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Abstract

In this chapter, we discuss the new classes of matter, such as the quantum spin Hall
(QSH)  and  quantum  anomalous  Hall  (QAH)  states,  that  have  been  theoretically
predicted and experimentally observed in graphene and beyond graphene systems. We
further demonstrate how to manipulate these states using mechanical strain, internal
exchange  field,  and  spin‐orbit  couplings  (SOC).  Spin‐charge  transport  in  strained
graphene  nanoribbons  is  also  discussed  assuming  the  system in  the  QAH phase,
exploring the prospects of topological devices with dissipationless edge currents. A
remarkable zero‐field topological quantum phase transition between the time‐reversal‐
symmetry‐broken QSH and quantum anomalous Hall states is predicted, which was
previously thought to take place only in the presence of external magnetic field. In our
proposal, we show as the intrinsic SOC is tuned, how it is possible to two different
helicity edge states located in the opposite edges of the graphene nanoribbons exchange
their locations. Our results indicate that the strain‐induced pseudomagnetic field could
be coupled to the spin degrees of freedom through the SOC responsible for the stability
of a QSH state. The controllability of this zero‐field phase transition with strength and
direction of the strain is also explored as additional phase‐tuning parameter. Our results
present prospect of strain, electric and magnetic manipulation of the QSH, and QAH
effect in these novel two‐dimensional (2D) materials.

Keywords: Graphene, graphene nanoribbon, quantum spin Hall, quantum anomalous
Hall, topological insulator, 2D materials, strain

1. Introduction

Starting from the work by Landau and Peierl’s work [1, 2], two‐dimensional (2D) materials
were  regarded  as  theoretical  structures,  thermodynamically  unstable  to  be  obtained  in
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laboratory. This is because of fusion temperature decreases as function of thickness of thin
films, causing the material to segregate in islands or decomposing in typically thicknesses of
tens of atomic layers [3, 4]. In 1947, Wallace [5] demonstrated the electronic properties of what
became the first theoretical work predicting the one‐atom thick of carbon atoms. Past 57 years,
his theoretical predictions were experimentally synthesized by Novoselov et al., which now
is widely known as graphene. In 2004, Geim and Novoselov [6, 7] created by mechanical
exfoliation an one‐atom thick layer made of graphite, the so‐called graphene. Due to their well‐
succeeded experiment, many other techniques have been developed to grow graphene on
several possible substrate materials such as on hydrogenated silicon carbide, copper, cobalt,
and gold [8–16].

Before 2004, graphite systems were also widely studied [5, 17, 18], and their electronic
properties used to theoretically describe other materials based on carbon, such as fullerene [19]
and carbon nanotubes [20]. These chemical elements have attracted much attention because
of their exotic electronic and mechanical properties, such as high tensile strength and, in the
case of nanotubes, tunable electronic structure according to chirality, radius, and high thermal
conductivity. A new type of derivative of graphene arose after 2004: the graphene nanorib‐
bon [21], in which some electronic properties of the graphene were modified and could be
controlled. These properties depends on the type of crop that was carried out on graphene and
can be simpler cuts, called zigzag and armchair or being modeled in a specific way, such as
triangles to form quantum dots [21–25] or even with Z formats [26].

