance may be used to take into account explicitly the system noises. 
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Remark 1: We do not make any hypothesis about the robot on which is embedded the 
camera. Two cases may occur: either the robot is holonomic and so is the camera motion; or 
the robot is not, and we suppose that the camera is able to move independently from it 
(Pissard-Gibollet & Rives, 1995). 
 

 

Fig. 1. The pinhole camera model. 

Now, let us define the vision/motion link. In this work, we only consider fixed landmarks. 

We suppose that it can be characterized by a set of visual data s provided by the camera. We 

denote by z a vector describing its depth. As previously mentioned, the vision/motion link 

relates the variation of the visual signals s$  to the camera motion. For a fixed landmark, we 

get the following general definition (Espiau et al., 1992):  

 qJLvLs zszs
$$

),(),( == c  (2) 

where ),( zsL  represents the interaction matrix. This matrix depends mainly on the type of 

considered visual data s and on the depth z representation. We suppose in the sequel that 

we will only use image features for which L(s,z) can be determined analytically. Such 

expressions are available for different kinds of features such as points, straight lines, circles 

in (Espiau et al., 1992), and for image moments in (Chaumette, 2004).  

Our idea is to use the vision/motion link together with a history of the previous measures of 

image features and of the camera kinematic screw to reconstruct the visual data s. We have 

then to solve the differential system given by equation (2). However, this system depends 

not only on the visual features s but also on their depth z. Therefore, relation (2) cannot be 

directly solved and must be rewritten to take into account additional information about z. 

This information can be introduced in different ways, depending on the considered visual 

primitives. Therefore, in the sequel, we will first state the problem for different kinds of 

image data before presenting a generic formulation. We will then successively consider the 

case of points, of other common visual features and of image moments. 

2.1.1 The most simple case: the point 

The point is a very simple primitive, which can be easily extracted from the image. It is then 

commonly used in the visual servoing area. This is the reason why we first address this case. 

Therefore, we consider in this paragraph a visual landmark made of n interest points. Let us 

recall that, using the pinhole camera model, a 3D point ip  of coordinates (xi, yi, zi) in cF is 
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projected into a point Pi (Xi, Yi) in the image plane (see figure 1). We can then define the 

visual signals vector by a 2n-dimensional vector [ ]Tnn YXYX ,,,, 11 A=s , where (Xi, Yi) are the 

coordinates of each projected point. In this case, the interaction matrix 

[ ]TzPzP nn ),(),(),( ,,
11

LLL zs A=  is directly deduced from the optic flow equations. ),( ii zPL  is given 

by (Espiau et al., 1992):  
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where f is the camera focal length. As one can see, ),( zPL  explicitly requires a model or an 

estimation of the depth zi of each considered point Pi. Several approaches may be used to 

determine it. The most obvious solution is to measure it using dedicated sensors such as 

telemeters or stereoscopic systems. However, if the robotic platform is not equipped with 

such sensors, other approaches must be considered. For instance, it is possible to use 

structure from motion (SFM) techniques (Jerian & Jain, 1991; Chaumette et al., 1996; Soatto 

& Perona, 1998; Oliensis, 2002), signal processing methods (Matthies et al., 1989), or even 

pose relative estimation (Thrun et al., 2001). Unfortunately, these approaches require to use 

measures from the image, and they cannot be applied anymore when it becomes completely 

unavailable. This is the reason why we propose another solution consisting in estimating 

depth z together with the visual data s (see remark 3). To this aim, we need to express the 

analytical relation between the variation of the depth and the camera motion. It can be easily 

shown that, for one 3D point ip  of coordinates (xi, yi, zi) projected into a point Pi (Xi, Yi) in 

the image plane as shown in figure 1, the depth variation żi is related to the camera motion 

according to:     c)(zi i
vL=z$ , with [ ]0 ,  ,  1,-  0,  0,)(zi f

Xz
f

Yz iiii=L . Finally, the dynamic system to 

be solved for one point can be expressed as follows:  
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In the case of a landmark made of n points, introducing ( )Tnnn111 z ,Y ,X , ,z ,Y ,X  …=ψ , we 

easily deduce that it suffices to integrate the above system for each considered point.  

2.1.2 A more generic case: common geometric visual features 

Now, we consider the case of other geometric visual primitives such as lines, ellipses, 

spheres, and so on. As previously, our goal is to determine the common dynamic system to 

be solved to compute these primitives when they cannot be provided anymore by the 

camera. Thus, let O be the observed fixed landmark. We denote by R the projected region of 

O in the image plane, as described in figure 1. Assuming that R has a continuous surface and 
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closed contour, it can be shown that the depth zi of each point pi of O can be related to the 

coordinates (Xi, Yi) of each point Pi belonging to R by the following relation (Chaumette, 

2004):  

 ∑
≥≥

=
0,0

1

qp

q
i

p
ipq

i

YXA
z

 (5) 

( )∈∀ ii YX ,  R 

 

where parameters Apq depend on the nature of object O. For instance, if we consider a planar 

object and exclude the degenerate case where the camera optical center belongs to it, the 

previous equation can be rewritten as follows: 

 CBYAX
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( )∈∀ ii YX ,  R  

 

where A= A10, B= A01 and C= A00 in this particular case.  

Now, let us suppose that it is possible to associate to O a set of n visual primitives leading to 

[ ]Tnππ ,,1 A=s , and that the depth z can be expressed using equation (5). In such a case, 

relation (2) can be rewritten as follows:  
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where ),( pqAπL  is the interaction matrix related to the visual primitives π of s (see remark 2). 

The interested reader will find in (Espiau et al., 1992) different expressions of the interaction 

matrix for numerous kinds of common visual features (lines, cylinders, spheres, etc.). It is 

important to note that, here, ),( pqAπL  depends implicitly on the object depth through the Apq 

3D parameters. In this case, the estimation of the visual features by integrating differential 

system (7) will require to determine Apq. Different methods may be used. A first natural idea 

is to use the 3D model of the object if it is known. If not, another nice solution is provided by 

dynamic vision that allows to recover the 3D structure, as in (Chaumette et al. 1996). 

Unfortunately, this approach requires to define a particular motion to the camera, which is 

not suitable in a visual servoing context. Another solution would be to use a similar 

approach to the case of points. The idea is then to first relate pq
A$  to the camera kinematic 

screw vc, and then to estimate Apq together with s. However, as pq
A$  depends on the 

considered visual features, it would be difficult to design a comprehensive formulation of 

the estimation problem. Therefore, to provide a generic framework, we propose to use (5) to 
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identify Apq. To this aim, we consider a set of l points Pi (Xi, Yi) belonging to the region R (see 

remark 2). The Apq 3D parameters can then be determined on the base of the coordinates (Xi, 

Yi) using any identification method such as least-squares techniques. Finally, the geometric 

visual features will be computed using the four-step algorithm 1.  
 

Algorithm 1: Computation of geometric visual features 

1. Considering a set of l points belonging to R, define vector Ǚ = (X1, Y1, z1, ... , Xl, Yl, zl)T 
as in the previous paragraph 2.1.1. 

