
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 1

Grapevine Biotechnology: Molecular Approaches

Underlying Abiotic and Biotic Stress Responses

Grace Armijo, Carmen Espinoza, Rodrigo Loyola,

Franko Restovic, Claudia Santibáñez,

Rudolf Schlechter, Mario Agurto and

Patricio Arce-Johnson

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64872

Provisional chapter

Grapevine Biotechnology: Molecular Approaches

Underlying Abiotic and Biotic Stress Responses

Grace Armijo, Carmen Espinoza, Rodrigo Loyola,

Franko Restovic, Claudia Santibáñez,

Rudolf Schlechter, Mario Agurto and

Patricio Arce-Johnson

Additional information is available at the end of the chapter

Abstract

Grapevine is one of the most abundant crops worldwide, with varieties destined for
fresh and dry consumption,  as  well  as  wine production.  Unfortunately,  grapevine
plants are affected by both biotic and abiotic stresses, generating significant economic
losses. These conditions can negatively impact grape cultivation at different stages:
plant and berry development during pre- and post-harvest,  production, fresh fruit
processing and export, along with wine quality. Most of the grapevine varieties are
susceptible to several pathogens and within this chapter, particular attention is given
to fungi (Botrytis cinerea and Erysiphe necator) and viruses, since they are a worldwide
concern. Within the latter, special focus is given to the grapevine leafroll disease, a
complex and destructive infection. On the other hand, abiotic stress is also relevant in
grapevine, and in this chapter it will be exemplified by UV-B radiation and its impact
on growth and fruit development, plant adaptive responses and its relationship with
the quality of grape berries for winemaking. The main biotic and abiotic grapevine
stress factors are reviewed in this chapter, considering a special focus on biotechno-
logical approaches carried out in order to address them and minimize their detrimental
consequences.

Keywords: grapevine fungal diseases, Erysiphe necator, Botrytis cinerea, grapevine vi-
ruses, UV-B radiation, grapevine biotechnology
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1. Introduction

Grapevine (Vitis vinifera L.) is one of the most important crops worldwide. Within the Vitaceae
family, the Vitis genus has a major agronomic importance. Among them, V. vinifera is the only
species  extensively used in the global  industry,  dominating the market  with only a  few
cultivars, generally classified according to their final production: wine grapes, table grapes and
raisins [1]. This low variability is directly related to grapevine’s high susceptibility to biotic
and abiotic stresses, which is associated with significant economic losses.

Most of the grapevine varieties are susceptible to several biotic agents, such as phytoplasma,
bacteria, fungi, oomycetes, viruses and nematodes, which dramatically reduce plant yield and
fruit quality, and negatively impact plant development. In vineyards, the most important
diseases are caused by microorganisms such as fungi, oomycetes and viruses. Within patho-
genic fungi, Botrytis cinerea and Erysiphe necator are the most important ones, producing the
grey mould and powdery mildew diseases, respectively [2]. V. vinifera is classified as a
susceptible species, where low or no resistant phenotypes have been described in economically
significant cultivars until now.

On the other hand, nearly 60 viruses can infect grapevine plants, a much higher number than
the ones affecting other perennial crops. Under natural conditions, grapevine viruses are
transmitted by insect or nematode vectors. However, since grapevine is usually propagated
by grafting, viruses can also disseminate within plants through these cuttings [3]. It is note-
worthy to mention that unlike to other pathogens, grapevine plants present no virus resistance,
meaning that they can establish compatible interactions where viral pathogens can spread
throughout all tissues, generating a global cellular stress and developmental defects [4–6].
Regarding these infections, the leafroll disease is one of the most complex viral diseases known
and is considered one of the most destructive in grapevines. In addition to their economic
detriment to grapevine cultures, all viruses are relevant when the sanitary status of the
vineyard is considered.

Abiotic stress factors, particularly water availability, temperature and light are also relevant in
grapevine. Among them, ultraviolet (UV)-B radiation impacts on grapevine plants growth and
normal fruit development. V. vinifera is often cultivated in Mediterranean climates with varied
UV-B radiation dosages [7]. Grapevines are considered as well adapted to solar radiation due
to a variety of physiological adaptive responses mainly based on antioxidant enzyme activities
and secondary metabolites [8], which besides their role in defence against abiotic stress are
relevant for colour, taste and aroma of grapes. These responses are triggered by UV-B percep-
tion and signalling pathway, which was recently identified and characterized in grapes [9,
10]. The increase of flavonols in response to UV-B has been reported in grapevine berry skins
[9]. As a consequence, the quality of grape berries for winemaking is correlated with the
accumulation of UV-B-induced phenolic compounds. Hence, wines with the highest concen-
trations of phenolic compounds are generally considered of excellence [11]. Therefore,
understanding the mechanisms of perception, signalling and response of the grapevine to UV-
B and using this knowledge to improve both productivity and fruit quality by genetic
modification are attractive targets for the wine industry.
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Biotechnological approaches aimed to solve grapevine stress affections, in areas regarding
grapevine physiology and genetics, are a main requirement for optimizing and improving
quality of this species through biotechnological tools.

2. Grapevine biotic stress

As mentioned above, biotic stress is related to infection caused by phytopathogenic organisms
such as bacteria, nematodes, fungi, oomycetes and viruses, among others. These pathogens
get the necessary elements for growth and reproduction from its hosts. According to their
infection strategies, plant pathogens can be classified as necrotrophics, biotrophics and
hemibiotrophics. Necrotrophic pathogens on one hand, extract nutrients from dead cells
during colonization, secreting lytic enzymes and phytotoxins in order to promote necrosis in
the host plant. Biotrophic pathogens, on the other hand, feed on living tissue maintaining the
viability of the host in order to obtain metabolism products. Finally, hemibiotrophic pathogens
start with a biotrophic infection phase, followed by a late necrotrophic one [12].

2.1. Fungal diseases in grapevine: a biotrophic and necrotrophic model

Nowadays, most of the wine, table grape and dried fruit cultivars have the Eurasian grape
species V. vinifera as a common ancestor, mostly due to its distinctive flavour and aroma.
However, another similar trait is their limited genetic resistance against fungal pathogens,
making these cultivars highly dependent on the use of fungicides [13].

The most common fungal grape diseases are the powdery mildew and grey mould caused by
the biotrophic pathogen E. necator and the necrotrophic B. cinerea, respectively [2].

2.1.1. Powdery mildew: E. necator

E. necator Schwein (synonyms: Uncinula necator Burr., E. tuckeri Berk., U. americana Howe and
U. spiralis Berk. and Curt.; anamorph: Oidium tuckeri Berk.) is a biotrophic and filamentous
fungus that belongs to the Erisiphaceae family. E. necator is the etiologic agent of the powdery
mildew disease in species of the Vitis, Cissus, Parthenocissus and Ampelopsis genera, being V.
vinifera one of its most economically important hosts [14].

The powdery mildew disease is associated with large production losses as it reduces yield and
fruit quality, mainly affecting the sugar content and acidity of the berries, although it can also
infect other green tissues. This pathogen can be found in all grape-growing regions, especially
in dry and warm weathers [15].

Being an obligated biotrophic pathogen, E. necator depends on its host for growth and
development, as photosynthesis-active tissues are necessary to complete its life cycle. The
infective process begins with the attachment of the asexual spore (conidia) on plant tissues,
followed by the formation of a primary germ tube which differentiates in a specialized infective
structure called appressorium. The latter then generates a mechanical pressure in order to
penetrate and invade the host cell (Figure 1). Germination involves the secretion of fungal lytic
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enzymes which leads to the release of compounds that enhance fungal germination and
development [13]. The successful invasion results in cell membrane invagination and the
haustorium formation, which is a specialized hypha that facilitates the dynamic exchange of
molecules derived from both fungal and host cells. The fungus retrieves nutrients from the
host cells, while at the same time it secretes proteins to suppress host defences. After this
establishment, secondary hyphae proliferate in order to colonize a larger area of tissue across
the surface, producing more appressoria and haustoria at regular intervals. The overall process
culminates with conidiation, which involves the formation and release of asexual spores to
distal tissues [16]. The main symptom of E. necator colonization is the appearance of a white
powder in the infected host tissue, corresponding to mycelial proliferation and conidiophores
development [14].

Figure 1. Grapevine powdery mildew and E. necator asexual life cycle. (A) Grape leaves infected with E. necator exhibit
a white powder on the infected tissue surface. (B) Asexual life cycle stages. I: Conidium (C) attachment; II: Conidium
germination and germ tube (Gt) formation; III: Appresorium differentiation (Ap); IV: Development of haustorium (H),
extra-haustorial membrane (EHM) and secretion of virulence factors or effectors (Ef); V: Colonization and secondary
hyphae (SH) formation; VI: Production of asexual reproductive organs or conidiophores (Cp).

When environmental or nutritional conditions become unfavourable, E. necator develops a
structure of sexual reproduction that contains ascospores, called cleistothecia. Within this
structure ascospores can remain dormant for months until favourable conditions allow
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germination and, like asexual spores, appressorium formation in order to begin a new infective
process [14].

2.1.2. Grey mould: B. cinerea

The necrotrophic fungus B. cinerea (Persoon: Fries; teleomorph Botryotinia fuckeliana) is widely
distributed in nature and it lacks a specific host. This fungus is capable to infect vegetables,
fruits and ornamental plants, among others, making it a great problem for many plant species
[17]. However, its importance relies on its ability to infect crops of commercial interest, such
as grapevine. It can cause soft rotting of all aerial plant tissues, and rotting of post-harvest
fruits; production of grey conidiophores and (macro)conidia are typical signs of the disease
[18].

Figure 2. Grey mould and Botrytis cinerea asexual life cycle. (A) Grape berry cluster severely infected with B. cinerea. (B)
Asexual life cycle stages. I: Conidium (C) attachment; II: Conidium germination and germ tube (Gt) formation; III: Ap-
presorium (Ap) differentiation; IV: Secretion of cell wall degrading enzymes (CWDE); V: Colonization and secondary
hyphae (SH) formation; VI: Development of asexual reproductive organs or conidiophores (Cp).

Grey mould disease causes heavy yield losses in table and wine grapes all around the world.
As a consequence of the increase of the international trade of cold-stored products, this fungus
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has gained great importance because it can grow effectively over long periods of time at just
above freezing temperatures [18]. In the field, it can spread to other grapes by insects which
can carry viable conidia and generate mechanical damage [19]. Although, B. cinerea shows a
remarkable flexibility to germinate in different host environments, several factors influence the
germination of a conidia, such as temperature, surface water, relative humidity, among others
[20].

Once the conidium attaches to its host, it can germinate and develop to an infective structure
called appressorium, which is able to breach the cuticle by means of a penetration peg (Figure
2). The underlying cells are killed by the fungus, and the primary lesion is established. After
the skin barrier is damaged, B. cinerea causes decomposition of plant tissues in order to
consume the plant biomass. At this point it secretes cell wall degrading enzymes (CWDE),
toxins and oxalic acid. Subsequently, the hyphal growth is induced in order to begin the
sporulation cycle and infection of adjacent cells [17].

In some tissues, B. cinerea causes long-lasting quiescent infections, in which no symptoms are
discernible at first. It can also penetrate floral tissue of grapes (petals, stigmas, styles or stamens)
and remain dormant, often for several weeks, until it resumes activity and invades the fruit
later in the season or during ripening. It has been postulated that high levels of phytoalexins
in immature fruits contribute to quiescence, acting as fungitoxic or fungistatic compounds;
and that post-harvest host physiological and biochemical responses might activate the
pathogen [21].

2.2. Grapevine responses to fungal diseases

Plants are considered to have two types of immunity: a general one against a broad spectrum
of microorganisms, and other specific one against a particular pathogen. Both responses are
characterized by their ability to recognize pathogen components, transduce the stress signal
and induce a defence response. However, the main difference between the both is considered
to be the robustness and duration of the response [22].

The first type of immunity is known as PTI (pathogen-associated molecular patterns (PAMP)
triggered immunity) and is activated by PAMP recognition receptors (PRR) that detect
structural pathogen components and transduce the signal for the induction of a basal response.
This type of immunity is mainly related to the prevention of pathogen entry into plant cells
[23]; however, it is not completely effective against biotrophic and necrotrophic fungi. On the
latter case, the response is activated by damage-associated molecular patterns (DAMP)
recognition mainly derived from the host cell wall fragments generated by CWDE [24].

The second line of defence is known as ETI or effector triggered immunity, capable of directly
or indirectly recognizing specific pathogen effectors through the expression of resistance
proteins (R proteins). This recognition induces a more robust and efficient response, mainly
against biotrophic pathogens, by preventing them to complete their life cycle in the host,
interrupting nutrient uptake and eliminating the infected cells along with the pathogen [23].
Since this response against biotrophic pathogens (and hemibiotrophic too) generally ends with
programmed cell death (PCD) of infected tissue, some necrotrophic pathogens induce this
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mechanism during infection in order to bypass plant defences and rapidly kill tissue for
nutritional benefits [24].

Plant defence mechanisms are finely regulated by plant hormones, mainly jasmonic acid (JA),
ethylene (Et) and salicylic acid (SA), which communicate synergistically or antagonistically
depending on the type of pathogen. Generally speaking, the defence against necrotrophic
pathogens are considered to be mediated by JA and Et, while the defence against biotrophic
pathogens by SA [12]. However, V. vinifera cultivars are very susceptible to fungal pathogens,
likely due to insufficient defence responses to contain these pathogens.