The interest in two‐dimensional materials started from the nineteenth century, mainly for its
electronic transport properties after the discovery of the Hall effect. In 1988, Haldane predict‐
ed that another type of Hall effect, called anomalous quantum Hall effect, could be observed
in a two‐dimensional crystal with hexagonal lattice [27]. Recently, the new classes of matter,
such as quantum Hall effect (QHE) [28, 29], quantum anomalous Hall (QAH) effect [30–32],
and quantum spin Hall (QSH) effect [33, 34], have been discovered or predicted in the
graphene, as well as other 2D materials such as topological insulators [35–37], HgTe‐CdTe
quantum wells [38, 39], silicene [40], two‐dimensional germanium [40], and transition metal
dichalcogenides [41]. Among these new classes of matter, the QSH and QAH states possess
topologically protected edge states at the boundary, where the electron backscattering is
forbidden, offering a potential application to electronic devices to transport current without
dissipation [24, 42]. However, the QSH state and QAH are very different states of matter. The
quantum spin Hall is characterized by a gap completely insulating the bulk, and their edge
states are helical with no gap, wherein opposite spins propagate in opposite directions on each
side of the sample and are protected by time reversal symmetry (TRS) [27, 33, 36, 38–40, 43,
44]. In the case of quantum anomalous Hall, chiral edge states takes place, also without gap,
where one spin channel is suppressed because of the TRS break [35, 37, 45]. Therefore, to
observe topological phase transitions (QPT) between quantum spin Hall and quantum
anomalous Hall states, it is necessary to apply a condition, which might break the TRS [28].
An external magnetic field is a potential solution but from applicability point of view, an
internal exchange field (EX) which takes the main spin band to be completely filled while the
minority spin band becomes empty, becomes an more attractive alternative [31, 32, 35, 46]. As
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it is known, a pseudo‐magnetic field induced by strain BS  leads to Landau quantization and
edge states that circulate in opposite directions [47, 48], and the strain creates graphene pseudo‐
magnetic fields. Then, without breaking the TRS, the strain may induce a gap in the bulk and
edges without helical gap. Thus, strain, EX and SOC can be used as a versatile tool for control
of topological phase transitions [32]. These facts motivated us to propose ways in which the
spin‐orbit coupling, uniaxial mechanical strain and exchange (instead of an external magnet‐
ic field) to be used to carry out phase transitions in graphene nanoribbons [49].

In this chapter, firstly, we make a brief description on tight‐binding model. Then, we report
energy band structure of the graphene and the individual effects of the intrinsic SOC, the
Rashba SOC, and the EX. After that, we present the effects of applied uniaxial strain on both
electronic structure and transport property of the graphene. Then, we demonstrate the effects
of strain on single‐particle energy and quantum transport property of graphene nanorib‐
bons. Finally, we show systematically the strain‐engineered QPT from the QSH to QAH states.

2. Electronic structure and transport properties of graphene

2.1. Electronic structure of graphene tight‐binding approach

An isolated atom has its own electronic levels ranging and depending on its fundamental
characteristics. When two or more atoms are approximate to each other, their electronic levels
are recombined to obtain a new structure for the system as a whole. And the periodic clustering
of atoms in a structure is meant by the crystal lattice. In the case of an insulating material,
superposition of the wave functions of the valence electrons in the crystal lattice atoms is low.
In the case of a conductive material, such superposition of the wave function of the electrons
is large and acquires great mobility through the solid. Semiconductor materials have an
electronic distribution that is not very well located, because there is not a too strong electri‐
cal attraction between electrons and protons on the atomic nucleus but low overlap between
the valence electrons from neighboring atoms are observed. The tight‐binding method is useful
in those cases [50]. Thus, one can assume that the lattice Hamiltonian Ĥ latt can be approximat‐
ed in the vicinity of each point of the grid system by Hamiltonian Ĥ  of the atom located at that
point. However, this has some disadvantages, because this method does not allow us to include
continuous spectra and also does not have good description for levels below the valence states.

In order to apply tight‐binding method to graphene, we begin with the wave function of an
electron on its lattice as a linear combination of atomic orbitals of A and B sites, the two distinct
atoms in graphene unit cell

α φ β φ ′Ψ〉 〉 + 〉
 

| = ( )| , ( )| , ;
A B

k s k s (1)

where α(k
→
) and β(k

→
) are coefficients, s is the spin projection, and Bloch functions are
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φ ⋅∑
 

1
| >= | , >

ik R
n

C n

n

e C s

N
(2)

where C = A,B. In these functions, R
→

n is an carbon atom position concerning the origin of

coordinate system, the exponential carries the periodicity of the lattice; 1

N
 is the normaliza‐

tion factor (N  is the number of atoms in graphene).