2. Solve system (4) to compute an estimation ψ~ of Ǚ, that is an estimation of each triple 

(Xi, Yi, zi) 

3. Use ψ~  to identify the coefficients Apq of the surface which fits the best way the l 

chosen points using a least-square method for instance. 
4. Knowing parameters Apq, integrate dynamic system (7) and deduce an estimation of 

vector [ ]Tnππ ,,1 A=s  
 

Remark 2: In some cases, several objects O could be used to design the set of visual 

primitives involved in (7). In such a case, a solution is to associate a set of l points to each 

observed object and to follow algorithm 1 for each of these sets. 

2.1.3 The most difficult case: image moments 

Although image moments have been widely used in computer vision, they have been 

considered only recently in visual servoing (Chaumette, 2004; Tahri & Chaumette 2005). 

Indeed, they offer several interesting properties. First, they provide a generic representation 

of any simple or complicated object. Moreover, in the specific context of visual servoing, it 

can be shown that designing control laws with such features significantly improves the 

decoupling between translation and rotation in the camera motion (Tahri & Chaumette 

2005). Therefore, we have also treated this specific case.  

In this section, we first briefly recall some definitions before proposing a method allowing to 

determine these primitives when they cannot be extracted from the image. As previously, 

we will consider a fixed object O and will denote by R the projected region of O in the image 

plane. We will also assume that R has a continuous surface and a closed contour. However, 

as the proposed reasoning can be easily extended to non-planar landmarks, we will consider 

here only planar objects for the sake of simplicity. Further details about more complex shapes 

and different image moments are available in (Chaumette, 2004; Tahri & Chaumette 2005).  

The (i+j)th order image moment mij of R in the image is classically defined by:  

 
R

i j

ij
m X Y dxdy= ∫∫  (8) 

It can be shown that ijm$ can be related to the camera kinematic screw by:  

 c),,,( vCBAmij ij
m L=$  (9) 

where ),,,( CBAmij
L is the corresponding interaction matrix. The 3D parameters A, B, C allow to 

define the depth in the case of a planar object as described by equation (6). The analytical 
expression of ),,,( CBAmij

L  expresses as follows (Chaumette, 2004):  

www.intechopen.com



Treating Image Loss by using the Vision/Motion Link: A Generic Framework 
 

 

51 

 

( )
( )

( )( )
( )
( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=
−++=
+++=

++=
−=
−=

=

−++−Ω

−+Ω

−+Ω

++

−−+

+

1,11,1

,1,1

1,1,

1,1

11,1

111

),,,(

3

3

3

 

    

jijiz

jijiy

jijix

iji,ji,jjizV

iji,ji,jjiyV

ij,ji-,ji-ijxV

CBAm

jmimm

immjim

jmmjim

-Cm+ Cm + BmAmjim

-Bm+ Cm + BmAmjm

 -Am+ Cm + BmAmim

c

c

c

c

c

c

ij

f

f

f

f

f

f

L  (10) 

As one can see, the time variation of a (i+j)th order moment depends on moments of higher 

orders (up to i+j+1) and on A, B and C. Therefore, as previously, the interaction matrix 

),,,( CBAmij
L depends implicitly on the object depth through the A, B and C parameters. Note 

that the same results hold for centered and discrete moments (Chaumette, 2004; Folio, 2007). 

Now, it remains to express the differential system to be solved to determine the desired 

primitives. Defining the visual features vector by a set of image moments, that is: 

[ ]Tnmm ,,1 A=s ,and using equation (9) leads to:  
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However, as mentioned above, the time derivative ijm$  of a (i+j)th order moment depends on 

the moments of higher orders. Therefore, it is impossible to reconstruct the image moments 

mij using the dynamic system (11). To avoid this problem, we propose to estimate a set of 

visual primitives from which it is possible to deduce the mij image moments in a second 

step. Here, following a similar approach to the previous case, we propose to use l points 

belonging to the contour of R to approximate the image moments. We present below the 

final chosen algorithm 2:  

 

Algorithm 2: Computation of image moments 

1. Considering a set of l points belonging to the contour of R, define vector Ǚ = (X1, Y1, 
z1, ... , Xl, Yl, zl)T as mentioned above. 

2. Solve system (4) to compute an estimation ψ~ of Ǚ, that is an estimation of each triple 

(Xi, Yi, zi) 

3. Use ψ~  to compute the different necessary moments mij and deduce an estimation of 

vector: ( )Tnmm ,,1 A=s  

 
Notice that the l points of the contour of R must be carefully chosen. In the particular case of 

polygonal shapes, these points may be defined by the vertices of the considered polygon, 

and the corresponding image moments can then be determined using the methods 

described in (Singer, 1993) or in (Steger, 1996). For more complex shapes, it is usually 

possible to approximate the contour by a polygon and obtain an estimate of the image 

moments by the same process. Finally, the image moments can be always analytically 

determined for simple geometric primitives, such as circles, ellipses and so on. 
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2.2 Generic problem statement 
In the previous subsections, we have addressed the problem of reconstructing image data 
from the vision/motion link. Our goal is now to propose a generic formulation of this 
problem. Three cases have been highlighted2 : 

a. The interaction matrix ),( zsL  requires explicitly the depth and we suppose that z$ can be 

directly related to the camera kinematic screw vc. In that case, we are brought back to 
the case of the point and we only have to solve a system similar to the one given by (4). 

b. The interaction matrix ),( zsL  depends implicitly on a model of the depth through the Apq 

coefficients for instance. In such a case, to provide a generic framework, we propose to 
apply the results obtained for the points to compute the needed parameters. It is then 
possible to determine the desired visual features by solving (7). 

c. It is difficult or impossible to characterize some (or all) the elements of the differential 
system. In this last case, the estimation problem may be solved by estimating other 
more suitable visual features from which we can deduce the desired image data. We 
then retrieve the first two cases. 

Hence, in order to reconstruct the visual data s, we propose to solve the following generic 
dynamic system:  

 
⎩
⎨
⎧

=
==

00
ψψ

ψϕψ ψ

)(

),()(

t

tcvL$
 (12) 

where Ǚ is the vector to be estimated and Ǚ 0 its initial value. Its expression depends on the 
previously mentioned cases:  
in case (a), where the depth is explicitely required (e.g. points features): Ǚ = (sT, zT) T. In the 
simple case of points, Ǚ is naturally given by Ǚ = [P1, …, Pn, z1, …, zn]T. 
in case (b), where the depth is implicitely known, a two steps estimation process is 
performed: first, we set Ǚ =[P1, …, Pl, z1, …, zl]T to reconstruct the l feature points Pi 

coordinates which allow to identify the pqA
~

parameters; then we fix Ǚ =[π1, …, π l, pqA
~

]T to 

estimate the desired set of visual primitives π (see algorithm 1).  
in case (c),  the expression of Ǚ is deduced either from case (a) or from case (b), depending in 
the primitives chosen to reconstruct the desired image features. 
The previous analysis has then shown that the estimation of visual data can be seen as the 
resolution of the dynamic system given by expression (12). Recalling that Ǚ0 is the initial 
value of Ǚ, it is important to note that it can be considered as known. Indeed, as the visual 
data is considered to be available at least at the beginning of the robotic task: s0 is directly 
given by the feature extraction processing, while the initial depth z0 can be characterized off-
line (see remark 3). 
Remark 3: While the image remains available (at least once at the begin), s is directly 

obtained from the image features extraction processing. In the case of points, their initial 

depth z0 can be computed using one of the previously mentioned methods (SFM methods, 

signal processing techniques, pose relative estimation approaches, etc). It follows that, for 

                                                 

 
2
 Note that the proposed approach can only be applied if an analytical expression of L(s,z) is 

available. 

www.intechopen.com



Treating Image Loss by using the Vision/Motion Link: A Generic Framework 
 

 

53 

other primitives, we can assume, without loss of generality, that parameters Apq are known. 