2.2.1. Grapevine defences against E. necator

E. necator corresponds to the only powdery mildew species adapted to V. vinifera. Nevertheless,
several species from the Vitaceae family have been identified as resistant. In the latter, plants
are able to restrict E. necator invasion and growth by means of two strategies: penetration
resistance and programmed cell death (PCD)-mediated resistance (observed as a hypersensi-
tive response). The first blocks the breach of the cell wall and membrane and thus prevents the
formation of the haustorium. On the other hand, the PCD-mediated resistance is exerted once
the epidermal cell is penetrated and induces the death of it, thereby interrupting the supply
of nutrients required by the biotrophic fungus for further growth and development [13]. This
type of resistance is related to the detection of pathogen effectors by the plant due to specific
resistance genes (R genes) [25, 26]. Different loci have been found in several species of the
Vitaceae family which confer resistance to E. necator; carrying resistance gene analogues (RGA)
and in some cases associated to complete resistance to powdery mildew mostly related with
PCD induction [27]. However, very few candidate R-genes have been identified to date and
molecular defence mechanisms triggered by these resistance loci are being studied. A number
of genes have been implicated in resistance in certain wild Vitis species showing increased
transcription during infection or differential expression levels between resistant and suscep-
tible plants [13], but the identification of key components in PTI and ETI responses against E.
necator in grapevines is still pending.

Resistance to powdery mildew in the Vitaceae family is closely related to its evolutionary
history. V. vinifera is native to Eurasia and developed evolutionarily isolated from E. necator, a
pathogenic fungus from North America, until the 1840s. This is the reason why nearly all V.
vinifera cultivars lack the genetic protection mechanisms against the fungus and are highly
susceptible to infection [14, 26, 28]. Even though V. vinifera susceptible plants are able to initiate
a basal defence response, they are unable to restrict fungal growth and arrest the disease [29].

Ontogenic, or age-related resistance, also has a role in the defence against E. necator. It may
operate at a whole plant level or at specific organs or tissues. Grape berries develop ontogenic
resistance to powdery mildew within 4 weeks after fruit set. However, adhesion of conidia,
germination and appressorium formation were not impeded on older berries [30]. Ontogeni-
cally resistant berries respond rapidly to infection by synthesis of a germin-like protein that
has been previously shown to play a role in the host defence against barley powdery mildew.
This type of defence, which conditions ontogenic resistance, operates in the earliest stages of
the infection process prior to the formation of a functional haustorium [30].
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2.2.2. Grapevine defences against B. cinerea

Low or no resistant phenotypes to grey mould have been described in most common table
grape V. vinifera cultivars, whereas high level of resistance has only been found in the Musca‐
dinia rotundifolia (Vitis rotundifolia), Vitis labrusca and other grape hybrids species. This resist-
ance appears to be related to mechanical barriers, such as cuticle and wax contents [31]. Pre-
existing or basal defences seem to be an important part of the machinery against B. cinerea,
along with the activation of inducible defence mechanisms mediated by SA or JA/Et pathways,
which in turn depend on the developmental stage, and an appropriate kinetics between ROS
production and the generation of antioxidant compounds [32, 33].

Structural barriers are related to the fungal primary infection process (i.e. appressoria forma-
tion and plant tissue penetration), while inducible responses are associated with subsequent
infection ones [34]. In this case, PTI is mainly activated by DAMPs, host cell wall fragments
generated by fungal CWDE and PAMPs such as chitin fragments of fungal cell walls, among
others. These are identified by specific PRR receptors, such as cell-wall-associated kinases,
which in turn activate the defence signalling cascade, culminating in hormones and transcrip-
tion factors biosynthesis [12, 24]. This response induces protease inhibitors generation and
secondary metabolite biosynthesis (i.e. anthocyanins and phytoalexins). The flavonoid
phytoalexin plays an important role in the defence response of grapes. The rapid production
of resveratrol, major compound of the stilbene family, and its transformation into Viniferins
enhance resistance to fungal pathogens in grapevine cultivars [35]. Resveratrol and pterostil-
bene (two grapevine phytoalexins) produce malformation or growth inhibition of germ tubes,
cytoplasmic granulation of the cellular content and the disruption of the plasma membrane in
B. cinerea conidia [36].

2.3. Biotechnological strategies for fungal control in grapevine

Regarding control of fungal pathogens, major improvement efforts have been directed towards
enhancing fungal-disease resistance in table and wine grape cultivars. Development and
optimization of alternative strategies to reduce the use of classic chemical inputs for protection
against diseases in vineyard is becoming a necessity. Nowadays, fungal-related diseases are
controlled through fungicide applications of organic and inorganic composition. The most
used compounds are sulphurs, petroleum-based oils, inorganic salts, benzimidazoles and
ergosterol biosynthesis inhibitors, among others [14]. However, these management practices
usually generate negative impacts on the environment and have elevated health and safety
hazards. Various sources have speculated that sulphur, the most heavily used agricultural
chemical, can cause respiratory illnesses and other adverse health effects [37]. In soil, sulphur
is slowly converted by bacteria to sulphate, which generally does not cause harm. Other
synthetic compounds used for treatment and prevention, such as sterol inhibitors have not
been reported as having negative environmental or human health effects.
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2.3.1. Genetic improvement

Genetic improvement is an agronomic practice widely used to confer interest features to a crop
through hybridization between different cultivars or even species, in order to obtain new
varieties. In V. vinifera, most interesting features vary depending on the use the fruit will be
given. Nevertheless, in all cases, the importance of introducing fungal disease resistance is a
priority, in order to reduce pathogen management and to minimize environmental impact [38].

Many North American Vitis species show various levels of resistance to E. necator but lack
productive and commercial qualities; however, they represent a valuable germplasm to be
used as natural sources of resistance in grapevine breeding programs. Among the resistant
North American species identified to date we can find V. aestivalis, V. cinerea, V. riparia, V.
berlandieri, V. labrusca and also Muscadinia rotundifolia [14, 26, 39]. However, the powdery
mildew resistance character is not restricted to North America. The Central Asian V. vinifera
cvs. ‘Kishmish vatkana’ and ‘Dzhandzhal kara’ have also been identified as resistant geno-
types [26, 40–42].

Genetic knowledge of the resistance trait is crucial to achieve a significant improvement of
grapevine through breeding. Several powdery mildew resistance loci have been identified and
mapped to date. The Run1 locus was described in M. rotundifolia and has been successfully
introgressed into V. vinifera. According to the closest SSR markers VMC4f3.1 and VMC8g9, this
locus was mapped to a region in chromosome 12 and co-segregates with the Plasmopara viticola
resistance locus Rpv1 [14, 26, 43, 44]. The MrRUN1 and MrRPV1 genes, which code for TIR-
NBS-LRR proteins (a class of R proteins), are the first cloned and functionally characterized
resistance genes from grapevine [27]. The Ren1 locus, on the other hand, belongs to the V.
vinifera cvs. ‘Kishmish vatkana’ and ‘Dzhandzhal kara’ from Central Asia. It has been mapped
in linkage group 13 with the closest linked SSR markers VMC9H4-2, VMCNG4E10-1 and
UDV-020. To date, this gene has not been fully identified, although near the SRR markers, an
NBS-LRR and a CAD gene have been recognized, being both probably part of the hypersen-
sitive response [40, 42]. Other identified powdery mildew resistance loci are Run2.1, Run2.2,
Ren5 and Ren.4 from M. rotundifolia cvs. ‘Magnolia’, ‘Trayshed’, ‘Regale’ and V. romanetii,
respectively. All of these loci have been mapped in chromosome 18, which have a significant
higher density of NBS-LRR genes compared to the other linkage groups, except for Ren5
mapped in linkage group 14. The resistance mechanism mediated by Ren4 may differ from
the other loci since extremely low penetration and secondary hyphae development rates with
no cell death have been observed at the infection site [45–47].

One of the main concerns about using pathogen resistance genes in plant breeding is the
potential appearance of new pathogen strains that could breakdown the resistance. To
overcome this latent problem, actual breeding efforts are focusing on stacking or pyramiding
two or more resistance genes within a single cultivar to increase the durability of the resistance
in the field. In this scenario, pathogen reproduction will be restricted even if infection by a new
pathogen strain with a modified or lost effector molecule occurs. Thus, biotechnological tools
have become essential for the development of new resistant cultivars. Marker-assisted gene
pyramiding is one of the main applications of DNA markers in plant breeding. The use of
molecular marker-assisted selection allows the identification of segregants that may exhibit

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

11



the same phenotype but carry multiple resistant genes [26]. A grapevine progeny with
individuals carrying both Run1 and Ren1 loci was developed in 2010, where Run1 was
introgressed from a M. rotundifolia × V. vinifera hybrid plant derived from a pseudo-backcross-
ing breeding scheme, while Ren1 was introgressed from the resistant V. vinifera cv ‘Kishmish
vatkana’ [48].

Unlike to what happens with E. necator, no genetic resistance components against B. cinerea
have been identified until now, being this the main reason why no breeding programs against
this fungus have been reported. All efforts in this area have been developed within the
transgenic field, which will be described below.

2.3.2. Genetic manipulation

The development of highly reproducible genetic engineering protocols for grapevine cultivars
and rootstocks now allows the identification, screening and/or introduction of grapevine-
derived genes related to desirable traits, such as disease resistance.

Pathogenesis-related (PR) proteins were screened for their response to fungal pathogen
infection. Genetically modified (GM) grapevines constitutively expressing rice chitinase genes
exhibited enhanced resistance to powdery mildew [49, 50]; however, no resistance was
observed when plants expressed barley chitinase genes [51]. Other non-grapevine-derived
genes, such as the polygalacturonase inhibiting protein (PGIP) and other lytic peptides, were
demonstrated to improve fungal disease resistance [49].

Two endochitinase (ECH42 and ECH33) genes and a N-acetyl-β-D-hexosaminidase (NAG70)
gene related to Trichoderma spp. were used to develop a set of genetically modified ‘Thompson
Seedless’ lines in order to evaluate fungal tolerance against B. cinerea. The highest resistant
plants were the ones expressing the ECH42–NAG70 double gene construct and the ECH33 gene
[52].

Genetic manipulation of phytoalexins has been done in order to increase disease resistance of
plants. Use of modern molecular biology tools for elucidating the control mechanisms of
phytoalexin synthesis and for engineering disease-resistant plants is based on the expression
of stress- or disease-related genes. Few reports attempting the manipulation of phytoalexins
biosynthesis by genetic engineering have been published, with most of them related to
resveratrol, the major phytoalexin from Vitaceae. STS, the key enzyme in resveratrol synthesis,
uses as substrates precursor molecules that are present throughout the plant kingdom.
Therefore, the introduction of a single gene is sufficient to synthesize resveratrol in heterolo-
gous plant species [53].

The grapevine rootstock 41-B, overexpressing the grapevine VST1 stilbene synthase gene
under the control of the fungus inducible promoter PR 10.1, produced high stilbene levels
and exhibited in vitro resistance to B. cinerea [54]. Stilbene phytoalexin resveratrol levels in
grapes have been directly correlated with grey mould resistance [55].

All the aforementioned results demonstrate that improved fungal tolerance can be accom-
plished through transgene expression. In addition, they support the use of iterative molecular
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and physiological phenotyping in order to select tolerant individuals from GM grapevine
populations.

2.3.3. Biological control

Biological control of fungal pathogens is based on the use of microorganisms to prevent or
reduce the damage produced during infection. Among the best studied biocontrol agents we
can find are the filamentous fungi of the Trichoderma genus [56], bacteria of the Bacillus,
Pseudomonas and Serratia genera [57] and yeasts of the Pichia and Candida genera [58]. Within
the proposed mechanisms of how biological control of plant pathogenic fungi work, we can
describe the competition for ecological niches, especially for nutrient utilization and elements
obtaining such as nitrogen and carbon and/or the secretion of toxic molecules for the fungus
[59, 60].

Another biocontrol mechanism is the activation of the induced systemic resistance (ISR) in
plants; this mechanism can be induced by elicitors released by the biocontrol agent (ranging
a wide variety of molecules), and it has been attributed to non-pathogenic microorganisms
associated to plants, such as saprophytes [61]. Generally speaking, microorganisms exhibit a
combination of the mentioned mechanisms, thus reducing the risk of pathogen resistance [62].

Among the bacteria able to synthesize and secrete anti-fungal molecules, those belonging to
the genus Bacillus are the most important. These bacteria are characterized by their ability to
secrete a wide range of bioactive molecules, including anti-fungal, anti-microbial, insecticides,
plant growth promoters and ISR-inducing ones [63]. In addition, these molecules have a low
toxicity to animals and humans, and are highly biodegradable, so they do not represent a
hazard to the environment unlike chemical fungicides [64]. The best characterized molecules
secreted by bacteria of the genus Bacillus with anti-fungal activity, are the cyclic lipopeptides.
These molecules are mainly classified into three families: iturins, fengicines and surfactins.
They are formed by a non-ribosomal peptide synthesis ring, which is attached to a fatty acid
chain [65]. An important feature of these molecules is that within each family there are different
counterparts, differing in the amino acid composition of the polypeptide in the ring and the
chain length of the fatty acid [65].

2.3.4. Elicitors

Another control strategy consists in the stimulation and/or potentiation of the grapevine
defence responses by the means of elicitors [66]. Elicitors are defined as a more specific class
of purified molecules originated from microorganisms or plants which are able to stimulate
an innate immune response in plants [67].

Elicitor perception also increases the level of plant resistance against future pathogen attack
[12]. Induced resistance is often related to the ‘priming’ or potentiation phenomenon, and some
molecules perceived by plants have also been shown to induce these effects [66, 68]. The
definition of priming is related to the physiological state of the plant after an initial biotic or
abiotic stimulus. This priming allows the plant to respond in a faster and/or stronger way to
following biotic and/or abiotic challenges, often resulting in an improved tolerance in com-
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parison to non-primed plants [68]. The mechanism of this phenomenon remains relatively
unknown to date, but recent hypotheses suggest that accumulation of dormant MAPKs,
chromatin modifications and alterations of primary metabolism could be involved in the
process [66, 68].