Lattice Hamiltonian are made up of two terms: on‐site Ĥ on and hopping Ĥ h  energy

+ˆ ˆ ˆ=
latt on h
H H H (3)

The first one, Ĥ on is

{ }〉 〈 + 〉 〈∑0ˆ = | | | | ;
N

on n n n n

n

H A A B B (4)

with A and B representing sites, nonequivalent types of carbon atoms on the unit cell. This
energy can be set as �0 =0 at Fermi level and the term vanishes. Here, the spin index was
suppressed because only identical spins couple. The term Ĥ h  defines the hopping of elec‐
trons between nearest‐neighbor atoms, since we use first‐neighbors tight‐binding approach.

( )
〈 〉

− 〉 + 〈∑
,

ˆ = | | | | ;
h ij i j j i

i j

H t A B B A (5)

Figure 1. (a) Distance between two carbon atoms a and lattice constant a0. (b) Nearest-neighbors of an A site. Copy‐
right (2015) by the American Physical Society [49].
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where i and j are site index and summation over i,  j  indicates only nearest neighbor atoms
are being considered. The tij is called hopping factor and gives probability amplitude of an
electron on i site hop to a j site. Its value is the same for each nearest neighbor tij =2.7eV  [51,
52]. The distance vectors from an A site to their nearest neighbors are, as one can see in Figure 1,

− + + − +
  

0 0

1 2 3
ˆ ˆ ˆ ˆ ˆ= , = =

2 2 2 2

a aa a
d ay d x y and d x y (6)

and B‐site distance vector can be obtained in a similar way. Here, x̂ and ŷ are the unitary vectors
along x axis and y axis. The distance between two carbon atoms is a =0.142 nm, and a0 = 3a is
the lattice constant.

To find energy equations for our system, we solve Schrödinger’s equation using Eqs. (1) and
(5). This will give

α β
−  

− +  
  

 / 2
0( ) = 2 ( ),

2

ik a ik a
y yx

k a
E k t e cos e k (7)

β α
−  

− +  
  

 / 2
0( ) = 2 ( );

2

ik a ik a
y yx

k a
E k t e cos e k (8)

Figure 2. Energy band of graphene (a) along ky =0 and (b) kx =4π / 3 3 directions.

In Figure 2, valence and conduction bands are shown in profile: with ky =0 in (a), where

symmetric points K , K ’, and Γ are shown; and kx =4π / 3 3 in (b), showing K  point. In both
cases, no bandgap is observed in the graphene.
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Quantum anomalous Hall and quantum spin Hall effect can be induced in graphene with‐
out a magnetic field if we consider Rashba and intrinsic spin‐orbit coupling and also ex‐
change field [53, 54]. Intrinsic spin‐orbit coupling is weak on graphene [55–57], however,
graphene is easily affected by disturbance at low energies and the effects due to spin‐orbit
coupling should become relevant at low temperatures [33]. Although it is challenging the
experimental envision, this type of coupling can be controlled with graphene deposition on
other materials. The exchange interaction that occurs between electron spins can be ob‐
served in graphene with stabilization of a ferromagnetic phase, when it has a low doping [53,
58].

The intrinsic spin‐orbit interaction evolves the next nearest‐neighbors and is written as

{ }
,

2ˆ = | , ( ) , ' | . .
3 ¢áá ññ

ñ × ´ á +åå
r rr

so so i kj ik j
i j ss

iH A s d d A s h cl g (9)

being λso the strength parameter, estimated up to 2.4 K [33]. Here, the s and s ′ are the z‐
components of real spin, and the summation i, j  is over the next nearest‐neighbors of a
carbon atom, as shown in Figure 3(a), the vectors d

→
mn indicate the distances between an atom

on m site and another on n site, as shown in Figure 3(b). To find energy equations for the SOC,
we solve Schrödinger’s equation using Eqs. (1) and (9). It leads to

Figure 3. Next nearest‐neighbors distance vectors of an A site (a). Definition of d
→

kj and d
→

ik  vectors used in Hamiltoni‐
an 9. Figure adapted from Guassi et al. [49].

α λ α
     

− −     
     

 
0 03

( ) = 4 ( )
2 2 2

x x
so y z

k a k a
E k k sin cos k a cos s (10)

and the negative of right side for β(k
→
). Clearly, Figure 4 shows that an increase in parameter

strength λso increases the gap of graphene, which is associated with a massive term in the Dirac‐
like Hamiltonian [59].
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Figure 4. Energy band along ky =0 direction of graphene with (a) λso =0, (b) λso =0.03t , and (c) λso =0.06t .