Note also that Ǚ0 being known, it is possible to determine Ǚ by iteratively applying our 

estimator from the task beginning. Finally, let us remark that, when the image is lost, Ǚ is 

provided by our estimator. 

Now, let us address the resolution problem. A first idea is to integrate the above system (12) 

for any t∈[t0; tf] where t0 and tf are respectively the initial and final instants of the task. 

However, in this case, the computation is then quite difficult to carry out. Therefore, we 

propose to discretize the problem and to solve system (12) during the time control interval  

[tk; tk+1]. 

2.3 Resolution 
2.3.1 Case of points: Towards an analytical solution 

We focus here on specific features: the points. As previously shown, the differential system 

to be solved is given by equation (4). We will consider two approaches: in the first one, the 

obtained solution is independent from the robot structure on which is embedded the 

camera, while in the second one, it is closely related to it. 

An analytical solution independent from the mechanical structure of the robot: In this 

part, our objective is to propose an analytical solution independent from the mechanical 

structure of the robot. It only depends on the type of the considered visual features, here 

points. A first idea is to consider that the camera kinematic screw vc is constant during the 

control interval [tk; tk+1]. However, it is obvious that this property is not really fulfilled. This 

is the reason why we propose to sample this interval into N∈N⋆ sub-intervals and to 

consider that vc is constant during [tn; tn+1] where tn = tk+(n−k)TN, TN = N
Ts  and Ts is the 

control law sampling period. In this way, we take into account (at least a bit!) the variation 

of vc during Ts. 

First of all, let us analytically solve system (4) on the sub-interval [tn; tn+1]. Considering that 

vc(tn) is constant during [tn; tn+1] yields to:  
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We set in the sequel 
cxVf =

cxVf (tn), 
cyVf =

cyVf (tn), 
czVf = 

czVf (tn), 
cx

fΩ =
cx

fΩ (tn), 
cy

fΩ =
cy

fΩ (tn) and 

cz
fΩ =

cz
fΩ (tn) for the sake of simplicity. We also introduce the initial condition Xn=X(tn), 

Yn=Y(tn) and zn=z(tn), z$ n= z$ (tn), and z$$ n= z$$ (tn). It can be shown that (Folio, 2007)3: 

1. If 
cx

fΩ ≠0, 
cy

fΩ ≠0, 
cz

fΩ ≠0, hence A1≠0, A2≠0 and A3≠0, then: 

                                                 

 
3 The interested reader will find in (Folio, 2007) a detailed proof of the proposed results. 
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1 )()(sin)(cos)( 11 ,  

          with A4= 3)( AtzVz
cc yxn +Ω− ff$$  and A5= ( )

cc znz Vzf ff $ +Ω . 

2. If 
cx

fΩ =0, 
cy

fΩ =0, 
cz

fΩ =0, hence A1=0, A2=0 and A3=0, then:  
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ttfVzX
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−−

=
f

, 
)(

)(
)(

tz
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c

−−= f  

5. If 
cx

fΩ ≠0, 
cy

fΩ ≠0, 
cz

fΩ =0, hence A1=
22

cc yx
ff Ω+Ω , A2=0 and A3=0, then:  
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6. If 
cx

fΩ =0, 
cy

fΩ =0, 
cz

fΩ ≠0, then:  
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where A1=
222

ccc zyx
fff Ω+Ω+Ω , A2= ( )

ccccccc zzyyxxz VVV fffffff Ω+Ω+ΩΩ− , A3= ( )22

cc yx
ff Ω+Ω , 

zc $$=1 , 2
1

2
2 A

A
zc −= $ , 

cz

cyV

nn fzXc f

f

Ω−−=3  and 
cz

cxV
nn fzYc f

f

Ω−=4 . 

The above expressions of (X(t), Y(t), z(t)) depend on the values of the camera kinematic 

screw at each instant tn. These values must then be computed. To this aim, as vc =J(q) q$  (see 

equation (1)), it is necessary to evaluate the control input q$  and J(q)at tn. Now, recalling that 

q$  is hold during the time control interval, that is q$ (t) = q$ (tk), ∀t∈[tk; tk+1], it is 

straightforward to show that q$ (tn)= q$ (tk), ∀tn∈[tk; tk+1]. It remains to compute J(q) and 

therefore the configuration q at instant tn. To this aim, we propose to simply integrate the 

equation q$ (t)= q$ (tk) between t and tk. It yields to:  

 )()()( kk tttt qqq +−= $ , ∀t∈[tk; tk+1] (14) 

 

where q(tk) represents the robot configuration at instant tk. The corresponding values can be 

measured using the embedded proprioceptive sensors. Then, on the base of q(t), it is 

possible to deduce the jacobian J(q(t))and therefore the camera kinematic screw on the sub-

interval [tn; tn+1]. The latter being constant on this interval, the analytical expressions 

detailed above can be used to compute Ǚ(t)=(X(t), Y(t), z(t)) at tn+1. The same computations 

must be performed at each instant tn to obtain the value of Ǚ at tk+1, which leads to 

algorithm 3.  
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Algorithm 3: Estimation of the points when vc is constant during [tn; tn+1] ⊂[tk; tk+1] 

Initialization: Determine Ǚ(t0) and set tk = t0 , Ǚ(tk ) = Ǚ(t0 ) 
For each control interval [tk; tk+1] do 
 Set tn = tk , Ǚ(tn) = Ǚ(tk) 
 For each integration interval [tn; tn+1] do 
  Compute q(tn) thanks to relation (14) 

  Deduce J(q(tn)) and vc(tn) = J(q(tn)) q$ (tn) 

  Evaluate Ǚ(tn+1) 
 End for 

End for 

The proposed approach can be seen as a first step towards the introduction of the camera 
kinematic screw evolution into the reconstruction procedure. Its main advantage is that its 
realization is very simple and that it allows to remain independent from the robot 
mechanical structure. Naturally, the value of N must be carefully chosen: a large value 
reduces the estimation accuracy, especially if the control law sampling period Ts is large; a 
small value increases the computation time, but improves the precision, as it is getting closer 
to the true variable kinematic screw case. 
Remark 4: Another equivalent idea to reconstruct the visual features in case of points would 
be to consider the exponential map approach and the direct measure of the camera velocity. 
This approach allows to determine the 3D coordinates of the point pi (xi, yi, zi) using the 
following relation (Soatto & Perona, 1998): 

ip$ =- c

c

F
FCV /

- c

c

F
FF 0/Ω ∧ pi (t) ↔ pi (tk+1)=R(tk) pi (tk)+t(tk) 

where R∈SO(3) 4 and t∈R3 define respectively the rotation and translation of the moving 

camera. Indeed, R and t are related to the camera rotation c

c

F
FF 0/Ω and translation c

c

F
FCV /

 

motion thanks to an exponential map (Murray et al., 1994), that is: 