Bacterial elicitors were recently shown to stimulate innate immunity in grapevine cultivars
through cytoskeleton re-organization, early signalling event activation and defence gene
induction [69]. Fungal elicitors have also been proved to be very efficient in stimulating innate
immunity in grapevines. The deacetylated derivative of chitin (chitosan) elicitor triggered
defence responses and protection against B. cinerea [70]. Also, ergosterol has been found to
trigger defence gene expression in grapevine plants [71]. However, there are few references
that show positive and effective results against pathogens under vineyard conditions [66].

Few of these products have shown acceptable effectiveness against biotrophic pathogens.
Therefore, until now, there is not an elicitor-based product that can be used instead of con-
ventional agrochemicals in order to successfully fight B. cinerea. Additional research needs to
be pursued in order to fully understand the defence mechanisms under vineyard conditions.

2.4. Viral infections in grapevine: an example of compatible host-pathogen interaction

Viral diseases in grapevine are highly complex. This complexity is due to the large amount of
different viruses that can infect grapevine plants, occurring most of the time as multiple
infections, and because of the nature of the compatible pathogen-host interactions that is

Figure 3. Characteristic symptomatology of the main viruses affecting grapevine. Leaves showing different virus-trig-
gered symptomatology, including reddish areas (A, B, E, H and I), leaf thickness and downward rolling (B), ringspots
(D and G), chlorosis (C and F) and yellow veins (H).
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established. Viral infections in grapevine plants affect vegetative organs inducing foliar
deformations, alterations in leaf colour and, in some cases, graft rejection (Figure 3) [72].

Severe infections also reduce berry setting and cause irregular and delayed ripening [72, 73].
Currently, more than 60 viruses have been described in grapevine [73], which together with
viroids, phytoplasmas and insect-transmitted xylematic bacteria, correspond to the highest
number of intracellular pathogen described for a single crop. Grapevine infecting viruses are
classified according to several parameters, including size particle, genome structure, replica-
tion strategies, transmission vector and serological information [73]. In general, grapevine
infecting viruses exhibit single-stranded RNA (ssRNA) genomes, and the most relevant belong
to the Nepovirus, Ampelovirus, Closterovirus and Vitivirus genera.

Viruses belonging to the Nepovirus genus are widely disseminated and are responsible for
the degeneration disease. The most representative are the GFLV (Grapevine Fanleaf Virus),
ArMV (Arabis Mosaic Virus), SLRSV (Strawberry Latent Ringspot Virus), ToRSV (Tomato
Ringspot Virus) and TRSV (Tobacco Ringspot Virus) [72–75]. Most viruses of these groups are
not serologically related but share physical and biological attributes [75]. Regarding their
infection vectors, Nepoviruses can be transmitted by one or more nematodes species [76, 77].
Moreover, it has been established that GFLV is transmitted by Xiphinema index, ArMV by
Xiphinema diversicaudatum and SLRSV by Paralongidorus maximus. Nepoviruses induce
grapevine degeneration and leaf decline and produce serious yield losses [74]. However, leaf,
steam and berries symptoms vary according to the graft and scion combination, virus strains
and environmental conditions. These symptoms include delay in bud break, irregular bud
growth, leaf deformity and reduced berry size. Together with the virus-induced decay, a
reduction in vegetative growth takes place and even plant death can occur [78, 79]. Decay
disease is a major threat for the grape industry since vigour reduction triggered by GFLV
infection can reduce yields in about 80% or more [73, 80].

Grapevine leafroll disease (GLD) is one of the most important viral diseases affecting grape-
vines worldwide [3, 81–83]. It is generally accepted that this disease is caused by 11 viral agents,
named GLRaV-1 to GLRaV-11 [3], and according to specific genome sequences, their taxonomic
classification includes members of the Ampelovirus genus (GLRaV-1, -3, -4, -5, -6 and -9), the
Closterovirus genus (GLRaV-2) and the Velarivirus genus (GLRaV-7). Besides the diversity of
viral agents associated with GLD, it is widely assumed that GLRaV-3 is the main etiological
factor contributing to the disease. Viral agents responsible for GLD are flexuous filaments, 1800
× 12 nm in size with the unique Closterovirus architecture [3]. These particles are responsible
for the characteristic GLD symptom, expressed as red colour leaves with green vein pattern,
often curled downwards and brittle [83]. In red cultivars, GLD symptomatology is much more
evident in comparison to white cultivars, where the disease can be asymptomatic [84];
nevertheless, white cultivars can show inter-veinal yellowing of leaves and leaf rolling [83].

Grapevine virus A and B (GVA and GVB), which belong to the Vitivirus genus, are also
relevant [85]. GVA is related with the Kober stem grooving symptom, where severe grooving
on the grafted stems occurs [86, 87], while GVB is associated with the corky bark syndrome
consisting of soft, rubbery and abnormal swelling of the basal internodes of the canes,
longitudinal cracks and cork forming, typical of the rugose wood complex [88]. Vitivirus genus
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has other species less ubiquitous, named GVD, GVE, and the most recently discovered GVF
[89], causing similar symptoms to the corky rugose wood but its role is still unclear [90].

Interestingly, in many cases viruses are present in grapevine as multiple infections [91, 92],
where the symptomatology can be a combination of those triggered by individual viral agents.
This situation is exacerbated by the fact that grapevine is propagated through cuttings. Asexual
propagation is the predominant method to generate clones which are genetically identical to
the parental plants, allowing worldwide distribution since centuries, together with the
dissemination of infectious agents across the grapevine-growing regions, spreading their
detrimental consequences to grape production [3].

It is noteworthy to mention that, unlike to other pathogens, grapevine plants show no
resistance to viruses, meaning that plants and viruses establish compatible interactions where
pathogens can spread throughout all tissues without any active resistance response, generating
a global cellular stress and developmental defects. It is well known that susceptible hosts are
not completely passive against a pathogen, and can set up a defence response that could be
less intense and not strong enough to stop viral replication and dissemination [4, 6]. Within
the latter, the emergence of visible plant symptoms is none other than the sum of different
molecular, cellular and physiological variations of the plant defence processes in response to
viral infections. Moreover, as seen in compatible interactions, several changes in gene expres-
sion occur which determine the disease symptom development and the viral levels in the
infected tissues [93]. The dynamics of compatible interactions can be even more complex,
considering that the infections could be chronic, and that there are variables to take into
account, such as cultivars, species and environmental clues, among others [94]. All of these
aspects modify the manner the infection is phenotypically expressed.

2.5. Molecular and physiological changes in grapevine in response to viral diseases

Current understanding of host-virus interactions derives mostly from studies in leaves of
red-berry V. vinifera cultivars, and few studies have been carried out in this area up until now.
Considering that GLRaV-3 is one of most significant grapevine-infecting viruses, special
attention has been given to the physiological changes and molecular responses against this
virus in leaves [5, 95, 96] and berries [84, 97] (Figure 4).

Transcript profiles of leaves from the red cultivars Cabernet Sauvignon and Carménère
naturally infected with GLRaV-3, were characterized using the Vitis vinifera GeneChip®
microarray that contains 14,000 and 1700 transcripts from V. vinifera and other Vitis species,
respectively [5]. This work showed that viral infection induces changes in grapevine transcript
profiling in a wide spectrum of biological functions, with significant induction of stress- and
defence-related proteins, including lipid transfer proteins (LTP), stress-responsive proteins
such as the patatin-like protein, the agenet domain containing protein and MAP kinase
phosphatase (MKP1), aging genes like tropinone reductase and harpin-induced family
protein (HIN‐1) and the detoxifying gene gluthathione S-transferase (GST). Viral response also
includes changes in hormones transporters (auxins and cytokinins), lipids, sugars and
oligopeptides, cell wall remodelling proteins, such as extensin and hydroxyproline-rich
proteins which are anchored to the cell membrane. On the other hand, among the most
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significant down-regulated genes, we found genes coding for photosynthetic proteins, as well
as photosystems constituents and chlorophyll biosynthetic enzymes.

Figure 4. Different symptomatology triggered by grapevine viruses in leaves and berries. Certain developmental
stages such as young leaves and berries at fruit set show no symptoms of viral diseases. However, as development
continues mature leaves and berries at véraison and harvest can exhibit the characteristic symptomatology, depending
on the varieties and viral agent combination.

It has been proposed that some overlap exists between leaf-senescence and pathogen-defence
programs, with transcript profiling in red cultivars further supporting this concept [5, 95].
Several marker genes of the leaf senescence process are expressed during natural viral infection
in grapevines. Genes induced during viral disease in grapevine plants are also induced during
leaf senescence triggered by natural factors, showing a clear correspondence between the
senescence program and plant responses during viral compatible disease. The generation of
ROS could be responsible for the partial activation of the senescence program during viral
diseases, since ROS are necessary for the expression of defence-related genes and also act as
promoters of senescence [98]. This relationship may represent a strategy used by plants in
order to adapt to viral pathogens, recycle nutrients from infected leaves and mobilize them to
distant tissues, and allow a plant-pathogen relationship to be established, even for long periods
of time [95].

A different study characterized the expression of flavonoid biosynthetic pathway genes in
GLRaV-3 infected symptomatic leaves in a red-fruited wine grape cultivar (cv. Merlot) [96].
Based on the accumulation of specific flavonoids in GLRaV-3 infected plants, these authors
suggest that the expression of the flavonoid biosynthetic pathway is activated during the
infection, and is responsible for the characteristic changes in leaf colour. These molecules could
confer protection from oxidative stress and opportunistic pathogens during the infection.

Even though berries are the most valuable part of grapevine plants, little attention has been
given to the effect of viruses during fruit development and ripening. Evidence suggest that
autotrophic leaves located near berry clusters serve as the main source of photoassimilates to
ripening berries [3]. Photoassimilates are normally transported via phloem, as well as viruses
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such as GLRaV-3. Therefore, it is reasonable to think that the infection may alter the molecules
flow towards the berries, and that this effect may vary according to the asymptomatic or
symptomatic phases of the infection and grapevine phenological stages [3, 83].

The effects of a chronical infection with GLRaV-3 during berry ripening in grapevine have been
studied in the red cultivar Cabernet Sauvignon [97]. Interestingly, this virus affects the normal
fruit ripening process, resulting in incomplete berry ripening in terms of gene expression
patterns. Genes associated with anthocyanin biosynthesis and sugar metabolism are down-
regulated in berries from infected plants, consistent with a decrease in up to 40% in total
anthocyanin content. These changes are observed specifically at ripening, where the infection
has a greater impact in comparison with other stages of berries development. These authors
also suggest the presence of viral particles in berries, probably colonizing the organ through
the vasculature during fruit development.

Lately, the effect of GLRaV-3 on the chemical properties of fruit, juice and wine from V. vinifera
L. cv. Sauvignon blanc was assessed, allowing comparisons between recent and established
infections [84]. Authors propose that the duration of the infection is significant to this com-
parison, and that established infections modify berry development at later stages. The
pathogen causes a delay in grape ripening, with a concomitant delay in harvest date. However,
when berries from uninfected and infected plants reached similar ripeness, minimal effects on
juice and wine chemistry were observed.

2.6. Diagnostic and control methods for grapevine viruses

2.6.1. Diagnostic methods

Since grapevine viruses can show detrimental effects on plant physiology, it is necessary to
have appropriate and reliable diagnosis methods to achieve an efficient control of pathogens
propagation. So far, several techniques have been applied to identify infected plant material,
including biological indexing, serology and molecular assays [3, 83, 99].

Biological indexing, mostly performed as part of certification programs, refers to grafting of
candidate vine on woody indicators of the Vitis genus. Later on, the indicator plant is observed
for the development of virus disease symptoms. However, this approach is time-consuming,
labour intensive and dependent on virus titer, the success of the viral inoculation, strain
variations and skilled personnel [83]. Serological methods are based on the recognition of viral
proteins by specific antibodies. Of these, the enzyme-linked immunosorbent assay (ELISA) is
the most widely applied [83, 99], and commercial kits are available. Serological approaches are
robust and scalable, although less sensitive than nucleic acid-based techniques. Special
attention must be given to sampling, considering differences in virus accumulation through
plant tissues and seasonal variations in virus titer, and it has been described that genetic
variants can affect the robustness of these methods [3, 83]. Nucleic acid-based methods, on the
other hand, detect the genomic components of the viruses. These methods are commonly used
due to their high sensitivity, in comparison with other diagnostic approaches. They can detect
the presence of viral genomes even at low viral titer, are rapid, allow the scaling and the
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simultaneous analysis of a high number of samples or several viruses at once [100]. Since most
of grapevine viruses have RNA genomes, reverse transcription-polymerase chain reaction (RT-
PCR) is the selected molecular assay for the detection of these pathogens [83, 101]. Several
techniques have been developed based on PCR variants [83, 102], but the use of real-time PCR
allows quantification of virus titer [103]. Recently, new generation sequencing (NGS) has been
used for rapid identification and sequencing of all putative viruses present in a candidate
sample, allowing the identification of new viral agents as well [3, 81, 99, 104]. The use of NGS
technologies as diagnostic tool requires no prior knowledge of the pathogens present in the
sample, but is still expensive in order to be used as a routine procedure.