Rashba spin‐orbit coupling can be induced in graphene with application of an external electric
field perpendicular to the sheet plane [60], interaction of carbon atoms with a substrate [43] or
by curving the sheet [61–63]. Its Hamiltonian reads

{ }γ
′〈 〉

′⋅ +∑∑  ˆ = | , > ( ) , | . .,
R i ij j

ij ss

H i A s u B s h c (11)

where the summation i,  j  is over the nearest‐neighbors of a carbon atom, γ→  is the vector
whose components are the Pauli spin matrices, u→ ij are defined by [60]

λ
× − ×
  

2

ˆ= = ,
2

R
ij ij ij

F

e
u E R k R

am av
(12)

with e the electron charge, m the rest mass of the electron, and vF  the Fermi velocity. The vector
R
→

ij = R
→

j −R
→

i gives difference between two atom positions on the lattice. Observing Figure 1, the
vector R

→
ij can be renamed to d

→
l , with (l =1, 2, 3).

Using electron wave function, Eq. (1) and Hamiltonian part 11, we find four spin nondegen‐
erated energy equations:

πα λ β
−  

↑ + + ↓  
  

 / 2
0 2

( , ) = 2 ( , )
2 3

ik a ik a
y yx

R

k a
E k i e cos e k (13)

πβ λ α
−  

↑ + − ↓  
  

 / 2
0 2

( , ) = 2 ( , )
2 3

ik a ik a
y yx

R

k a
E k i e cos e k (14)
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πα λ β
−  

↓ + − ↑  
  

 / 2
0 2

( , ) = 2 ( , )
2 3

ik a ik a
y yx

R

k a
E k i e cos e k (15)

πβ λ α
−  

↓ − + + ↑  
  

 / 2
0 2

( , ) = 2 ( , )
2 3

ik a ik a
y yx

R

k a
E k i e cos e k (16)

which, together with energy Eqs. (7) and (8), allow one to plot energy levels in Figure 5. As
one can note, the Rashba SOC lifts the spin degeneracy, breaking the SU(2) symmetry.
However, due to time‐reversal symmetry, we still have E (k

→
,↑)= E (−k

→
,↓).

Figure 5. Energy band along ky =0 direction of graphene with (a) λR =0, (b) λR =0.20t , and (c) λR =0.40t .

Calculations of ab initio have recently shown that graphene doped with Fe on its surface may
have intrinsic ferromagnetism [30]. This interaction arises when the change in the spin of an
electron changes the electrostatic repulsion between electrons near it. Its Hamiltonian includes
the coupling of orbital motion and the spin of the electrons with the exchange field. In this
paper, to simplify the calculations and not lose generality, only the portion of spin will be
considered. Now, the Hamiltonian is

{ }γ +∑
;

= | , > < , | . . ,
ex i z i

i s

H M C s C s h c (17)

where C = A,B; strength parameter M  is proportional to Jeff μ ′
z, where Jeff  is the exchange

interaction and μ ′
z is effective magnetic momentum of electron that associates to the ex‐

change field. Thus, Hex describes the magnetic momentum response of spin of an electron to
the exchange field, like in Zeeman effect [45]. The γz is the Pauli matrix. This part of
Hamiltonian gives energies
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α α↑ ↑
 
( , ) = ( , ),E k M k (18)

α α↓ − ↓
 
( , ) = ( , );E k M k (19)

the same for β(k
→
,s). Combining with Eqs. (7) and (8), we can obtain the energy dispersion. In

Figure 6, it clearly shows that the time‐reversal symmetry is broken, since E (k
→
,↑)≠E (−k

→
,↓).

Initially, one might think that graphene nanoribbon subject to an exchange field should not
bear the quantum spin Hall state, as this would be protected by the time‐reversal symmetry
[33, 43]. But it has been found a similar state, called pseudo‐Hall quantum spin state or
quantum spin Hall state with broken time‐reversal symmetry [45] in which was possible to
observe the spin polarized current on the edges of nanoribbon. In addition, the exchange field
is critical to control the transition between electronic states of quantum anomalous Hall to
quantum spin Hall [49].