⎟
⎠

⎞
⎜
⎝

⎛ Ω=⎟
⎠
⎞⎜

⎝
⎛ ×

00

][
exp10

0/FCVtR
 

where [Ω]× belongs to the set of 3×3 skew-matrices and is commonly used to describe the 

cross product of c

c

F
FF 0/Ω  with a vector in R3. However, this approach can be used only if the 

camera kinematic screw vc can be assumed constant during the sampling period Ts, which is 
not usually the case. We are then brought back to a similar approach to the one presented 
above.  
An analytical solution integrating the mechanical structure of the robot: As previously 
mentioned, the above analytical solution is restricted to the case where the camera kinematic 

screw remains constant during [tn; tn+1]⊂[tk; tk+1]. However, although it offers a general 
result independent from the robot mechanical structure, this assumption is rarely 

completely fulfilled in a real context. Indeed, only the control input q$  can be considered to 

be really hold between tk and tk+1, whereas the camera motion vc evolves during the same 

                                                 

 
4 SO(3): special orthogonal group of Transformations of R3. 
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period. This is the reason why our objective in this part is to relax the assumption about vc. 
To this aim, it is necessary to consider a particular robotic system in order to express the 
corresponding jacobian J. We have chosen here the robot Super-Scout II on which we have 
always realized our experimental tests up to now. This is a nonholonomic cart-like vehicle 
equipped with a camera mounted on a pan-platform (see figure 2). Its mechanical structure 
is then simple and the expression of its jacobian is given by (23). In this case, the control 

input is defined by q$ = (v, ω, ϖ)T, where v and ω are the cart linear and angular velocities, 

while ϖ is the pan-platform angular velocity. Our robot will be more precisely described in 
the next section dedicated to the application context. 
As previously shown, our goal is now to analytically solve the dynamic system given by (4). 
Considering the particular mechanical structure of our robot, it is impossible to 
Transactionlate the camera along cx

f
 and rotate it around axes cy

f
and cz

f
, which leads to 

cxVf =
cy

fΩ =
cz

fΩ =0. Taking into account this result into equation (4), the dynamic system to be 

solved for one point P(X, Y) expresses as follows:  

 

⎪
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xf
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xf
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xf
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ztz
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ff

fff

ff
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 (15) 

where 
cyVf (t), 

czVf (t) and 
cx

fΩ (t) are given by relation (23). 

Now, let us determine the analytical solution of the differential (15). We denote by vk, ǚk and 
ϖk the values of the velocities applied to the robot at instant tk. For the sake of simplicity, we 
also introduce the following notations: Xk = X(tk), Yk = Y(tk), zk = z(tk) and finally ϑk=ϑ(tk) 
where ϑ represents the pan-platform orientation with respect to the mobile base. After some 
computations (a detailed proof is available in (Folio, 2007)), we get the following results for 
z(t) depending on the control inputs ωk and ϖk:  

1. If ωk≠−ϖk and ωk≠0, then: 

       ( ) ( ) ( ) ( ) x
v

xkk CttDttActtActz
k

k −+−−+−= )(sin)(cos)(cos)(sin)( 1211 ϑϑ ω  

2. If ωk=−ϖk ≠0, then: 

       ( ) ( )( ) ( ) ( )( ) kk
v

kx zttDtz
k

k

k

k +−−−= ϑϑϑϑ ϖϖ
ω

sin)(sincos)(cos)(  

3. If ωk=0, then: 

       ( ) ( ) ( ) ( ) x
v

kkkkkk Cttttvttcttctz
k

k −+−−−+−= )(sin)(cos)()(cos)(sin)( 243 ϑϑϖϖ ϖ  

4. If ωk=ϖk =0, then: 

       ( ) )cos()( kkkk ttvztz ϑ−−=  

(16)

with5 yf
zY

kxk
v

CDc kk

k

k −−+= )sin()cos(1 ϑϑω , xkkxk
v

CzDc
k

k +++−= )cos()sin(2 ϑϑω ,  

yf
zY

k
v

Cc kk

k

k −+−= )cos(23 ϑϖ , xkk
v

Czc
k

k ++−= )sin(24 ϑϖ  and A1=(ωk+ϖk). 

                                                 

 
5 (Cx, Cy) and Dx are geometric parameters of the robot and of the camera (see figure 2). 
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Now, we consider the determination of X(t). From (15) we can write: 
)()( tz

z
tX

X $$ −= . X(t) can 

then be computed by integrating this last relation for ∀t∈[tk; tk+1], and we get:  

 
)(

)(
tz

Xz
tX kk=  (17) 

Finally, Y(t) is easily deduced from (15) as follows: Y(t)= )()(

)(

ttz

tVz

cx

czf f
f$
Ω

+− . Using the solution z(t) 

given by (16), Y(t) expresses as:  

1. If ωk≠−ϖk and ωk≠0, then 

        ( ) ( ) ( )( ))()(sin)(sin)(cos)( 1211)( ϖωϑω +−−−−−−= yxkktz

f
CtDttActtActY  

2. If ωk=−ϖk ≠0, then 

        ( ) ( )( )kkkktz

f
YztvtY

k
ϖϑϑϖ +−= cos)(cos)( )(

 

3. If ωk=0, then 

       ( ) ( ) ( ) ( )( )y
v

kkktz

f
CttttvttActtActY +−−+−−−−= )(cos)(sin)()(sin)(cos)( 21211)( ϑϑ ϖ  

4. If ωk=ϖk =0, then 

       ( )( )kkkkktz

f
YzttvtY +−−= )sin()( )( ϑ  

(18) 

 

As one can see, the above solution requires the determination of ϑ(t). This angle can simply 

be computed by integrating ϑ=ϖ between tk and t. Some straightforward calculus leads to 

ϑ(t)=ϖk (t−tk)+ϑk, where ϑk is the pan-platform angular value at tk, which is usually provided 
by the embedded encoder. 
The proposed approach takes fully into account the evolution of the camera kinematic screw 

in the reconstruction process of the triple (X(t), Y(t), z(t)) for all t∈[tk; tk+1]. Although the 
proposed approach is restricted to the considered robotic system and to points, its main 
advantage lies in its accuracy. As shown in the next section devoted to applications, the 
obtained results are significantly better with this method. 

2.3.2 Numerical resolution: a generic framework  

As previously mentioned, the analytical solutions are restricted to the case of points and, for 
one of them, to the robotic system. The question is now: “What to do if other kinds of image 
features are used”? In this part, we address this problem and we aim at designing a generic 
framework allowing to solve the dynamic system (12) in a general context. In such case, it 
appears to be difficult to keep on proposing an analytical solution to the considered system. 
This is the reason why we propose to use numerical methods to solve (12). In order to 
increase the accuracy of the different considered schemes, we propose to divide the [tk; tk+1] 

control law interval into N∈N* sub-intervals [tn; tn+1]⊂[tk; tk+1]. In this way, it is possible to 

define the integration step TN = N
Ts = tn+1 −tn.  