2.6.2. Multiplex PCR to detect complex viral infections

As it was mentioned before, viral diseases in grapevine often occurs as multiple infections,
where several viral agents are present simultaneously and can contribute to the overall
symptoms development. Several papers describe viral detection by molecular approaches,
which are reviewed in [83, 99]. However, a simple and efficient commercial method for the

Figure 5. Multiplex PCR detection of grapevine viruses in complex samples. PCR fragments were analysed by capilla-
ry electrophoresis in order to detect the different amplicons. (A) Detection of the specific fragments corresponding to
GFKV, GVB, GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4 and GLRaV-7, in a sample containing a mix of cDNA from plants
infected with these viruses. (B) Negative control of the PCR. (C) PCR using a virus-free plant. The ROX500 standard
was used to estimate the size of each fragment. Blue peaks correspond to the amplified fragments obtained in each
reaction. Red line represents the linear regression obtained with the Peak Scanner Software V.1.0 to estimate fragment
size. Base pairs of each fragment (X-axis), fluorescence intensity (RFU) of amplified fragments (Y-axis, left) or RFU of
the standard (Y-axis, right) are shown.
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detection of several grapevine viruses at once is currently not available. A method for virus
detection must fulfil several criteria, such as sensitivity, specificity, accuracy, number of
samples that can be tested simultaneously and cost, among others. Therefore, to have reliable
diagnosis methods is a permanent challenge for grapevine growers.

In our laboratory (unpublished work), we have designed a system for simultaneous virus
detection in vines, consisting in a multiplex PCR that can detect up to seven RNA viral
genomes, in addition to the detection of the gene coding for the small sub-unit of grapevine
Rubisco enzyme as a plant positive control. Using bioinformatics tools, specific primers against
different viruses were designed to generate products of different sizes. Then, primers were
labelled at the 5’ end with 6-FAM fluorophore, in order to be detected by capillary electro-
phoresis. This method allows the specific and simultaneous detection of GFKV, GVB, GLRaV-1,
GLRaV-2, GLRaV-3, GLRaV-4 and GLRaV-7, in a quick, efficient and single PCR (Figure 5).

This type of multiplex PCR can be used to generate commercial kits that can serve to detect
viral agents present in a vineyard or to test the plant material that will be later used in clonal
propagation. With the proper bioinformatics analysis, more viruses can be added to the system,
allowing a much more versatile detection kit.

2.6.3. Control methods

There are several control methods that are routinely applied in order to prevent virus dissem-
ination. For instance, sanitary selection and certification of propagation material helps to
reduce potential virus dispersion [99]. Since viruses are transmitted by vectors, control of viral
diseases can be achieved by the restriction of such vectors with the use of agrochemicals [105].
However, agrochemicals utilization increases production costs, and additionally are associated
with detrimental effects to the environment and human health, while most of modern
agronomical practices tend to reduce its use. Sanitation techniques, on the other hand, are
aimed to treat infected material and eliminate viral titer. Among these techniques, thermo-
therapy is the most frequently applied although it is not effective for all grapevine viruses
[106]. The in vitro culture of meristems, somatic embryos and shoot tips allows the regeneration
of virus-free plantlets [99], an approach that is probably based on the unequal distribution of
viruses along plant tissues. Other sanitation techniques include chemotherapy, very often
applied as an alternative to eliminate more recalcitrant viruses and cryotherapy, a highly
efficient method which is effective when the treatment of high number of samples is needed,
but its implementation is difficult as some genotypes are refractory to it [99].

2.6.4. Inducing virus resistance in grapevine by transgenesis

Biotechnology arises as an alternative to allow the generation of virus-resistant grapevine
plants by transgenesis, mainly involving the expression of viral components and exploiting
the naturally occurring gene silencing [107–117]. This strategy requires plant transformation
with a short sequence of the pathogen genome in a way that a double-strand RNA structure
is formed during transcription, initiating gene silencing in the host. In our lab, induction of
virus silencing was accomplished in grapevine rootstocks in order to be used for grafting [118].
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It is expected that the mobile signal-inducing virus silencing in the rootstock will also be able
to reach the scion, and as a consequence, trigger virus silencing in the non-transgenic scion.
This approach is very versatile, since the resistance against a specific virus can be obtained in
all the varieties used as scion with a particular virus-resistant transgenic rootstock. We have
transformed rootstocks plants (110 Richter and Harmony) by co-culture of embryogenic and
organogenic tissues with Rhizobium radiobacter carrying a vector containing a silencing
sequence of the coat protein of the grapevine fanleaf virus (GFLV) cloned as an inverted
duplicate in a way that triggers post-transcriptional gene silencing (PGTS) at transcription.
Twenty-six transgenic plants of the 110 Richter rootstock have been recovered, analysed by
RT-PCR against the GFLV sequence, and lines properly expressing the construction were
propagated to obtain several plants of each line. The transgenic rootstocks have been grafted
with GFLV-infected plants that were positive for virus presence by RT-PCR analysis. Once the
grafts were set, the GFLV detection was made in the scion using primers for the viral movement
protein. After 1 month of grafting, the detection of the virus has been abolished in the scion,
in three of the six analysed rootstocks lines (Figure 6).

Therefore, a viral infection of a non-transgenic scion could be silenced if it is grafted on a
transgenic rootstock carrying sequences that triggers PTGS. This strategy is an interesting

Figure 6. GFLV silencing induced by grafting strategy. (A) RNA 2 of GFLV genome showing the unknown, movement
and coat protein corresponding ORFs; the 388 bp region of coat protein used to produce the inverted duplicate that
triggers PTGS is denoted. (B) To obtain transgenic rootstock, globular embryos were used for transformation. (C) In
vitro grafting of GFLV infected plants on transgenic rootstock expressing the cp-gflv transgene. (D) Presence of GFLV in
infected wild-type (wt) plants (C1–C7) showed by amplification using CP-GFLV primers. (E) Evaluation of GFLV pres-
ence in upper leaves of the grafts with MP-GFLV primers, 30 days after grafting. MP-GFLV was undetected in C3
plants grafted on transgenic lines 30, 60 and 15. Expression of the GPDH gene was used as a housekeeping control.
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alternative to considerate in virus-free breeding programs because the infection in non-
transgenic grapevines from any cultivar could be abolished using a transgenic rootstock,
keeping cultivars and, more important, the fruit produced non-transgenic.

3. Grapevine abiotic stress

Grapevine crops are often exposed to sub-optimal growing conditions which cause several
abiotic stresses, as they are constantly exposed to different water regimes, nutrient deficiency
or excess, extreme heat or low temperatures and deficit or excess of light [8]. All plants,
including grapevine, need Sun energy in order to produce organic compounds through
photosynthesis, but sunlight is a sum of different wavelengths. Among them, the ultraviolet
radiation (UVR) plays an important role, however, the main problem with UV light is that as
the wavelength declines, its energy content increases, mainly as UV-B radiation, and therefore
its potential to cause photo-biological damage increases. UV-B is not only potentially harmful,
but it also serves as an environmental information source, though information about it is still
scarce. As general abiotic stresses have been extensively reviewed [119–125], we will have
special focus on UV-B-mediated perception and signalling responses of grapevine and photo-
biotechnological approaches to improve fruit quality for winemaking.

3.1. Solar ultraviolet B levels, ozone layer depletion and increase of UV-B radiation

Solar energy is the primary source of energy for all surface phenomena, especially autotrophic
organisms. Among them, plants use solar radiation not only as an energy source, but also as
a key signal containing vital information about the environment in which they live [126, 127].
Solar radiation not only includes the visible spectrum (400–700 nm) necessary for photosyn-
thesis, but also other types of radiation. Near 7% of the electromagnetic radiation emitted by
the Sun is within the ultraviolet radiation (UVR) spectrum (200–400 nm) [128–130]. UVR has
been divided into three different bands: UV-A (315–400 nm), UV-B (280–315 nm) and UV-C
(200–280 nm) [130, 131]. As it passes through the atmosphere, the total transmitted radiation
flux is considerably reduced, and the composition of UVR is modified. Shortwave UV-C is
completely absorbed by atmospheric gases, while UV-B is partially absorbed by the strato-
spheric ozone (O3), leaving only a small fraction (<0.5% of total sunlight energy) transmitted
to the Earth surface. UV-A, on the other hand, is not absorbed by ozone [130, 132]. Over the
last 50 years, the ozone concentration has diminished by 5%, mainly due to the release of
anthropogenic pollutants, such as chlorofluorocarbons (CFCs) and other halogenated ozone-
depleting substances [126, 133]. As a direct consequence of the ozone reduction, an increase in
the flux of UV-B radiation has been registered during the last years [126, 128, 132]. Although,
UV-B radiation is only a minor component of solar radiation, due to its high energy, its potential
for causing biological damage is exceptionally high [133]. Besides the regulation of solar UV-
B by the ozone layer, there are several factors influencing UV-B radiation levels, such as
latitude, altitude, season, time of the day, weather conditions, surface reflection, atmospheric
pollution and shading by plant canopies [126, 133]. From a wine producer’s point of view, the
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establishment, planning and vineyard management are additional factors to take into account
that can influence UV-B levels on plants. These factors including climate, presence and slope
aspect, site elevation, trellis and training system and vine vigour, among others, could be
directly influencing both intercepted light in canopies and fruit zone [8].

3.2. Effects of UV-B in plants

Due to the sessile lifestyle, plants are forced to adapt to changes in environmental conditions
while achieving an equilibrium between optimal photosynthetically active radiation (PAR)
capture and UV-B protection [131, 132]. The UV-B radiation has several detrimental effects but
it also serves as a key regulator of plant morphology and physiological, biochemical and
genetic mechanisms [127, 129, 133, 134]. Plants actively respond to irradiation with high or low
UV-B doses, either by the activation of repair mechanisms or by stimulation of photomorpho-
genic processes [128, 129]. In general, low UV-B doses reduces growth and expansion of leaves,
produces leaf thickness, increases epicuticular waxes, trichomes number and axillary branch-
ing, reduces stem elongation, suppresses both hypocotyl extension and root growth and
enhances flavonoid biosynthesis, mostly flavonol [127–129, 132, 134]. Plants under UV-B
radiation present a compact architecture, although different phenotypes have been reported.
This may relate to UV-induced morphological changes being underpinned by different
mechanisms at high and low UV-B doses [127].

In grapevine, the high UV-B doses reduce shoot length and leaf area, increase both leaf
thickness [135] and accumulation of terpenes with antioxidant properties [136]. On the other
hand, flavonol biosynthesis is dramatically activated under both high and low UV-B exposures
in the berry skin [9, 10]. Also, membrane-related terpenes are increased in low fluence of UV-
B in grapevine leaves [136].

3.3. UVR8-mediated photomorphogenic mechanisms in response to UV-B in plants

In order to maximize its growth and survival, plants detect, respond and adapt to UV-B rays.
This type of radiation is a key environmental cue, which initiates diverse pathways affecting
metabolism, development and viability. Many of the UV-B radiation effects involve differential
regulation of gene expression. This response depends on the exposition nature (high or low
UV-B doses), the degree of adaptation and acclimation to the radiation, and the interaction
with other environmental factors. UV-B radiation responses are mediated by two signalling
pathways in Arabidopsis thaliana, (1) the non-specific signalling pathway, which involves DNA
damage, accumulation of reactive oxygen species (ROS) and synthesis of defence-related
molecules in response to high levels of UV-B radiation; and (2) the specific signalling pathway
on the other hand, which is mediated by photomorphogenic responses to low levels of UV-B
radiation [128]. It is important to note that photomorphogenic signalling promotes the
expression of genes involved in the protection and acclimation against UV-B radiation and,
hence, promotes the survival of exposed plants. Photomorphogenic signalling implies the
participation of a specific component in Arabidopsis, the UV-B photoreceptor UVR8 (UV
Resistance Locus 8) with specific tryptophan residues which act as intrinsic chromophores
[137]. UVR8 perceives radiation, triggering the dissociation from its non-active homodimer
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configuration [137, 138]. Following monomerization, UVR8 accumulates in the nucleus and
interacts with the positive regulator Constitutively Photomorphogenic 1 (COP1) [139–142], a
WD40/RING-E3 ubiquitin ligase that in non-inductive conditions targets HY5 (Elongated
Hypocotyl 5) for proteosome-dependent degradation [143]. HY5 is a key effector of UV-B
protection and light photomorphogenic responses [144, 145], and it is transcriptionally
activated by UV-B in a UVR8- and COP1-dependent manner [146–148]. Other components of
the UVR8 signalling pathway are repressor of UV-B photomorphogenesis 1 (RUP1) and RUP2.
Both RUP1 and RUP2 act as feedback inhibitors of UVR8 signalling by facilitating UVR8
redimerization after exposure to UV-B and thus preserve responsiveness to changing levels of
the input signal [149, 150].

3.4. Elucidating the grapevine UV-B signalling pathway

Grapevine (Vitis vinifera L.) is a woody species often cultivated in Mediterranean climates with
varied UV-B radiation dosages, generally ranging between moderate (5 kJ m−2 d−1) to high
(12 kJ m−2 d−1) levels [7]. Grapevines are considered well-adapted plants to solar radiation due
to a variety of physiological adaptive responses, mainly based in antioxidant enzyme activities
and secondary metabolites production [7]. The most common protective mechanisms against
potentially harmful radiation are the synthesis of phenolic compounds that absorb UV-B
radiation [128, 132]. Among the versatile range of functions flavonoids possesses, the most
important related to UV-B include the ability to attenuate radiation by filtering, an antioxidant
activity capable of scavenging free radicals, and the modulation of reactive oxygen signalling
cascades involved in growth and development [151]. These secondary metabolites, phenolic
compounds, flavonoids and cinnamate esters, among others, accumulate in vacuoles of
epidermal cells in response to UV-B radiation and attenuate the further diffusion of solar UV-
B in deeper cell layers [128, 132]. In grapevine, it has been reported that in leaf epidermis and
fruit berry skins, anthocyanins and flavonols increase in response to UV-B [11, 152–154].
Considered as a relevant model for studying adaptive responses, several approaches have been
conducted for understanding the effects of UV-B in grapevine. Analysis of the transcriptomic
variations caused by a particular UV-B radiation dose (4.75 kJ m−2 d−1) given at high and low

Gene ID Expressiona Reference

VvUVR1 VIT_07s0031g02560 No change Carbonell-Bejerano et al. (2014)

Loyola et al. (2016)VvHY5 VIT_04s0008g05210 Up-regulated

VvHYH VIT_05s0020g01090 Up-regulated   

VvCOP1-1 VIT_12s0059g01420 No change

VvCOP1-2    VIT_10s0523g00030    No change

VvRUP VIT_16s0050g00020 Up-regulated

aDifferential expression in UV-B radiation treatments compared to the control.