Figure 6. Energy band along ky =0 direction of graphene with (a) M =0, (b) M =0.20t , and (c) M =0.40t .

2.2. Electronic structure of strained graphene

Deformation can naturally be observed when graphene is grown on top of other materials,
because of distinct atomic arrangements between the atoms of graphene and the substrate. The
application of an external tension on graphene sheet or nanoribbons can change its electron‐
ic properties, as with the nanotubes [64–68]. Some calculations [69] and experiments [70] have
shown that these deformations can reach about 20% of the initial interatomic distance without
permanently deform the graphene.

Strain is calculated in graphene using the strain matrix defined in [52]:

θ ν θ ν θ θ
ε

ν θ θ θ ν θ
 − +
  + − 


2 2

2 2

(1 )
=

(1 )

cos sin cos sin

cos sin sin cos
(20)
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where ε is strain modulus, θ is the direction of strain, θ =0 being parallel to a zigzag chain and
ν =0.165 is the Poisson ratio [71]. Therefore, matrix elements read,

ε θ ν θ− 2 2

11
= [ ]cos sin (21)

ε ν θ θ+
12
= [(1 ) ]cos sin (22)

ε ν θ θ+
21
= [(1 ) ]cos sin (23)

ε θ ν θ− 2 2

22
= [ ]sin cos (24)

The transformation of an atom position from (x, y) to the new position (x′, y′) after the strain
application will be

ε ε
ε ε

′    +  
    ′ +    

11 12

21 22

(1 )
= .

(1 )

x x

y y
(25)

Or, in vectorial form

+
 

= ( )s
d I d (26)

where d
→
 and d

→ s are the vectors that defines the nearest‐neighbor in the graphene without and
with application of the strain, I  is identity matrix, and � is the matrix 20.

Hopping term t  is also modified by strain [52]

− −


3.37( / 1)

,
= = .

sd a
i

i j i
t t te (27)

With these modifications, energy equations for strained graphene are calculated in the same
way as in Section 2.1 and gives

{ }α α− ⋅∑
   3

( ) = ( )s

l l
l

E k t exp ik d k (28)

with summation made over the nearest‐neighbors. For β(k
→
), the expression is the complex

hermitian of α(k
→
). Figure 7 shows the contour plot of valence band subjected to a strain with
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modulus of 15% along zigzag chains, i.e., θ =0 (a) and toward the armchair chains, i.e., θ =π / 2
(b). Notice that no bandgap is opened up in both cases [52]. Nevertheless, the form of the 1st
BZ has been deformed by the strain. Therefore, the Dirac points K  and K ′ are the strain shifted.
The new positions of the deformed Dirac cones are well determined by the following equa‐
tion [72]:

( )  − −
⋅ −   

 

  2 2 2

3 1 2

1 2

1 2

= arccos
2

s s
t t t

K d d
t t

(29)

where K
→

=(Kx,Ky)

{ }λ γ
′〈〈 〉〉

′〉 ⋅ × +∑∑
 

,

2
= | , ( ) , | . .

3

s s

so so i kj ik j
i j ss

i
H A s d d A s h c (30)

now, with new distances d
→

ik
s , modified by strain. This will give us new energies expressions,

α λ µ σ α⋅ − ⋅ ↑ − ↑ 
 

∑
    3 2 2

( , ) = ( , )
s s

ik d ik d
l l

so l

l

E k i e e k (31)

and nearly the same for other expressions, with

α α β β↑ − ↓ − ↑ ↑
   
( , ) = ( , ) = ( , ) = ( , )k k k k (32)

In Eq. (31), d
→

l
s2 are the vectors between the next nearest‐neighbor sites and

µ + + +   
11 22 12 21

= (1 )(1 ) (33)

In Figure 8, we show the effects of the combination of intrinsic SOC and uniaxial strain applied
along θ=0 direction for different strain modulus ε and λR =0.0. The bandgap generated by the
intrinsic SOC is still present, although as strain is increased the bandgap reduces, the energy
dispersion can also displays different features as the direction of applied strain is varied [52].
The Rashba Hamiltonian can include strain as well, and this will leave us with equations