Using numerical techniques to solve (12) requires to characterize Ǚ and the different related 
interaction matrix (see paragraph 2.2.). We suppose in the sequel that such a 
characterization is possible. Moreover, the numerical algorithms will not be used in the 
same way depending on the camera kinematic screw is considered to be constant or not on 
the interval [tk; tk+1]. We can then distinguish the two following cases: 
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1. The camera motion vc can be considered as constant during the control law sampling 
period Ts. In this case, only one evaluation of vc(tk) at time tk is needed to compute φ(Ǚ, 

t), ∀t∈[tk; tk+1]. 
2. The camera motion vc varies with time in [tk; tk+1]. It is then necessary to calculate it at 

each instant tn. Therefore, the computation of φ(Ǚ, t) require an evaluation of vc(tn) for 

each time tn. Recalling that only q$  is hold during Ts, and thanks to (14) we can then 

compute vc(tn) = J(q(tn)) kq$  (or even using nq$  if available). 

The literature provides many methods allowing to numerically solve differential equations. 
A large overview of such methods is proposed for example in (Butcher, 2008). In this work, 
we have compared several common numerical schemes to select the most efficient 
technique. Here, we consider the Euler, Runge-Kutta (RK), Adams-Bashforth-Moulton 
(ABM) and Backward Differentiation Formulas (BDF) numerical techniques. Hence, we first 
recall briefly the description of these schemes. 
Euler Scheme: It is the simplest numerical integration method, but usually the less accurate. 
As a consequence, it requires a small integration step. The Euler integration method is 
classically given by:  

 ),(~
1 kknkk tT ψϕψψ +=+  (19) 

Runge–Kutta Schemes: The Runge–Kutta methods are an important family of iterative 
algorithms dedicated to the approximation of solutions of differential equations. The most 
commonly used scheme is the fourth order one, which is often referred as RK4. It expresses 
as follows:  

 ( )43216
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1 22~ KKKKkk ++++=+ ψψ ,   with : 
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 (20) 

The methods presented above are known as one-step schemes because they are based only 

on one previous value to estimate 
1+kψ~ . Contrary to this case, techniques using more than 

one of the previous values (ie. Ǚk, Ǚk-1, …Ǚk-N) are referred as multi-steps approaches. Two of 

them are described below. 

Adams Schemes: The Adams based techniques are multistep methods which approximate 
the solution of a given differential equations by a polynomial. It usually works as a 
predictor/corrector pair called the Adams–Bashforth–Moulton (ABM) schemes. The method 

consists in a two-step approach: the value 
1+kψ̂  is first predicted with an Adams–Bashforth 

scheme, and then corrected thanks to an Adams–Moulton algorithm to obtain the estimation 

1+kψ~ . For instance the fourth order Adams–Bashforth–Moulton (ABM4) is given by:  

( )3-k2-k1-kk241 9 - 37 + 59 -55ˆ ϕϕϕϕψψ nT
kk +=+  Adams–Bashforth predictor 

( )2111241 + 5 -19 +),ˆ(9~
−−+++ += kkkkk

T
kk tn ψψψψϕψψ  Adams–Moulton corrector 

(21) 

Gear’s Methods: The Gear’s methods, also known as Backward Differentiation Formulas 
(BDF), consist in using a polynomial which interpolates the N previous values Ǚk, Ǚk-1,…,  
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Ǚk-N to estimate 
1+kψ~ . They are mainly dedicated to stiff differential equations (see 

remark 5). We recall below the fourth order BDF4 scheme which have been used hereafter:  

 ),ˆ(~
1125

12
325

3
226

16
125

36
25
48

1 ++−−−+ +−+−= kknkkkkk tT ψϕψψψψψ  (22) 

Remark 5: A problem is stiff if the numerical solution step size is more severely limited by 
the stability of the numerical technique than by its accuracy. Frequently, these problems 
occur in systems of differential equations involving several components which are varying 
at widely different rates. The interested reader will find more details in the survey by 
(Shampine & Gear 1979). 

Therefore, these numerical methods provide an estimated value 
1+kψ~  after N integration 

steps over one control law sampling period Ts. The algorithm 4 given below details the 
different steps of calculus.  
  

Algorithm 4: Estimation of the visual features using numerical schemes. 

Initialization: Determine Ǚ(t0) and set tk = t0 , Ǚ(tk ) = Ǚ(t0 ) 
For each control interval [tk; tk+1] do 
 If multiple step scheme and initialization not over then 
  Initialization of the necessary previous values of Ǚ. 
 End if 

 If vc is considered to be constant during [tk; tk+1] then 
  Evaluate vc only at instant tk . 
 End if 

 Set tn = tk , Ǚ(tn) = Ǚ(tk) 
 For each integration interval [tn; tn+1] do 
  If vc varies during [tk; tk+1] then 
   Evaluate vc at instant tn . 
  End if 
  Evaluate φ(Ǚ(tn), tn) 
  Choose a numerical scheme and compute the corresponding value of 
Ǚ(tn+1) 
 End for 

End for 
Finally, numerical schemes can be used since an expression of φ(Ǚ, t) and a history of 
successive values of Ǚ is available. In this way, dynamic system (12) can be solved in a 
general context, that is for any kind of image features and any robot mechanical structures. 

2.4 Conclusion 

In this section, we have proposed a set of methods allowing to reconstruct the visual 
features when they cannot be provided anymore by the camera. Most of the works which 
address this problem classically rely on information based on the image dynamics. In this 
work, we have deliberately chosen to consider the case where the image becomes totally 
unavailable. We have then used the vision/motion to link to estimate the lacking data. Our 
first contribution lies in the modelling step. Indeed, we have stated the estimation problem 
for different kinds of visual features: points, common geometric primitives and image 
moments. On the base of this analysis, we have shown that the considered problem can be 
expressed as a dynamic system to be solved. Our second contribution consists in the 
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development of different techniques allowing to compute analytical and numerical 
solutions. The different proposed methods can be easily implemented on a real robot. Note 
that a careful choice of the different involved sampling periods is mandatory. Finally, these 
methods also require to have the necessary information for the algorithm initialization. This 
is particularly true for multi-step numerical methods which need a history of the values of Ǚ.  
Now, our goal is to validate and compare the different proposed approaches.  

3. Applications 

The proposed estimation methods can be used in many applications. For example, it has been 
recently successfully used to perform vision-based navigation tasks in cluttered environments. 
Indeed, in such a case, the visual features loss is mainly due to occlusions which occur when 
the obstacles enter the camera field of view. Integrating our reconstruction techniques in the 
control law allows to treat efficiently this problem and to realize the task despite the occlusion 
(Folio & Cadenat, 2007; Folio & Cadenat, 2008). Another interesting application area is to use 
the estimated visual features provided by our algorithms to refresh more frequently the 
control law. Indeed, as Ts is often smaller than the vision sensor sampling period Tc6, the 
control law is computed with the same visual measures during several steps, which decreases 
its efficiency. Our work has then be successfully used to predict the visual features between 
two image acquisitions so as to improve the closed loop performances (Folio, 2007). Finally, it 
is also possible to apply our results to other related fields such as active vision, 3D 
reconstruction methods or even fault diagnosis for instance.  
In this part, we still consider a visual servoing application but focus on a particular problem 
which may occur during the mission execution: the camera or the image processing failure. 
Our idea is here to use our estimation technique to recover from this problem so as the task 
can still be executed despite it. We first present the robotic system on which we have 
implemented our works. Then, we detail the mission to be realized and show how to 
introduce our estimation techniques in the classical visual servoing controller. Finally, we 
describe both simulation and experimental results which demonstrate the validity and the 
efficiency of our approach when a camera failure occurs. 