Table 1. UV-B perception and signalling grape homologues.
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fluence rates demonstrated that DNA repair, synthesis of UV-B sunscreens and general
multiple-stress pathways were the main activated processes [155]. Additionally, has been
reported the identification and characterization of the grapevine homologues of the Arabi-
dopsis UV-B signalling components (Table 1) and that this UV-B radiation-specific signalling
cascade is activated in berry skin along with the accumulation of secondary metabolites,
mainly flavonols [9, 10].

3.5. Manipulation of UV-B perception and signalling components to improve plant shape
and fruit quality in grapevine

It is known that grapevine is a vigorous growing plant; hence, one of the main objectives for
viticulture practices is to reduce the size of the canopies and alter the shape of the vine, in order
to increase field plant density and improve fruit organoleptic qualities, among others [8, 156].
Moreover, a higher plant density means greater productivity per area unit. To meet these
objectives, conventional genetic improvement of most fruit crops, including grapevine, has
been extensively done, with several obstacles in the way. Among the latter we can find long
juvenility periods, seedlessness, self-incompatibility, high heterozygosity and sterility.
Therefore, conventional breeding techniques are difficult, expensive and time consuming
[156]. Because of this, genetic improvement through genetic engineering techniques offers an
attractive alternative in order to overcome these problems.

Gene

name

Role in UV-B

signallinga

Grape

homologue

Experimental

approach

Phenotype or trait of

interesta

Reference

AtUVR8 Photoreceptor VvUVR1 Over-expression UV-B tolerance, dwarfing,

increased flavonoids levels,

enhanced B. cinerea resistance.

Rizzini et al. [137];

Demkura and

Ballaré [157]

AtCOP1 Positive regutator VvCOP1-1

VvCOP1-2

Over-expression UV-B tolerance, dwarfing,

increased flavonoids levels.

Oravecz et al. [142]

AtHY5 Positive regulator VvHY5 Over-expression UV-B tolerance, dwarfing,

increased flavonoids levels.

Ulm et al. [148]

AtHYH Positive regulator VvHYH Over-expression Moderated UV-B tolerance,

increased flavonoids levels.

Brown and Jenkins

[158]

AtRUP2 Negative regulator VvRUP Silencing or

down-regulation

UV-B tolerance, extreme

dwarfing, increased

flavonoids levels.

Heijde and Ulm

[150]

aDerived from studies in Arabidopsis.

Table 2. UV-B signalling target genes that could be genetically engineered in grapevine.

In vine growing, the production of dwarf and semi-dwarf canopies with short and numerous
shoots, in order to increase field vine density, are normally used for both dwarfing rootstocks
and spur varieties [8, 156]. However, rootstocks and spur varieties are available for only a few
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species and graft compatibility is often a problem. Therefore, an alternative to this is the use
of photo-biotechnology techniques which may contribute to the creation of dwarf varieties by
genetic engineering, modifying, for example, UV-B perception and/or signalling components
(see Table 2).

Photo-biotechnology refers to over- or down-expressing genes with photo-biological rele-
vance [159]. Since photoreceptors and/or light signalling cascade components regulate the
expression of critical development and plant growth genes, genetic manipulation of these is
viewed as a promising strategy to develop fruit crops with improved agronomic traits [159].
Therefore, photo-biotechnology offers a promising approach for studying the influence of UV-
B signal transduction components on plant development and may be used to improve crop
yield, shade tolerance, growth and fruit ripening, canopies shape, hormone synthesis and
biosynthesis of metabolites and pigments. For example, a promising study in tomato showed
that down-regulation of LeHY5 by RNAi-mediated gene repression exhibited defects in light
photomorphogenesis response, loss of thylakoid organization and reduced carotenoid
accumulation. In contrast, repression of LeCOP1LIKE expression resulted in plants with an
exaggerated photomorphogenesis response, high levels of chlorophyll and elevated fruit
carotenoid levels [160]. These results demonstrate that genes encoding components of UV-B
signalling cascade represent a promising genetic tool for manipulation of fruit quality.
Additionally, several studies summarized by [159] in various plant species show that modu-
lation of the expression of phytochromes (mainly PhyA and PhyB) can be used to produce
high-yielding crops.

The quality of grape berries for winemaking integrates various aspects, but as for red wines,
the accumulation of phenolic compounds by UV-B is highly necessary [161]. Wines with the
highest phenolic concentrations are generally considered of excellence, therefore, these
molecules are said to play a significant role in winemaking since they are key determinants of
wine quality [161]. All of the aforementioned evidence suggests that UV-B protective mecha-
nisms may potentially lead to important industrial applications, relevant to the wine industry.
UVR8 may prove to be an attractive and suitable target to manipulate plant growth and/or
plant tolerance to abiotic stress, generating UV-B-resistant grapevines with enhanced secon-
dary metabolites levels (i.e. phenolic compounds).

In summary, the elucidation of the UV-B signalling pathway and the role of photomorpho-
genesis, in addition to advances in genetic manipulation of grapes, are unique biotechnological
tools that could be used to improve grapevines in order to meet and surpass market expecta-
tions.

Acknowledgements

This work was supported by the National Commission for Science and Technology CONICYT
(FONDECYT grant number 1150220) and the Millennium Nucleus for Plant Synthetic Biology
and Systems Biology NC130030. G. Armijo, R. Loyola and F. Restovic were supported by
FONDECYT postdoctoral grant number 3140324, 3150578 and 3150259, respectively.

Grape and Wine Biotechnology26



Author details

Grace Armijo1, Carmen Espinoza1, Rodrigo Loyola1, Franko Restovic1, Claudia Santibáñez1,2,
Rudolf Schlechter1,3, Mario Agurto1 and Patricio Arce-Johnson1*

*Address all correspondence to: parce@bio.puc.cl

1 Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences,
Pontifical Catholic University of Chile, Santiago, Chile

2 Université de Bordeaux, ISVV, INRA, Ecophysiology and Functional Genomic of Grape-
vine, Villenave d’Ornon, France

3 Department of Biology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

References

[1] This, P., T. Lacombe, and M.R. Thomas: Historical origins and genetic diversity of
wine grapes. Trends Genet. 2006; 22(9): p. 511–519. DOI: 10.1016/j.tig.2006.07.008.

[2] Ferreira, R.B., S.S. Monteiro, M.A. Picarra-Pereira, and A.R. Teixeira: Engineering
grapevine for increased resistance to fungal pathogens without compromising wine
stability. Trends Biotechnol. 2004; 22(4): p. 168–173. DOI: 10.1016/j.tibtech.2004.02.001.

[3] Naidu, R.A., H.J. Maree, and J.T. Burger: Grapevine leafroll disease and associated
viruses: A unique pathosystem. Ann Rev Phytopathol. 2015; 53: p. 613–634. DOI:
10.1146/annurev-phyto-102313-045946.

[4] Ehrenfeld, N., P. Canon, C. Stange, C. Medina, and P. Arce-Johnson: Tobamovirus coat
protein CPCg induces an HR-like response in sensitive tobacco plants. Mol Cells. 2005;
19(3): p. 418–427.

[5] Espinoza, C., A. Vega, C. Medina, K. Schlauch, G. Cramer, and P. Arce-Johnson: Gene
expression associated with compatible viral diseases in grapevine cultivars. Funct
Integr Genom. 2007; 7(2): p. 95–110. DOI: 10.1007/s10142-006-0031-6.

[6] O'Donnell, P.J., E.A. Schmelz, P. Moussatche, S.T. Lund, J.B. Jones, and H.J. Klee:
Susceptible to intolerance – a range of hormonal actions in a susceptible Arabidopsis
pathogen response. Plant J. 2003; 33(2): p. 245–257. DOI: 10.1046/j.1365-313X.
2003.01619.x.

[7] Martinez-Luscher, J., F. Morales, S. Delrot, M. Sanchez-Diaz, E. Gomes, J. Aguirreolea,
and I. Pascual: Short- and long-term physiological responses of grapevine leaves to UV-
B radiation. Plant Sci. 2013; 213: p. 114–122. DOI: 10.1016/j.plantsci.2013.08.010.

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

27



[8] Keller, M. Environmental constraints and stress physiology. In M. Keller, Editor. The
Science of Grapevines, Second ed. Academic Press: San Diego; 2015. Pp. 267–341. DOI:
10.1016/B978-0-12-419987-3.00007-8

[9] Carbonell-Bejerano, P., M.P. Diago, J. Martinez-Abaigar, J.M. Martinez-Zapater, J.
Tardaguila, and E. Nunez-Olivera: Solar ultraviolet radiation is necessary to enhance
grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol. 2014;
14: p. 183. DOI: 10.1186/1471-2229-14-183.

[10] Liu, L., S. Gregan, C. Winefield, and B. Jordan: From UVR8 to flavonol synthase: UV-
B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ. 2015;
38(5): p. 905–919. DOI: 10.1111/pce.12349.

[11] Berli, F.J., M. Fanzone, P. Piccoli, and R. Bottini: Solar UV-B and ABA are involved in
phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphe-
nols. J Agric Food Chem. 2011; 59(9): p. 4874–4884. DOI: 10.1021/jf200040z.

[12] Pieterse, C.M., A. Leon-Reyes, S. Van der Ent, and S.C. Van Wees: Networking by small-
molecule hormones in plant immunity. Nat Chem Biol. 2009; 5(5): p. 308–316. DOI:
10.1038/nchembio.164.

[13] Qiu, W., A. Feechan, and I. Dry: Current understanding of grapevine defense mecha-
nisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery
mildew disease. Hort Res. 2015; 2: p. 15020. DOI: 10.1038/hortres.2015.20.

[14] Gadoury, D.M., L. Cadle-Davidson, W.F. Wilcox, I.B. Dry, R.C. Seem, and M.G. Mil-
groom: Grapevine powdery mildew (Erysiphe necator): A fascinating system for the
study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant
Pathol. 2012; 13(1): p. 1–16. DOI: 10.1111/j.1364-3703.2011.00728.x.

[15] Gadoury, D.M., R.C. Seem, A. Ficke, and W.F. Wilcox: Epidemiology of powdery
mildew on concord grapes. Phytopathology. 2001; 91(10): p. 948–955.

[16] Micali, C., K. Gollner, M. Humphry, C. Consonni, and R. Panstruga: The powdery
mildew disease of arabidopsis: A paradigm for the interaction between plants and
biotrophic fungi. Arabidopsis Book. 2008; 6: p. e0115. DOI: 10.1199/tab.0115.

[17] van Kan, J.A.: Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends
Plant Sci. 2006; 11(5): p. 247–253. DOI: 10.1016/j.tplants.2006.03.005.

[18] Williamson, B., B. Tudzynski, P. Tudzynski, and J.A. van Kan: Botrytis cinerea: The cause
of grey mould disease. Mol Plant Pathol. 2007; 8(5): p. 561–580. DOI: 10.1111/j.
1364-3703.2007.00417.x.

[19] Machota, R., Jr., L.C. Bortoli, F.R. Cavalcanti, M. Botton, and A.D. Grutzmacher:
Assessment of injuries caused by Anastrepha fraterculus (Wied.) (Diptera: Tephritidae)
on the incidence of bunch rot diseases in table grape. Neotrop Entomol. 2016. DOI:
10.1007/s13744-016-0377-y.

Grape and Wine Biotechnology28



[20] Williamson, B., G. Duncan, J. Harrison, and G. Zimand: Effect of humidity on infection
of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res. 1995; 99(11): p.
1303–1310. DOI: 10.1016/S0953-7562(09)81212-4.

[21] Prusky, D.: Pathogen quiescence in postharvest diseases. Annu Rev Phytopathol. 1996;
34: p. 413–434. DOI: 10.1146/annurev.phyto.34.1.413.

[22] Tsuda, K. and F. Katagiri: Comparing signaling mechanisms engaged in pattern-
triggered and effector-triggered immunity. Curr Opin Plant Biol. 2010; 13(4): p. 459–
465. DOI: 10.1016/j.pbi.2010.04.006.

[23] Jones, J.D. and J.L. Dangl: The plant immune system. Nature. 2006; 444(7117): p. 323–
329. DOI: 10.1038/nature05286.

[24] Mengiste, T.: Plant immunity to necrotrophs. Annu Rev Phytopathol. 2012; 50: p. 267–
294. DOI: 10.1146/annurev-phyto-081211-172955.

[25] Bent, A.F. and D. Mackey: Elicitors, effectors, and R genes: The new paradigm and a
lifetime supply of questions. Annu Rev Phytopathol. 2007; 45: p. 399–436. DOI: 10.1146/
annurev.phyto.45.062806.094427.

[26] Dry, I., Feechan, A., Anderson, C., Jermakow, A., Bouquet, A., Adam-Blondon, A., and
Thomas, M.: Molecular strategies to enhance the genetic resistance of grapevines to
powdery mildew. Aust J Grape Wine R. 2010; 16: p. 94–105. DOI: 10.1111/j.
1755-0238.2009.00076.x.