α ϕ β−↑ − ↓
 
( , ) = ( , )

s
E k i k (34)

α ϕ β+↓ − ↑
 

*( , ) = ( , )
s

E k i k (35)
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β ϕ α+↑ ↓
 
( , ) = ( , )

s
E k i k (36)

β ϕ α−↓ ↑
 

*( , ) = ( , )
s

E k i k (37)

where

{ }ξ ξϕ λ ρ ρ ξ ρ ξ−

− − +
3

1 1
1 1 2 2 2

= ( ) 3 ( )
i i

s R
e cos sin e (38)

{ }ξ ξϕ λ ρ ρ ξ ρ ξ −

+ − −
3

1 1
1 1 2 2 2

= ( ) 3 ( )
i i

s R
e cos sin e (39)

and we defined

ρ + + 
1 22 12
= 1 i (40)

ρ + − 
2 11 21
= 1 i (41)

ξ + + 
1 12 22
= (1 )

2 2

yx
k ak a (42)

ξ + + 00

2 11 21
= (1 )

2 2

yx
k ak a (43)

Figure 7. Contour plot of valence band of strained graphene with ε =0.15 for θ =0 (a) and π / 2 (b).
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Figure 8. Energy band of strained graphene with λso =0.06t  and θ =0, for ε =0.05 (a), ε =0.10 (b), ε =0.15 (c).

Here, we have set λR =0.0.

Figure 9. Energy band of strained graphene with λR =0.20t  and θ =0, for ε =0.05 (a), ε =0.10 (b), ε =0.15 (c).

In Figure 9, we can still observe the broken spin‐degeneracy, but compared with the case where
the uniaxial strain is absent, one can note that the effect of strain is to renormalize the Rashba
SOC and shifts the Dirac point relative to the original one.

2.3. Quantum anomalous Hall effect in strained graphene

In this section, we discuss the prospects of external manipulation of the quantum anomalous
Hall effect (QAHE) in graphene by strains [73–76]. We present here our results of the micro‐
scopic study of the QAHE in graphene under uniaxial strains [32]. For this purpose, we have
theoretically explored the dependence of electronic structure, topological and transport
properties upon the orientation and modulus of uniaxial strain, in the presence of Rashba,
Intrinsic SO, and an exchange field interaction [32].

To identify the topological properties of the Dirac gap and study the origin of QAHE, we have
calculated the Berry curvature of the nth bands Ωxy

n (kx,ky) using the Kubo formula:

ω ω
′ ′

′≠ ′

〈Ψ Ψ 〉〈Ψ Ψ 〉
Ω −

−∑ 2

2 | | | |
( , ) =

( )

nk x n k n k y nkn

xy x y
n n n n

Im v v
k k (44)
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where ωn = En / ℏ with En the energy eigenvalue of the nth band and vx(y) =ℏ−1∂H / ∂kx(y) is the
Fermi velocity operator. When the Fermi level lies within the bulk gap, i.e., in the insulating
regime, according to the Kubo formula, the corresponding Hall conductance is quantized as
σxy =Ce 2 / h , where C is defined as the Chern number and can be calculated by [77]

π
Ω∑∫ 21

= ,
2

n

xyBZ
n

d k (45)

where the summation is taken over all the occupied states below the Fermi level, and the
integration is carried out over the whole first Brillouin zone.

Since the Berry curvatures are highly peaked around the Dirac points K and K′ [78], then a low
energy approximation can be used in the calculation of the Chern number [30]. This allows us
to derive an effective tight‐binding Hamiltonian of the strained graphene, by expanding H (k

→
)

at the vicinity of the strain‐shifted Dirac points, i.e., k
→

=ηK + q→ , where η = ± 1 labels the two
valleys, and q→ = (qx,qy) is a small crystal momentum around ηK. The validity of the low energy
approximation requires the strain modulus to be upper limited, such that does not go beyond
the threshold of an appearance of a band gap, thus the band is still linear and gapless at the
strain‐shifted Dirac points, in the absence of SOCs and exchange field interactions [79]. This
condition is fulfilled by the relation on the strain‐dependent hopping parameters
| t1− t2 | ≤ t3≤ | t1 + t2 | , where ti=1,2,3 is the hopping along each C–C bond [80]. Under this
condition, we calculate the Chern number using the following equation:

π
∞

−∞
Ω∑ ∑ ∫

=1,2,

1
= ( , )
2

n

x y xy x y
' nK K

dq dq q q (46)

It is interesting to mention that in the above integral, a momentum cutoff is set around each
valley for which the Chern number calculation is guaranteed to converge.