3.1 Robotic system description and modelling 
We consider the mobile robot Super-Scout II 7 equipped with a camera mounted on a pan-
platform (see figure 2.a). It is a small cylindric cart-like vehicle, dedicated to indoor 
navigation. A DFW-VL500 Sony color digital IEEE1394 camera captures pictures in yuv 4:2:2 
format with 640×480 resolution. An image processing module allows to extract the 
necessary visual features from the image. The robot is controlled by an on-board laptop 
running under Linux on which is installed a specific control architecture called GenoM 
(Generator of Module) (Fleury and Herrb, 2001). 
Now, let us model our system to express the camera kinematic screw. To this aim, 
considering figure 2.b, we define the successive frames: ( )MMMM zyxMF

fff
,,,  linked to the 

robot, ( )PPPP zyxPF
fff

,,,  attached to the pan-platform, and ( )cccC zyxCF
fff

,,,  linked to the 

                                                 

 
6 On our experimental platform, Ts=50ms while Tc is between 100 and 150 ms. 
7 The mobile robot Super-Scout II is provided by the AIP-PRIMECA of Toulouse. 
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camera. Let ϑ be the direction of the pan-platform wrt. Mx
f

, P the pan-platform center of 

rotation and Dx the distance between the robot reference point M and P. The control input is 
defined by: q$ = (v, ω, ϖ)T, where v and ω are the cart linear and angular velocities, and ϖ is 

the pan-platform angular velocity wrt. FM. For this specific mechanical system, the kinematic 
screw vc is related to the control input by the robot jacobian J: qJvc

$= . As the camera is 

constrained to move horizontally, it is sufficient to consider a reduced kinematic screw: 

( )Txzy ccc
VV fff Ω= ,,r

cv involving only the controllable DOF. The corresponding reduced jacobian 

matrix r
cJ  expresses as follows: 

 

 

   2.a – Nomadic Super-Scout II.                                   2.b – Cart-like robot with a camera 
                                                                                                    mounted on a pan-platform. 

Fig. 2. The robotic system. 
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where Cx and Cy are the coordinates of C along axes Px
f

 and Py
f

 (see figure 2.b). Notice that 
r
cJ  is a regular matrix as det( r

cJ )=Dx ≠0. 

3.2 Execution of a vision-based task despite camera failure 
Our objective is to perform a vision-based task despite camera failure. We first describe the 
considered mission and state the estimation problem for this particular task before 
presenting the obtained results. 

3.2.1 Vision-based task 

Our goal is to position the embedded camera with respect to a visual landmark. To this aim, 
we have applied the visual servoing technique given in (Espiau et al., 1992) to mobile robots 
as in (Pissard-Gibollet & Rives, 1995). The proposed approach relies on the task function 
formalism (Samson et al., 1991) and consists in expressing the visual servoing task by the 
following task function to be regulated to zero:  
 

)( *
vs ssC −=e  
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where s* represents the desired value of the visual signal, while C is a full-rank combination 
matrix allowing to take into account more visual features than available DOFs (Espiau et al., 
1992). A classical controller (s)q$  making evs vanish can be designed by imposing an 

exponential decrease, that is: vse$ = vseλ− = )(),( s
r
czs qJCL $ , where λvs is a positive scalar or a 

positive definite matrix. Fixing C= 
),( **

zs
L as in (Espiau et al., 1992), the visual servoing 

controller (s)q$ can be written as follows:  

 ( ) ( ) )( *
),(

1

),()( ** ssLJCLq
zs

r
czss −−= +−

λ$  (24) 

3.2.2 Control strategy 

As previously mentioned, the goal is to perform a positioning vision-based task with respect 
to a landmark, despite visual data loss due to a camera failure. The robot will be controlled 
in different ways, depending on the visual data availability. Two cases may occur: either the 
camera is able to provide the visual data or not. In the first case, controller (24) can be 
directly applied to the robot and the task is executed as usually done. In the second case, we 

use our estimation technique to compute an estimation of the visual data vector s~ . It is then 

possible to evaluate controller (24). Hence, during a camera failure, the vehicle is driven by a 

new controller: ( ) ( ) )~( *
),(

1

),~()~( ** ssLJCLq
zs

r
czss −−= +−

λ$ . Therefore, we propose to use the 

following global visual servoing controller: 

 ( ) )~()(vs 1 ss qqq $$$ σσ +−=  (25) 

where σ ∈ [0; 1] is set to 1 when the image is unavailable. This reasoning leads to the control 
architecture shown in figure 3. Note that, generally, there is no need to smooth 
controller (25) when the image features are lost and recovered (if the camera failure is 
temporary). Indeed, when the failure occurs, as the last provided information are used to 

feed our reconstruction algorithm, the values of s and s~  are close and so are )(sq$  and )~( sq$ . 

Usually, the same reasoning holds when the visual features are available anew. However, 
some smoothing may be useful if the camera motion has been unexpectedly perturbed 
during the estimation phase or if the algorithm has been given too inaccurate initial 
conditions. In such a case, it will be necessary to smooth the controller by defining σ as a 
continuous function of time t for instance. 
 

 
 

Fig. 3. The chosen control architecture. 
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3.3 Results 

Our goal is then to position the embedded camera with respect to a given landmark despite 

camera failure. We will use controller (25). We propose hereafter some simulation results 

together with experimental tests to show the interest and the efficiency of the different 

proposed estimation techniques. We first present the obtained results in the two following 

subsections. Precise comments together with a detailed comparative analysis are provided 

in next part. 

3.3.1 Simulation results 

To validate our work, we have first realized numerous simulations using Matlab software. 

We have considered different kinds of visual features: points, ellipses and image moments. 

For each case, we have performed the same robotic task, starting from the same initial 

configuration to reach the same goal s* (see Figure 4). In a similar way, the camera failure 

occurs after 50 steps and lasts until the end of the mission. In this way, we guarantee that the 

multi-step numerical schemes can be correctly initialized6. The control law sampling period 

has been chosen equal to Ts = 50ms, which is close to its value on the robotic platform. The 

control interval has been divided in N=10 integration step, that is Tn=5ms. 

 
 

               
     4.a – Robot trajectory.                                                          4.b – Visual Landmark. 

Fig. 4. Simulated robotic task. 