[27] Feechan, A., C. Anderson, L. Torregrosa, A. Jermakow, P. Mestre, S. Wiedemann-
Merdinoglu, D. Merdinoglu, A.R. Walker, L. Cadle-Davidson, B. Reisch, S. Aubourg,
N. Bentahar, B. Shrestha, A. Bouquet, A.F. Adam-Blondon, M.R. Thomas, and I.B. Dry:
Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine
species Muscadinia rotundifolia identifies paralogous genes conferring resistance to
major fungal and oomycete pathogens in cultivated grapevine. Plant J. 2013; 76(4): p.
661–674. DOI: 10.1111/tpj.12327.

[28] Glawe, D.A.: The powdery mildews: a review of the world's most familiar (yet poorly
known) plant pathogens. Annu Rev Phytopathol. 2008; 46: p. 27–51. DOI: 10.1146/
annurev.phyto.46.081407.104740.

[29] Marsh, E., S. Alvarez, L.M. Hicks, W.B. Barbazuk, W. Qiu, L. Kovacs, and D. Schacht-
man: Changes in protein abundance during powdery mildew infection of leaf tissues
of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics. 2010; 10(10): p. 2057–
2064. DOI: 10.1002/pmic.200900712.

[30] Ficke, A., D.M. Gadoury, and R.C. Seem: Ontogenic resistance and plant disease
management: A case study of grape powdery mildew. Phytopathology. 2002; 92(6): p.
671–675. DOI: 10.1094/PHYTO.2002.92.6.671.

[31] Gabler, F.M., J.L. Smilanick, M. Mansour, D.W. Ramming, and B.E. Mackey: Correla-
tions of morphological, anatomical, and chemical features of grape berries with

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

29



resistance to Botrytis cinerea. Phytopathology. 2003; 93(10): p. 1263–1273. DOI: 10.1094/
PHYTO.2003.93.10.1263.

[32] Aziz, A., B. Poinssot, X. Daire, M. Adrian, A. Bezier, B. Lambert, J.M. Joubert, and A.
Pugin: Laminarin elicits defense responses in grapevine and induces protection against
Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact. 2003; 16(12): p.
1118–1128. DOI: 10.1094/MPMI.2003.16.12.1118.

[33] Verhagen, B., P. Trotel-Aziz, P. Jeandet, F. Baillieul, and A. Aziz: Improved resistance
against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative
burst and phytoalexin production. Phytopathology. 2011; 101(7): p. 768–777. DOI:
10.1094/PHYTO-09-10-0242.

[34] Armijo, G., R. Schlechter, M. Agurto, D. Muñoz, C. Núñez, and P. Arce: Grapevine
pathogenic microorganisms: understanding infection strategies and host response
scenarios. Front Plant Sci. 2016. DOI: 10.3389/fpls.2016.00382.

[35] Dai, R., H. Ge, S. Howard, and W. Qiu: Transcriptional expression of Stilbene synthase
genes are regulated developmentally and differentially in response to powdery mildew
in Norton and Cabernet Sauvignon grapevine. Plant Sci. 2012; 197: p. 70–76. DOI:
10.1016/j.plantsci.2012.09.004.

[36] Delaunois, B., S. Cordelier, A. Conreux, C. Clement, and P. Jeandet: Molecular engi-
neering of resveratrol in plants. Plant Biotechnol J. 2009; 7(1): p. 2–12. DOI: 10.1111/j.
1467-7652.2008.00377.x.

[37] Lee, K., J.L. Smith, and J.A. Last: Absence of respiratory inflammatory reaction of
elemental sulfur using the California Pesticide Illness Database and a mouse model. J
Agromed. 2005; 10(3): p. 41–47.

[38] Burger, P., A. Bouquet, and M.J. Striem. Grape breeding. In S.M. Jain and P.M. Priya-
darshan, Editors. Breeding Plantation Tree Crops: Tropical Species. Springer: New
York, EE.UU.; 2009. Pp. 161–189.

[39] Pauquet, J., A. Bouquet, P. This, and A.-F. Adam-Blondon: Establishment of a local map
of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and
assessment of their usefulness for marker assisted selection. Theor Appl Genet. 2001;
103(8): p. 1201–1210. DOI: 10.1007/s001220100664.

[40] Coleman, C., D. Copetti, G. Cipriani, S. Hoffmann, P. Kozma, L. Kovacs, M. Morgante,
R. Testolin, and G. Di Gaspero: The powdery mildew resistance gene REN1 co-
segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet.
2009; 10: p. 89. DOI: 10.1186/1471-2156-10-89.

[41] Feechan, A., S. Kabbara, and I.B. Dry: Mechanisms of powdery mildew resistance in
the Vitaceae family. Mol Plant Pathol. 2011; 12(3): p. 263–274. DOI: 10.1111/j.
1364-3703.2010.00668.x.

[42] Hoffmann, S., G. Di Gaspero, L. Kovacs, S. Howard, E. Kiss, Z. Galbacs, R. Testolin, and
P. Kozma: Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is

Grape and Wine Biotechnology30



controlled by a single locus through restriction of hyphal growth. Theor Appl Genet.
2008; 116(3): p. 427–438. DOI: 10.1007/s00122-007-0680-4.

[43] Barker, C.L., T. Donald, J. Pauquet, M.B. Ratnaparkhe, A. Bouquet, A.F. Adam-Blondon,
M.R. Thomas, and I. Dry: Genetic and physical mapping of the grapevine powdery
mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor
Appl Genet. 2005; 111(2): p. 370–377. DOI: 10.1007/s00122-005-2030-8.

[44] Molnár, S., Galbács, Z., Halász, G., Hoffmann, S., Kiss, E., Kozma, P., Veres, A., Galli,
Z., Szőke, A., and Heszky, L.: Marker assisted selection (MAS) for powdery mildew
resistance in a grapevine hybrid family. Vitis. 2007; 46(4): p. 212–213.

[45] Blanc, S., S. Wiedemann-Merdinoglu, V. Dumas, P. Mestre, and D. Merdinoglu: A
reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new
major locus for resistance to grapevine powdery mildew. Theor Appl Genet. 2012;
125(8): p. 1663–1675. DOI: 10.1007/s00122-012-1942-3.

[46] Ramming, D.W., F. Gabler, J. Smilanick, M. Cadle-Davidson, P. Barba, S. Mahanil, and
L. Cadle-Davidson: A single dominant locus, ren4, confers rapid non-race-specific
resistance to grapevine powdery mildew. Phytopathology. 2011; 101(4): p. 502–508.
DOI: 10.1094/PHYTO-09-10-0237.

[47] Riaz, S., A.C. Tenscher, D.W. Ramming, and M.A. Walker: Using a limited mapping
strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe
necator) and their use in marker-assisted breeding. Theor Appl Genet. 2011; 122(6): p.
1059–1073. DOI: 10.1007/s00122-010-1511-6.

[48] Katula-Debreceni, D., A.K. Lencsés, A. Szőke, A. Veres, S. Hoffmann, P.K. Kozma, L.G. ,
L. Heszky, and E. Kiss: Marker-assisted selection for two dominant powdery mildew
resistance genes introgressed into a hybrid grape population. Sci Hortic. 2010; 126(4):
p. 448–453. DOI: 10.1016/j.scienta.2010.08.012.

[49] Gray, D.J., Z.T. Li, and S.A. Dhekney: Precision breeding of grapevine (Vitis vinifera L.)
for improved traits. Plant Sci. 2014; 228: p. 3–10. DOI: 10.1016/j.plantsci.2014.03.023.

[50] Nirala, N.K., D.K. Das, P.S. Srivastava, S.K. Sopory, and K.C. Upadhyaya: Expression
of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis
vinifera L.). 2015; 49(4).

[51] Bornhoff,  B.A.,  M.  Harst,  E.  Zyprian,  and  R.  Topfer:  Transgenic  plants  of  Vitis
vinifera  cv.  Seyval  blanc.  Plant  Cell  Rep.  2005;  24(7):  p.  433–438.  DOI:  10.1007/
s00299-005-0959-3.

[52] Rubio, J., C. Montes, A. Castro, C. Alvarez, B. Olmedo, M. Munoz, E. Tapia, F. Reyes,
M. Ortega, E. Sanchez, M. Miccono, L. Dalla Costa, L. Martinelli, M. Malnoy, and H.
Prieto: Genetically engineered Thompson seedless grapevine plants designed for
fungal tolerance: selection and characterization of the best performing individuals in a
field trial. Transgenic Res. 2015; 24(1): p. 43–60. DOI: 10.1007/s11248-014-9811-2.

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

31



[53] Jeandet, P., C. Clement, E. Courot, and S. Cordelier: Modulation of phytoalexin
biosynthesis in engineered plants for disease resistance. Int J Mol Sci. 2013; 14(7): p.
14136–14170. DOI: 10.3390/ijms140714136.

[54] Coutos-Thevenot, P., B. Poinssot, A. Bonomelli, H. Yean, C. Breda, D. Buffard, R.
Esnault, R. Hain, and M. Boulay: In vitro tolerance to Botrytis cinerea of grapevine 41B
rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the
control of a pathogen-inducible PR 10 promoter. J Exp Bot. 2001; 52(358): p. 901–910.

[55] Bavaresco, L., C. Fregoni, E. Cantu, and M. Trevisan: Stilbene compounds: from the
grapevine to wine. Drugs Exp Clin Res. 1999; 25(2-3): p. 57–63.

[56] Nawrocka, J. and U. Małolepsza: Diversity in plant systemic resistance induced by
Trichoderma. Biol Control. 2013; 67(2): p. 149–156. DOI: 10.1016/j.biocontrol.
2013.07.005.

[57] Elmer, P. and T. Reglinski: Biosuppression of Botrytis cinerea in grapes. Plant Pathol.
2006; 55(2): p. 155–177. DOI: 10.1111/j.1365-3059.2006.01348.x.

[58] Buck, J.W.: Combinations of fungicides with phylloplane yeasts for improved control
of Botrytis cinerea on geranium seedlings. Phytopathology. 2004; 94(2): p. 196–202. DOI:
10.1094/PHYTO.2004.94.2.196.

[59] Lindow, S.E. and M.T. Brandl: Microbiology of the phyllosphere. Appl Environ
Microbiol. 2003; 69(4): p. 1875–1883.

[60] Sharma, R.R., D. Singh, and R. Singh: Biological control of postharvest diseases of fruits
and vegetables by microbial antagonists: A review. Biol Control. 2009; 50(3): p. 205–
221. DOI: http://dx.doi.org/10.1016/j.biocontrol.2009.05.001.

[61] El Oirdi, M., T.A. El Rahman, L. Rigano, A. El Hadrami, M.C. Rodriguez, F. Daayf, A.
Vojnov, and K. Bouarab: Botrytis cinerea manipulates the antagonistic effects between
immune pathways to promote disease development in tomato. Plant Cell. 2011; 23(6):
p. 2405–2421. DOI: 10.1105/tpc.111.083394.

[62] Alamri, S., M. Hashem, and Y.S. Mostafa: In vitro and in vivo biocontrol of soil-borne
phytopathogenic fungi by certain bioagents and their possible mode of action. Biocontr
Sci. 2012; 17(4): p. 155–167.

[63] Bacon, C.W., E.R. Palencia, and D.M. Hinton. Abiotic and biotic plant stress-tolerant
and beneficial secondary metabolites produced by endophytic Bacillus species. In K.N.
Arora, Editor. Plant Microbes Symbiosis: Applied Facets. Springer India: New Delhi;
2015. Pp. 163–177. DOI: 10.1007/978-81-322-2068-8_8

[64] Stein, T.: Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol
Microbiol. 2005; 56(4): p. 845–857. DOI: 10.1111/j.1365-2958.2005.04587.x.

[65] Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, and P. Fickers:
Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary

Grape and Wine Biotechnology32



metabolites for biocontrol of plant pathogens. Microb Cell Fact. 2009; 8: p. 63. DOI:
10.1186/1475-2859-8-63.

[66] Delaunois, B., G. Farace, P. Jeandet, C. Clement, F. Baillieul, S. Dorey, and S. Cordelier:
Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their
mode of action from controlled conditions to vineyard. Environ Sci Pollut Res Int. 2014;
21(7): p. 4837–4846. DOI: 10.1007/s11356-013-1841-4.

[67] Boller, T. and G. Felix: A renaissance of elicitors: perception of microbe-associated
molecular patterns and danger signals by pattern-recognition receptors. Annu Rev
Plant Biol. 2009; 60: p. 379–406. DOI: 10.1146/annurev.arplant.57.032905.105346.

[68] Conrath, U.: Molecular aspects of defence priming. Trends Plant Sci. 2011; 16(10): p.
524–531. DOI: 10.1016/j.tplants.2011.06.004.

[69] Chang, X. and P. Nick: Defence signalling triggered by Flg22 and Harpin is integrated
into a different stilbene output in Vitis cells. PLoS One. 2012; 7(7): p. e40446. DOI:
10.1371/journal.pone.0040446.

[70] Aziz, A., P. Trotel-Aziz, L. Dhuicq, P. Jeandet, M. Couderchet, and G. Vernet: Chitosan
oligomers and copper sulfate induce grapevine defense reactions and resistance to gray
mold and downy mildew. Phytopathology. 2006; 96(11): p. 1188–1194. DOI: 10.1094/
PHYTO-96-1188.

[71] Laquitaine, L., E. Gomes, J. Francois, C. Marchive, S. Pascal, S. Hamdi, R. Atanassova,
S. Delrot, and P. Coutos-Thevenot: Molecular basis of ergosterol-induced protection of
grape against botrytis cinerea: induction of type I LTP promoter activity, WRKY, and
stilbene synthase gene expression. Mol Plant Microbe Interact. 2006; 19(10): p. 1103–
1112. DOI: 10.1094/MPMI-19-1103.