As known, intrinsic spin‐orbit (ISO) interaction respects the crystal symmetries and does not
couple states of opposite spins. But it opens up a topologically nontrivial bulk band gap at zero
magnetic field [43]. This bulk band gap hosts two counter‐propagating edge modes per edge
in the graphene nanoribbon, with opposite spins: this topological phase is known as the QSH
phase and may be regarded as two opposite QH phases (i.e., each spin performs the QH effect,
with opposite chirality) [27]. Therefore, the Chern number must vanish in a system with TRS.
In contrast, the Rashba term explicitly violates the z → − z mirror symmetry. Moreover, it mixes
different spin components and depresses the ISO induced band gap [81]. When the ex‐
change field is applied and only ISO is turned on, the combination of the ISO coupling and
exchange field leads to the breaking of the TRS which is preserved in the QSH phase. However,
due to the absence of spin‐flip terms in the Hamiltonian, the helical edge‐state structure
persists. Thus, both the Chern number and the conductance are equal to zero. Unlikely, when
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Rashba SOC is considered, in addition to ISO and exchange field, the system can be in a regime,
which depends on λR, λso, and M  parameters, that may result in a phase transition from zero
conductance to finite conductance [32].

Let us now calculate the Hall conductivity of the strained graphene considering both Rashba
SOC and ISO. Figure 10(a) and (b) shows the Hall conductance for λR(ε =0)=0.1t  and
λso(ε =0)=0.06t  along θ =0 and θ =π / 2, respectively. One can clearly note the two distinct

phases: Insulating (I) characterized by  and the QAHE phase with , where .
The two different phases can be accessed by appropriately tuning the exchange field M  and

the strain modulus ε. Figure 10(d) shows the dependence of the Hall conductance 
on the exchange field and the strain parameters with θ =π / 2 for λR(ε =0)=0.1t  and λSO(ε =0)
=0.06t . We find that a finite ISO drives a phase transition from QAHE to an insulator phase [32].
We also notice that for M  being smaller than 0.24t , the conductance σxy of unstrained gra‐
phene is equal to zero, corresponding to an insulator phase in the graphene, also called a time‐
reversal‐symmetry‐broken quantum spin‐Hall phase [34]. At Mc =0.24t , an abrupt change from

0 to 2e 2 / h  takes place, which indicates a quantization of the Hall conductance and an occurring
of a phase transition at M =Mc. After that, it remains 2e 2 / h , in which the unstrained gra‐
phene stays in the phase of QAHE. Furthermore, the applied strain drives Hall conductance
curve forward to the right‐hand side for strained graphene. Consequently, as the strain
modulus increases from zero, the critical exchange field Mc becomes larger, such as for ε=0.2,
Mc=0.275t  with a relative change of Mc being approximately +14.5%. Astonishingly, in the case
of θ =0, as demonstrated in Figure 10(c), there is an increase in the exchange field with similar
behavior for the Hall conductance. However, beyond an specific value of strain modulus,
indicated by the vertical dashed line in Figure 10(e), the system presents an opposite strain‐
strength dependence, i.e., an increase in the strain parameter shifts the Hall conductance curve
to the left‐hand side. For instance, in the case of ε=0.2, we have obtained Mc =0.1t  with a relative
change of Mc being equal to -58.3%.