Our goal is here to perform the vision-based navigation task represented on the figure 4.a. It 
consists in positioning the embedded camera with respect to a landmark made of one ellipse 
described on figure 4.b. This landmark can be modelled by three different visual primitives: 
a set of points belonging to the ellipse, the ellipse features itself, and finally (at least) two 
image moments. This example allows us to illustrate the different ways of stating the 
estimation problem shown in section 2. We present below the obtained results for each of 
these primitives.  
Case of points: In this case, we consider 10 points belonging to the ellipse. Thus, the image 

features vector is defined by: [ ]TYXYX 101011 ,,,, A=s , where (Xi, Yi) are the coordinates of 

each projected point Pi. Let us recall that the dynamic system to be solved is given by (4). 
The table 1 synthesis the simulation results obtained using the proposed numerical and 
analytical methods for points. More precisely, it shows the maximal and the standard 

deviation (std) error of the euclidean norm of the set of points (i.e. ss ~− ) and of their depth 

(i.e. zz ~− ). 
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 Euler error RK4 error ABM4 error 

 std max std max std max 

│s│ 0.947 .10−3 2.450 . 10−3 0.299 . 10−3 1.133 . 10−3 0.136 . 10−3 0.556 . 10−3 

│z│ 1.935 . 10−3 8.949 . 10−3 1.829 . 10−3 7.624 . 10−3 0.379 . 10−3 1.906 . 10−3 

 BDF4 error Analytic error (vc constant) Analytic error (vc variable) 

 std max std max std max 

│s│ 0.311 .10−3 2.109 . 10−3 0.199 . 10−3 0.863 . 10−3 1.779 . 10−12 31.724 . 10−12 

│z│ 0.892 . 10−3 7.784 . 10−3 0.968 . 10−3 6.456 . 10−3 8.795 . 10−12 96.367 . 10−12 

Table 1. Point simulation results (│s│ in pixel, and │z│ in mm). 

Case of ellipse: We consider now the ellipse itself described on figure 4.b. Hence, we first 
recall that an ellipse can be defined by the following quadric equation:  

 02 5432
2

1
2 =+++++ EYEXEYXEYEX iiiiii  (26) 

The visual features vector can expresses as: [ ]TYXYXEEEEE 25251154321 ,,,,,,,,, A=s , where 

(Xi, Yi) are the coordinates of the points belonging to the ellipse. This set of l=25 points 
allows to identify the ellipse Apq 3D parameters (see algorithm 2). The differential system to 
be solved can then be expressed as follows:  
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where ),( ii zPL is the interaction matrix related to the point Pi given by (3) , and ),( pqi AEL  is the 

interaction matrix related to the Ei ellipse quadric parameters. The ),( pqi AEL  expressions are 

available in (Espiau et al., 1992). As the points were presented in the previous paragraph, we 
focus here on the ellipse. Thus, we focus on the ellipse quadric parameters Ei estimation 
results, for which only numerical techniques can be applied. Moreover, each estimated point 
Pi belonging to the ellipse has to fit the relation (26). Therefore, in this case, the estimator 
efficiency can be evaluated according to the following relation:  

 ( )5432
2

1
2 2max EYEXEYXEYEX iiiiii

i
El +++++=ε  (28) 

Hence, the table 2 summarizes the estimation error of Ei parameters and the εEl error for 
each considered numerical scheme. 
Case of moments: The landmark shown on figure 4.b has been characterized by points and 
ellipses. It is also possible to use the two following image moments: the area (i.e. m00), and 

the gravity center, and the gravity center (
00

10

m

m
X g = ,

00

01

m

m
Yg = ) of the ellipse. In this case, the 

visual features vector is set to: [ ]Tgg YXYXYXm 15151100 ,,,,,,, A=s . As previously 

mentioned the set of l=15 points allows to approximate the image moments features. The 
table 3 describes the image moments estimation error. 
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 Euler error RK4 error ABM4 error BDF4 error 

 std max std max std max std max 

E1 6.194 . 10−4 6.353 . 10−3 2.181. 10−4 5.469 . 10−3 1.821 . 10−4 3.846 . 10−3 1.825 . 10−4 3.477 . 10−3 

E2 4.741 . 10−5 2.315 . 10−4 3.517. 10−5 1.233 . 10−4 2.878 . 10−5 1.032 . 10−4 3.092 . 10−5 1.011 . 10−4 

E3 4.967 . 10−5 2.199 . 10−4 3.995 . 10−5 1.891 . 10−4 3.179 . 10−5 1.299 . 10−4 3.101 . 10−5 1.184 . 10−4 

E4 4.569 . 10−4 2.181 . 10−3 3.157 . 10−4 1.177 . 10−3 2.357 . 10−4 1.067 . 10−3 2.109 . 10−4 1.019 . 10−3 

E5 2.328 . 10−4 6.741 . 10−4 1.314 . 10−4 5.762 . 10−4 1.087 . 10−4 5.096 . 10−4 1.006 . 10−4 4.934 . 10−4 

εEl 0.2027 0.8398 0.1512 0.7616 0.1284 0.5756 0.1071 0.6056 

Table 2. Ellipse features simulation results. 

 Euler error RK4 error ABM4 error BDF4 error 

 std max std max std max std max 

m00 6.1044 19.983 5.8346 18.1033 4.194 16.769 2.4298 10.3209 

Xg 1.768 .10−3 4.253 .10−3 1.278 .10−3 3.526 .10−3 0.805 .10−3 2.404 .10−3 0.449 .10−3 1.923 .10−3 

Yg 4.337 .10−3 13.243 .10−3 2.371 .10−3 12.304 .10−3 1.503 .10−3 10.115 .10−3 1.345 .10−3 6.834 .10−3 

Table 3. Image moments features simulation results (area m00 in pixel2, and (Xg, Yg) in pixel) 

3.3.2 Experimental results 
 

 

Fig. 5. Robot trajectory, using numerical schemes. 

We have also experimented our approaches on our Super-Scout II. We have considered once 
again a vision-based navigation task which consists in positioning the embedded camera in 
front of a given landmark made of n=4 points. First of all, we address the validation of the 
proposed numerical schemes. For each of them, we have performed the same navigation 
task: start from the same configuration using the same s* (see figure 5). At the beginning of 
the mission, the robot is driven using the visual features available from the camera and 
starts converging towards the target. At the same time, the numerical algorithms are 
initialized and launched. After 10 steps, the landmark is artificially occluded to simulate a 
camera failure and, if nothing is done, it is impossible to perform the task. The controller is 
then evaluated using the computed values provided by our proposed method.  
In a second step, we have validated the analytical method which take into account the vc 
time variation on our robotic platform (see figure 6). We have followed the same 
experimental procedure as for numerical schemes. Indeed, as previously, the visual data are 
available at the beginning of the task and the robot is controlled using (24). After a few 
steps, the landmark is manually occluded. At this time, the visual signals are computed by 
our estimation procedure and the robot is driven using controller. It is then possible to keep 
on executing a task which would have aborted otherwise. 
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Fig. 6. Robot trajectory, using analytical method (vc variable during [tk; tk+1]) 

 Euler error RK4 error ABM4 error BDF4 error 
Analytic error 
(vc variable) 

 std max std max std max std max std max 

│s│ 1.0021 9.6842 0.9092 7.0202 0.9003 5.9256 1.1172 7.6969 0.1275 0.7657 

│z│ 0.0883 0.7233 0.0721 0.6385 0.0572 0.5064 0.1016 0.5989 0.0143 0.0637 

Table 4. Experimental results (│s│ in pixel, and │z│ in m). 

The table 4 summarizes the whole results obtained in the case of points. These errors remain 
small, which means that there are few perturbations on the system and, thanks to our 
estimation method, it is possible to reach a neighborhood of the desired goal despite the 
camera failure. Once again the analytical method gives the best estimation results. 
Moreover, for the proposed task, the ABM4 scheme is the most efficient numerical method, 
as it leads to the least standard deviation error (std) and to the smallest maximal error. The 
RK4 algorithm gives also correct performances, while Euler method remains the less 
accurate scheme as expected. As Ts is rather small, the BDF4 technique provides correct 
results but has been proven to be much more efficient when there are sudden variations in 
the kinematic screw (stiff context). 