[72] Martelli, G.P.: Graft-transmissible diseases of grapevines. Handbook for Detection and
Diagnosis. Rome: FAO; 1993.

[73] Martelli, G.P.: Directory of virus and virus-like diseases of the grapevine and their
agents. J Plant Pathol. 2014; 96(1): p. 1–136.

[74] Goheen, A.C.: Virus and viruslike diseases of grapes. Hortscience. 1977; 12(5): p. 465–
469.

[75] Oliver, J.E., E. Vigne, and M. Fuchs: Genetic structure and molecular variability of
Grapevine fanleaf virus populations. Virus Res. 2010; 152(1–2): p. 30–40. DOI: 10.1016/
j.virusres.2010.05.017.

[76] Forer, L.B., C.A. Powell, and R.F. Stouffer: Transmission of tomato ringspot virus to
apple rootstock cuttings and to cherry and peach seedlings by Xiphinema-Rivesi. Plant
Dis. 1984; 68(12): p. 1052–1054. DOI: 10.1094/Pd-69-1052.

[77] Sturhan, D., W.M. Wouts, G.S. Grandison, and C.J. Barber: Nematode vectors of plant
viruses in New Zealand. NZ J Zool. 1997; 24(4): p. 309–322.

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

33



[78] Gilmer, R.M. and J.K. Uyemoto: Tomato ringspot virus in Baco Noir grapevines in
New York. Plant Dis Rep. 1972; 56: p. 133–135.

[79] Gilmer, R.M., J.K. Uyemoto, and L.J. Kelts: A new grapevine disease induced by tobacco
ringspot virus. Phytopathology. 1970; 60: p. 619–627.

[80] Andret-Link, P., C. Laporte, L. Valat, C. Ritzenthaler, G. Demangeat, E. Vigne, V. Laval,
P. Pfeiffer, C. Stussi-Garaud, and M. Fuchs: Grapevine fanleaf virus: Still a major threat
to the grapevine industry. J Plant Pathol. 2004; 86(3): p. 183–195.

[81] Coetzee, B., M.J. Freeborough, H.J. Maree, J.M. Celton, D.J. Rees, and J.T. Burger: Deep
sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology.
2010; 400(2): p. 157–163. DOI: 10.1016/j.virol.2010.01.023.

[82] Fiore, N., S. Prodan, J. Montealegre, E. Aballay, A.M. Pino, and A. Zarnorano: Survey
of grapevine viruses in Chile. J Plant Pathol. 2008; 90(1): p. 125–130.

[83] Maree, H.J., R.P. Almeida, R. Bester, K.M. Chooi, D. Cohen, V.V. Dolja, M.F. Fuchs, D.A.
Golino, A.E. Jooste, G.P. Martelli, R.A. Naidu, A. Rowhani, P. Saldarelli, and J.T. Burger:
Grapevine leafroll-associated virus 3. Front Microbiol. 2013; 4: p. 82. DOI: 10.3389/
fmicb.2013.00082.

[84] Montero, R., D. Mundy, A. Albright, C. Grose, M.C.T. Trought, D. Cohen, K.M. Chooi,
R. MacDiarmid, J. Flexas, and J. Bota: Effects of Grapevine Leafroll associated Virus 3
(GLRaV-3) and duration of infection on fruit composition and wine chemical profile of
Vitis vinifera L. cv. Sauvignon blanc. Food Chem. 2016; 197: p. 1177–1183. DOI: 10.1016/
j.foodchem.2015.11.086.

[85] Adams, M.J., J.F. Antoniw, M. Bar-Joseph, A.A. Brunt, T. Candresse, G.D. Foster, G.P.
Martelli, R.G. Milne, S.K. Zavriev, and C.M. Fauquet: The new plant virus family
Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol.
2004; 149(5): p. 1045–1060. DOI: 10.1007/s00705-004-0304-0.

[86] Alabi, O.J., M. Al Rwahnih, T.A. Mekuria, and R.A. Naidu: Genetic diversity of
Grapevine virus A in Washington and California vineyards. Phytopathology. 2014;
104(5): p. 548–560. DOI: 10.1094/PHYTO-06-13-0179-R.

[87] Goszczynski, D.E., J. du Preez, and J.T. Burger: Molecular divergence of Grapevine
virus A (GVA) variants associated with Shiraz disease in South Africa. Virus Res. 2008;
138(1–2): p. 105–110. DOI: 10.1016/j.virusres.2008.08.014.

[88] Bonavia, M., M. Digiaro, D. Boscia, A. Boari, G. Bottalico, V. Savino, and G.P. Martelli:
Studies on ''corky rugose wood'' of grapevine and on the diagnosis of grapevine virus
B. Vitis. 1996; 35(1): p. 53–58.

[89] Al Rwahnih, M., M.R. Sudarshana, J.K. Uyemoto, and A. Rowhani: Complete genome
sequence of a novel vitivirus isolated from grapevine. J Virol. 2012; 86(17): p. 9545. DOI:
10.1128/JVI.01444-12.

Grape and Wine Biotechnology34



[90] Rosa, C., M. Polek, B.W. Falk, and A. Rowhani: Improved efficiency for quantitative
and qualitative indexing for Citrus tristeza virus and Citrus psorosis virus. Plant Dis.
2007; 91(9): p. 1089–1095. DOI: 10.1094/Pdis-91-9-1089.

[91] Jooste, A.E.C., N. Molenaar, H.J. Maree, R. Bester, L. Morey, W.C. de Koker, and J.T.
Burger: Identification and distribution of multiple virus infections in Grapevine leafroll
diseased vineyards. Eur J Plant Pathol. 2015; 142(2): p. 363–375. DOI: 10.1007/
s10658-015-0620-0.

[92] Prosser, S.W., D.E. Goszczynski, and B. Meng: Molecular analysis of double-stranded
RNAs reveals complex infection of grapevines with multiple viruses. Virus Res. 2007;
124(1–2): p. 151–159. DOI: 10.1016/j.virusres.2006.10.014.

[93] Maule, A., V. Leh, and C. Lederer: The dialogue between viruses and hosts in compat-
ible interactions. Curr Opin Plant Biol. 2002; 5(4): p. 279–284. DOI: 10.1016/
S1369-5266(02)00272-8.

[94] Mittler, R.: Abiotic stress, the field environment and stress combination. Trends Plant
Sci. 2006; 11(1): p. 15–19. DOI: 10.1016/j.tplants.2005.11.002.

[95] Espinoza, C., C. Medina, S. Somerville, and P. Arce-Johnson: Senescence-associated
genes induced during compatible viral interactions with grapevine and Arabidopsis. J
Exp Bot. 2007; 58(12): p. 3197–3212. DOI: 10.1093/jxb/erm165.

[96] Gutha, L.R., L.F. Casassa, J.F. Harbertson, and R.A. Naidu: Modulation of flavonoid
biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis
vinifera L.) leaves. BMC Plant Biol. 2010; 10: p. 187. DOI: 10.1186/1471-2229-10-187.

[97] Vega, A., R.A. Gutierrez, A. Pena-Neira, G.R. Cramer, and P. Arce-Johnson: Compatible
GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and
anthocyanin biosynthesis in Vitis vinifera. Plant Mol Biol. 2011; 77(3): p. 261–274. DOI:
10.1007/s11103-011-9807-8.

[98] Hung, K.T. and C.H. Kao: Hydrogen peroxide is necessary for abscisic acid-induced
senescence of rice leaves. J Plant Physiol. 2004; 161(12): p. 1347–1357. DOI: 10.1016/
j.jplph.2004.05.011.

[99] Maliogka, V.I., G.P. Martelli, M. Fuchs, and N.I. Katis: Control of viruses infecting
grapevine. Adv Virus Res. 2015; 91: p. 175–227. DOI: 10.1016/bs.aivir.2014.11.002.

[100] Lopez-Fabuel, I., T. Wetzel, E. Bertolini, A. Bassler, E. Vidal, L.B. Torres, A. Yuste, and
A. Olmos: Real-time multiplex RT-PCR for the simultaneous detection of the five main
grapevine viruses. J Virol Methods. 2013; 188(1–2): p. 21–24. DOI: 10.1016/j.jviromet.
2012.11.034.

[101] Ward, E., S.J. Foster, B.A. Fraaije, and H.A. McCartney: Plant pathogen diagnostics:
immunological and nucleic acid-based approaches. Ann Appl Biol. 2004; 145(1): p. 1–
16. DOI: 10.1111/j.1744-7348.2004.tb00354.x.

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

35



[102] Masuta, C. and I. Uyeda: Plant Virology Protocols New Approaches to Detect Viruses
and Host Responses Third Edition Preface. Plant Virology Protocols: New Approaches
to Detect Viruses and Host Responses, 3rd edition. 2015; 1236: p. V–VI. DOI:
10.1007/978-1-4939-1743-3.

[103] Bester, R., P.T. Pepler, J.T. Burger, and H.J. Maree: Relative quantitation goes viral: An
RT-qPCR assay for a grapevine virus. J Virol Methods. 2014; 210: p. 67–75. DOI: 10.1016/
j.jviromet.2014.09.022.

[104] Motooka, D., S. Nakamura, K. Hagiwara, and T. Nakaya: Viral Detection by High-
Throughput Sequencing. Plant Virology Protocols: New Approaches to Detect Viruses
and Host Responses, 3rd edition. 2015; 1236: pp. 125–134. DOI:
10.1007/978-1-4939-1743-3_11.

[105] Almeida, R.P., K.M. Daane, V.A. Bell, G.K. Blaisdell, M.L. Cooper, E. Herrbach, and G.
Pietersen: Ecology and management of grapevine leafroll disease. Front Microbiol.
2013; 4: p. 94. DOI: 10.3389/fmicb.2013.00094.

[106] Panattoni, A., A. Luvisi, and E. Triolo: Review. Elimination of viruses in plants: Twenty
years of progress. Spanish J Agric Res. 2013; 11(1): p. 173–188. DOI: 10.5424/sjar/
2013111-3201.

[107] Gambino, G., I. Gribaudo, S. Leopold, A. Schartl, and M. Laimer: Molecular character-
ization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep.
2005; 24(11): p. 655–662. DOI: 10.1007/s00299-005-0006-4.

[108] Gambino, G., I. Perrone, A. Carra, W. Chitarra, P. Boccacci, D. Torello Marinoni, M.
Barberis, F. Maghuly, M. Laimer, and I. Gribaudo: Transgene silencing in grapevines
transformed with GFLV resistance genes: analysis of variable expression of transgene,
siRNAs production and cytosine methylation. Transgenic Res. 2010; 19(1): p. 17–27.
DOI: 10.1007/s11248-009-9289-5.

[109] Jardak-Jamoussi,  R.,  P.  Winterhagen,  B.  Bouamama,  C.  Dubois,  A.  Mliki,
T.  Wetzel,  A.  Ghorbel,  and  G.M.  Reustle:  Development  and  evaluation  of
a  GFLV  inverted  repeat  construct  for  genetic  transformation  of  grapevine.
Plant  Cell  Tissue  Org  Cult.  2009;  97(2):  p.  187–196.  DOI:  10.1007/
s11240-009-9514-1.

[110] Krastanova,  S.,  M.  Perrin,  P.  Barbier,  G.  Demangeat,  P.  Cornuet,  N.  Bardonnet,
L.  Otten,  L.  Pinck,  and  B.  Walter:  Transformation  of  grapevine  rootstocks  with
the  coat  protein  gene  of  grapevine  fanleaf  nepovirus.  Plant  Cell  Rep.  1995;
14(9):  p.  550–554.

[111] Maghuly, F., S. Leopold, A.D. Machado, E.B. Fernandez, M.A. Khan, G. Gambino, I.
Gribaudo, A. Schartl, and M. Laimer: Molecular characterization of grapevine plants
transformed with GFLV resistance genes: II. Plant Cell Rep. 2006; 25(6): p. 546–553. DOI:
10.1007/s00299-005-0087-0.

Grape and Wine Biotechnology36



[112] Martinelli, L., E. Candioli, D. Costa, and A. Minafra: Stable insertion and expression of
the movement protein gene of Grapevine Virus A (GVA) in grape (Vitis rupestris S.).
Vitis. 2002; 41(4): p. 189–193.

[113] Mauro, M.C., S. Toutain, B. Walter, L. Pinck, L. Otten, P. CoutosThevenot, A. Deloire,
and P. Barbier: High efficiency regeneration of grapevine plants transformed with the
GFLV coat protein gene. Plant Sci. 1995; 112(1): p. 97–106. DOI:
10.1016/0168-9452(95)04246-Q.

[114] Radian-Sade, S., A. Perl, O. Edelbaum, L. Kuznetsova, R. Gafny, I. Sela, and E. Tanne:
Transgenic Nicotiana benthamiana and grapevine plants transformed with grapevine
virus A (GVA) sequences. Phytoparasitica. 2000; 28(1): p. 79–86. DOI: 10.1007/
Bf02994025.

[115] Spielmann, A., S. Krastanova, V. Douet-Orhant, and P. Gugerli: Analysis of transgenic
grapevine (Vitis rupestris) and Nicotiana benthamiana plants expressing an Arabis
mosaic virus coat protein gene. Plant Sci. 2000; 156(2): p. 235–244. DOI: 10.1016/
S0168-9452(00)00259-4.

[116] Winterhagen, P., C. Dubois, M. Sinn, T. Wetzel, and G.M. Reustle: Gene silencing and
virus resistance based on defective interfering constructs in transgenic Nicotiana
benthamiana is not linked to accumulation of siRNA. Plant Physiol Biochem. 2009;
47(8): p. 739–742. DOI: 10.1016/j.plaphy.2009.03.012.

[117] Xue, B., K.S. Ling, C.L. Reid, S. Krastanova, M. Sekiya, E.A. Momol, S. Sule, J. Mozsar,
D. Gonsalves, and T.J. Burr: Transformation of five grape rootstocks with plant virus
genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant.
1999; 35(3): p. 226–231.

[118] Torres, E., C. Santibanez, F. Rubio, F. Godoy, A. Cadavid-Labrada, C. Bruno, C. Medina,
and P. Arce-Johnson: Gene Silencing as a Strategy to Induce Grapevine FanLeaf Virus
(GFLV) Resistance in Grapevine Rootstocks. X International Conference on Grapevine
Breeding and Genetics. 2014; 1046: pp. 187–193.

[119] Chaves, M.M., O. Zarrouk, R. Francisco, J.M. Costa, T. Santos, A.P. Regalado, M.L.
Rodrigues, and C.M. Lopes: Grapevine under deficit irrigation: hints from physiolog-
ical and molecular data. Ann Bot. 2010; 105(5): p. 661–676. DOI: 10.1093/aob/mcq030.

[120] Gupta, B. and B. Huang: Mechanism of salinity tolerance in plants: Physiological,
biochemical, and molecular characterization. Int J Genom. 2014; 2014: p. 18. DOI:
10.1155/2014/701596.

[121] Golldack, D., C. Li, H. Mohan, and N. Probst: Tolerance to drought and salt stress in
plants: Unraveling the signaling networks. Front Plant Sci. 2014; 5. DOI: 10.3389/fpls.
2014.00151.

[122] Rocheta, M., J.D. Becker, J.L. Coito, L. Carvalho, and S. Amâncio: Heat and water stress
induce unique transcriptional signatures of heat-shock proteins and transcription

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

37



factors in grapevine. Funct Integr Genom. 2013; 14(1): p. 135–148. DOI: 10.1007/
s10142-013-0338-z.

[123] Carvalho, L.C., J.L. Coito, S. Colaço, M. Sangiogo, and S. Amâncio: Heat stress in
grapevine: The pros and cons of acclimation. Plant Cell Environ. 2015; 38(4): p. 777–
789. DOI: 10.1111/pce.12445.

[124] Janmohammadi, M., L. Zolla, and S. Rinalducci: Low temperature tolerance in plants:
Changes at the protein level. Phytochemistry. 2015; 117: p. 76–89. DOI: http://dx.doi.org/
10.1016/j.phytochem.2015.06.003.

[125] Guo, M., J.-H. Liu, X. Ma, D.-X. Luo, Z.-H. Gong, and M.-H. Lu: The plant heat stress
transcription factors (HSFs): Structure, regulation and function in response to abiotic
stresses. Front Plant Sci. 2016; 7. DOI: 10.3389/fpls.2016.00114.

[126] Wargent, J.J. and B.R. Jordan: From ozone depletion to agriculture: Understanding the
role of UV radiation in sustainable crop production. New Phytol. 2013; 197(4): p. 1058–
1076. DOI: 10.1111/nph.12132.

[127] Robson, T.M., K. Klem, O. Urban, and M.A.K. Jansen: Re-interpreting plant morpho-
logical responses to UV-B radiation. Plant Cell Environ. 2015; 38(5): p. 856–866. DOI:
10.1111/pce.12374.

[128] Jenkins, G.I.: Signal transduction in responses to UV-B radiation. Ann Rev Plant Biol.
2009; 60(1): p. 407–431. DOI: 10.1146/annurev.arplant.59.032607.092953.

[129] Jenkins, G.I.: The UV-B photoreceptor UVR8: From structure to physiology. Plant Cell.
2014; 26(1): p. 21–37. DOI: 10.1105/tpc.113.119446.

[130] Parihar, P., S. Singh, R. Singh, V.P. Singh, and S.M. Prasad: Changing scenario in plant
UV-B research: UV-B from a generic stressor to a specific regulator. J Photochem
Photobiol B: Biol. 2015; 153: p. 334–343. DOI: http://dx.doi.org/10.1016/j.jphotobiol.
2015.10.004.

[131] Ulm, R. and G.I. Jenkins: Q&A: How do plants sense and respond to UV-B radiation?
BMC Biol. 2015; 13(1): p. 1–6. DOI: 10.1186/s12915-015-0156-y.

[132] Frohnmeyer, H. and D. Staiger: Ultraviolet-B radiation-mediated responses in plants.
Balancing damage and protection. Plant Physiol. 2003; 133(4): p. 1420–1428. DOI:
10.1104/pp.103.030049.

[133] Bornman, J.F., P.W. Barnes, S.A. Robinson, C.L. Ballare, S.D. Flint, and M.M. Caldwell:
Solar ultraviolet radiation and ozone depletion-driven climate change: effects on
terrestrial ecosystems. Photochem Photobiol Sci. 2015; 14(1): p. 88–107. DOI: 10.1039/
C4PP90034K.

[134] Tilbrook, K., A.B. Arongaus, M. Binkert, M. Heijde, R. Yin, and R. Ulm: The UVR8 UV-
B Photoreceptor: Perception, Signaling and Response. The Arabidopsis Book. 2013: p.
e0164. DOI: 10.1199/tab.0164.

Grape and Wine Biotechnology38



[135] Berli, F.J., R. Alonso, R. Bressan-Smith, and R. Bottini: UV-B impairs growth and gas
exchange in grapevines grown in high altitude. Physiol Plant. 2013; 149(1): p. 127–140.
DOI: 10.1111/ppl.12012.

[136] Gil, M., M. Pontin, F. Berli, R. Bottini, and P. Piccoli: Metabolism of terpenes in the
response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. 2012;
77: p. 89–98. DOI: http://dx.doi.org/10.1016/j.phytochem.2011.12.011.

[137] Rizzini, L., J.J. Favory, C. Cloix, D. Faggionato, A. O’Hara, and E. Kaiserli: Perception
of UV-B by the Arabidopsis UVR8 protein. Science. 2011; 332. DOI: 10.1126/science.
1200660.

[138] Wu, D., Q. Hu, Z. Yan, W. Chen, C. Yan, and X. Huang: Structural basis of ultraviolet-
B perception by UVR8. Nature. 2012; 484. DOI: 10.1038/nature10931.

[139] Cloix, C., E. Kaiserli, M. Heilmann, K.J. Baxter, B.A. Brown, and A. O’Hara: C-terminal
region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the
COP1 protein. Proc Natl Acad Sci U S A. 2012; 109. DOI: 10.1073/pnas.1210898109.

[140] Favory, J.J., A. Stec, H. Gruber, L. Rizzini, A. Oravecz, M. Funk, A. Albert, C. Cloix, G.I.
Jenkins, E.J. Oakeley, H.K. Seidlitz, F. Nagy, and R. Ulm: Interaction of COP1 and UVR8
regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.
EMBO J. 2009; 28(5): p. 591–601. DOI: 10.1038/emboj.2009.4.

[141] Lau, O.S. and X.W. Deng: The photomorphogenic repressors COP1 and DET1: 20
years later. Trends Plant Sci. 2012; 17. DOI: 10.1016/j.tplants.2012.05.004.

[142] Oravecz, A., A. Baumann, Z. Máté, A. Brzezinska, J. Molinier, E.J. Oakeley, É. Ádám,
E. Schäfer, F. Nagy, and R. Ulm: Constitutively Photomorphogenic 1 is required for the
UV-B response in Arabidopsis. Plant Cell. 2006; 18(8): p. 1975–1990. DOI: 10.1105/tpc.
105.040097.

[143] Saijo, Y., J.A. Sullivan, H. Wang, J. Yang, Y. Shen, V. Rubio, L. Ma, U. Hoecker, and X.W.
Deng: The COP1–SPA1 interaction defines a critical step in phytochrome A-mediated
regulation of HY5 activity. Genes Dev. 2003; 17(21): p. 2642–2647. DOI: 10.1101/gad.
1122903.

[144] Brown, B.A., C. Cloix, G.H. Jiang, E. Kaiserli, P. Herzyk, D.J. Kliebenstein, and G.I.
Jenkins: A UV-B-specific signaling component orchestrates plant UV protection. Proc
Natl Acad Sci U S A. 2005; 102. DOI: 10.1073/pnas.0507187102.

[145] Lee, J., K. He, V. Stolc, H. Lee, P. Figueroa, Y. Gao, W. Tongprasit, H. Zhao, I. Lee, and
X.W. Deng: Analysis of transcription factor HY5 genomic binding sites revealed its
hierarchical role in light regulation of development. Plant Cell. 2007; 19(3): p. 731–749.
DOI: 10.1105/tpc.106.047688.

[146] Shin, D.H., M. Choi, K. Kim, G. Bang, M. Cho, S.-B. Choi, G. Choi, and Y.-I. Park: HY5
regulates anthocyanin biosynthesis by inducing the transcriptional activation of the

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

39



MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 2013; 587(10): p. 1543–
1547. DOI: 10.1016/j.febslet.2013.03.037.

[147] Stracke, R., J.-J. Favory, H. Gruber, L. Bartelniewoehner, S. Bartels, M. Binkert, M. Funk,
B. Weisshaar, and R. Ulm: The Arabidopsis bZIP transcription factor HY5 regulates
expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation.
Plant Cell Environ. 2010; 33(1): p. 88–103. DOI: 10.1111/j.1365-3040.2009.02061.x.

[148] Ulm, R., A. Baumann, A. Oravecz, Z. Mate, E. Adam, and E.J. Oakeley: Genome-wide
analysis of gene expression reveals function of the bZIP transcription factor HY5 in the
UV-B response of Arabidopsis. Proc Natl Acad Sci U S A. 2004; 101. DOI: 10.1073/pnas.
0308044100.

[149] Gruber, H., M. Heijde, W. Heller, A. Albert, H.K. Seidlitz, and R. Ulm: Negative
feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in
Arabidopsis. Proc Natl Acad Sci U S A. 2010; 107. DOI: 10.1073/pnas.0914532107.

[150] Heijde, M. and R. Ulm: Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the
homodimeric ground state. Proc Natl Acad Sci U S A. 2013; 110. DOI: 10.1073/pnas.
1214237110.

[151] Hatier, J. and K. Gould. Anthocyanin function in vegetative organs. In K. Gould and
K.W. Davies, Editors. Anthocyanins: Biosynthesis, Functions, and Applications.
Springer New York: New York; 2008. Pp. 1–19. DOI: 10.1007/978-0-387-77335-3

[152] Berli, F., J. D’Angelo, B. Cavagnaro, R. Bottini, R. Wuilloud, and M.F. Silva: Phenolic
composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B
radiation levels by capillary zone electrophoresis. J Agric Food Chem. 2008; 56(9): p.
2892–2898. DOI: 10.1021/jf073421+.

[153] Kolb, C.A., M.A. Käser, J. Kopecký, G. Zotz, M. Riederer, and E.E. Pfündel: Effects of
natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screen-
ing and photosynthesis in grape leaves. Plant Physiol. 2001; 127(3): p. 863–875. DOI:
10.1104/pp.010373.

[154] Pollastrini, M., V. Di Stefano, M. Ferretti, G. Agati, D. Grifoni, G. Zipoli, S. Orlandini,
and F. Bussotti: Influence of different light intensity regimes on leaf features of Vitis
vinifera L. in ultraviolet radiation filtered condition. Environ Exp Bot. 2011; 73: p. 108–
115. DOI: http://dx.doi.org/10.1016/j.envexpbot.2010.10.027.

[155] Pontin, M.A., P.N. Piccoli, R. Francisco, R. Bottini, J.M. Martinez-Zapater, and D.
Lijavetzky: Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves
induced by ultraviolet-B radiation. BMC Plant Biol. 2010; 10(1): p. 1–13. DOI:
10.1186/1471-2229-10-224.

[156] Baldoni, L. and E. Rugini. 3-Genetic modification of agronomic traits in fruit crops A2
— Valpuesta, Victoriano. Fruit and Vegetable Biotechnology. Woodhead Publishing;
2002. Pp. 25–113. DOI: http://dx.doi.org/10.1533/9781855736412.1.25

Grape and Wine Biotechnology40



[157] Demkura, P. and C. Ballaré: UVR8 Mediates UV-B-Induced Arabidopsis Defense
Responses against Botrytis cinerea by Controlling Sinapate Accumulation. Molecular
Plant. 2012. 5(3): p. 642–652.

[158] Brown, B. A. and G. I. Jenkins: UV-B Signaling Pathways with Different Fluence-Rate
Response Profiles Are Distinguished in Mature Arabidopsis Leaf Tissue by Require-
ment for UVR8, HY5, and HYH. Plant Physiol. 2008. 146(2): p. 576–588.

[159] Gururani, M.A., M. Ganesan, and P.-S. Song: Photo-biotechnology as a tool to improve
agronomic traits in crops. Biotechnol Adv. 2015; 33(1): p. 53–63. DOI: http://dx.doi.org/
10.1016/j.biotechadv.2014.12.005.

[160] Liu, Y., S. Roof, Z. Ye, C. Barry, A. van Tuinen, J. Vrebalov, C. Bowler, and J. Giovannoni:
Manipulation of light signal transduction as a means of modifying fruit nutritional
quality in tomato. Proc Natl Acad Sci U S A. 2004; 101(26): p. 9897–9902. DOI: 10.1073/
pnas.0400935101.

[161] Berli, F. and R. Bottini: UV-B and abscisic acid effects on grape berry maturation and
quality. J Berry Res. 2013; 3(1): p. 1–14. DOI: 10.3233/JBR-130047.

Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses
http://dx.doi.org/10.5772/64872

41