3.4 Comparative analysis and additional comments 

The previous part has been devoted to the validation of the different reconstruction 
algorithms in the visual servoing context proposed in section 2. To this aim, we have 
focused on a specific problem which may occur during a vision-based task: the loss of the 
visual features due to a camera or an image processing failure. The presented simulation 
and experimental results have demonstrated the efficiency and the interest of our approach. 
Now, on the base of these results, our objective is to compare the different approaches and 
to exhibit their advantages and drawbacks. We also aim at giving some elements allowing to 
select the most suitable method depending on the context (considered visual features, task 
to be realized, and so on). All the tests have shown that the analytical solution integrating 
the true variation of the camera kinematic screw is the most accurate approach. This result is 
quite consistent because this solution explicitely takes into account the robot mechanical 
structure and appears to be the closest to the real system. Thus, the estimation errors appear 
to be negligible. In a similar way, the other analytical solution also leads to nice results 
(equivalent to the ones obtained with numerical approaches), but is less precise than the 
previous one. However, these two approaches are restricted to the case where the 
considered image features are points and cannot be used for other kinds of visual 
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primitives. Moreover, as previously mentioned, one of them depends strongly on the 
mechanical structure of the robot on which is embedded the camera. To relax these 
restrictions, it is necessary to treat the problem using numerical schemes. Among them, the 
Gear’s method (BDF4) and the Adams–Bashforth–Moulton scheme (ABM4) are the most 
accurate. It can be shown that the first one is particularly efficient when the dynamics of the 
system to be solved varies rapidly, that is when the problem becomes stiff. For example, this 
phenomenon has been observed when the robot has to avoid obstacles to safely perform the 
desired vision-based navigation task (Folio & Cadenat, 2007). In other cases (few variations 
on the camera kinematic screw), ABM4 scheme appears to provide better results, although it 
is sometimes limited by cumulative errors which occur when the visual primitives are 
reconstructed following several steps as in algorithms 1 and 2. Finally, the Runge–Kutta 
fourth order (RK4) algorithm and Euler schemes are the less accurate because they do not 
consider any history of the image features to be estimated. The above table 5 summarizes 
this comparative analysis. 
  

Methods Advantages Drawbacks Interest 

Analytical solution 
vc variable during 

[tk; tk+1] 
High accuracy 

Solution specific to a Super-
Scout II-like robotic system 
and to points 

+++ 

Analytical solution 
vc constant during 

[tk; tk+1] 

• Allows to consider 
different robotic systems 

• Good accuracy 

Solution specific to points + 

Euler Scheme Easy to implement 
• The least accurate 

• Require small sampling 
period 

-- 

RK4 Scheme 
More accurate than Euler 
scheme 

 
- 

ABM4 Scheme 

• Reconstruction based on a 
predictor/corrector pair. 

•  The local truncation can 
be estimated. 

• The scheme initialization 
requires a history of 
values of Ǚ obtained at 
previous instants. 

• Less accurate when 
successive approximations 
are performed. 

+ 

BDF4 Scheme 
The most efficient approach 
when vc significantly varies

The scheme initialization 
requires a history of values 
of Ǚ obtained at previous 

instants. 

++ 

Table 5. Comparative table 

Only 4th order numerical schemes have been considered in this work. It is important to note 
that using greater orders does not necessarily lead to better results. Usually, a more suitable 
strategy is to reduce the integration step Tn. However, it must be noticed that in such a case the 
approximations are more and more cumulated and that the estimation error does not decrease 
anymore with Tn as one could have expected. Therefore, the most efficient way allowing to 
improve the quality of our algorithms is to reduce the control law sampling period. 
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Furthermore, as one could have expected, simulation provides better results than 
experimentation. In particular, when testing our algorithm, we have to deal with several 
constraints related to our robotic platform. First, the implementation of our algorithms 
requires to have the necessary data for initialization and to know precisely the values of Ts 
and Tn. These conditions are not necessarily fulfilled on experimental platforms, as it mainly 
depends on the operating system running on them. For instance, on the Super-Scout II, Ts 
cannot be precisely obtained. Moreover, our modelling does not take into account the noises 
which appear on the image features extraction processing and on the measurement of the 

robot velocities q$ . 

Finally, let us recall that our main goal was to provide a generic framework to reconstruct 
the visual features whenever they become unavailable. In particular, we have shown that 
common visual primitives cannot be computed if the Apq 3D parameters are not previously 
estimated. We have then proposed a solution consisting in using points to identify them. 
However, our validation work has demonstrated that this solution does not provide a 
totally efficient estimation because of the successive approximations induced by the 
procedure. Thus, the estimation algorithm could be improved by computing Apq together 
with s as done for points. However, in such a case, the result would be restricted to the 
considered visual primitives, whereas the proposed solution based on points presents the 
advantage of the genericity. 
In conclusion, the proposed reconstruction algorithms have been successfully validated in 
the vision-based navigation task. The obtained results have demonstrated the efficience and 
the relevancy of our approach to treat the specific problem of image features loss during a 
visual servoing task. Thanks to our method, as soon as an analytical expression of L(s,z) is 
available, it is possible to reconstruct the visual data when needed and to keep on 
performing a task which should have been aborted otherwise. 

4. Conclusion 

In this chapter, we addressed the problem of computing the image features when they 
become unavailable during a vision-based task. To this aim, in a first step, we have 
elaborated different algorithms able to reconstruct the visual signals when they are lost. The 
proposed techniques rely on the camera kinematic screw and on the last measured 
perceptual cues. We have then shown that the problem can be expressed as the resolution of 
a dynamic system and we have developed different techniques allowing to solve it. We have 
proposed both analytical and numerical solutions. The first ones are very accurate, but 
appear to be limited to specific image features and dedicated to a particular robot 
mechanical structure. The second ones are less precise but present the advantage of 
genericity, as they can be applied in a general context (any kind of visual data and of robotic 
systems). It is then possible to obtain an estimation of any kind of image features 
independently from the robot on which is embedded the camera. In a second step, we have 
demonstrated the validity of our algorithm in the visual servoing context, considering the 
case of a positioning task during which a camera failure occurs. The obtained simulation 
and experimentation results have demonstrated the relevancy of our techniques to keep on 
performing the mission despite such a problem. Finally, we have ended our study by 
proposing a comparative analysis of the different elaborated algorithms. 
These works have opened several interesting issues. First, the designed analytical solutions 
are restricted to the case of points and, for one of them, to the considered robotic system. 
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Although it is a priori difficult to develop such a solution for the general case, a natural 
extension would then to solve this problem for other kinds of robots and of visual 
primitives. Moreover, as the analytical solution directly provides an expression of the depth, 
it would be interesting to use it together with approaches such as tracking algorithms or 
camera pose reconstruction techniques. Finally, our results could also be successfully 
applied in other related fields than visual servoing. For example, it would be interesting to 
use them in a fault tolerance context to detect and correct errors in image processing 
algorithms. 
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