The distinct behaviors observed along different strain directions for the QAHE phase transition
can be explained by the competition of the Rashba SOC and ISO in the bulk band gap‐closing
phenomena for a given critical exchange field Mc [31, 45]. In the case of θ=π / 2, an increase in
the strain modulus leads to an approximately linear enhancement in the ISO parameter as can
be observed in Figure 10(e), which results in an smaller bulk band gap in the presence of an
exchange field. On the other hand, the Rashba SOC is not very sensitive to the variation of
strain strength. Therefore, the variation of Hall conductance mainly reflects the dependence
of ISO on the strain strength. In contrast, for values of strain modulus larger than ε =0.078 in
the case of θ=0, there is drastic reduction in the effective ISO interaction, hence Rashba becomes
dominant and the critical exchange field for the phase transition becomes smaller as one can
note in Figure 10(c) with a critical Mc =0.1t  for ε=0.2 for the QAHE phase transition [32].
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Figure 10. Phase diagram of the QAHE for strained graphene along two distinct directions: (a) along θ =0 and (b)
along θ =π / 2. The Hall conductance as a function of the exchange interaction M , for uniaxial strain direction along
θ =0 and θ =π / 2 with four different strain strengths is shown in (c) and (d), respectively. The arrows in panels (c)
and (d) indicate the direction for which the strength is increased from ε=0 to ε=0.2. The parameters λR(ε =0)=0.1t
and λso(ε =0)=0.06t  have been used in panels (a)–(d). (e) Effective λso as function of strain strength along different

directions θ. The vertical dashed line in panel (e) indicates the limiting strain modulus, for which the effective ISO
parameter changes its behavior according to the direction and modulus of strain. Reproduced with permission from
Diniz et al. [32]. Copyright (2013), AIP Publishing LLC.

3. Electronic structure and transport properties of graphene nanoribbon

A graphene nanoribbon is defined as a graphene sheet in which one of its dimensions is narrow
and the other approximately infinite. The unique properties arising due to the reduced
dimensions become very important because shape of the edges and width of nanoribbon
defines its electronic structure. The main nanoribbons classification is based on the edge
design, which can be armchair, zigzag, chiral, and bearded nanoribbons depending on the
edge terminations [82]. We will focus on the electronic dispersion of only two types: arm‐
chair and zigzag.

3.1. Electronic structure of graphene nanoribbon

The electron wave function in a armchair nanoribbon is

φ ⋅
〉 〉∑

 

,

,

1
| = | ,

N
ik R

m

A n m

m n

e A n

M
(47)

where
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 
0

=
m
R ma (48)

is a vector between the atom and its neighbors in the next unit cell with same type of site. In
armchair nanoribbons, the unit cell m and its width is defined as showed in Figure 11(a). One
can write the vectors that separate the nearest neighbors for a A site, Figure 11(b):

Figure 11. (a) Armchair unit cell m showing the sites A and B, distance between carbon atom a and lattice constant a0
is also shown. (b) Distance vectors between two nearest neighbors sites and site index.

ι−

1

ˆ=d a (49)

ι −
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0

2

ˆˆ=
2 2

aa
d j (50)

ι +


0

3

ˆˆ=
2 2
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d j (51)

And similar vectors could be find for B sites. Then, Hamiltonian of armchair nanoribbon is

{
}

−
〈 〉

− 〉〈 +

+ 〉〈 − + 〉〈 + +

∑ 1 1/2

,
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ˆ = | , , |

| , , 1| | , , 1| .

N

h m m

m n

m m m m

H t A n B n

t A n B n t A n B n h c

(52)

where the summation m,n  is over nearest neighbors; the product |am,n Bm−1/2,n |  is the
hopping of electrons between an atom in the A site at position m and n and an atom in
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neighboring site B which is at position m− 1
2  and n. Solving Schrödinger’s equation will give

energy expressions

α β β β− − + + + −  
   / 2

0( , ) = ( , ) ( , 1) ( , 1)
ik a
xE k n t k n e k n k n (53)

β α α α − + + + −  
   / 2

0( , ) = ( , ) ( , 1) ( , 1)
ik a
xE k n t k n e k n k n (54)

Figure 12. (a) mth unit cell of zigzag graphene ribbon, and (b) distance vectors between two nearest neighbor sites and
index of them. In (a), A and B indicate two sites, a is interatomic distance, and a0 represents lattice constant.

Zigzag nanoribbon has unit cell m and width defined as showed in Figure 12(a). The vectors
that separate the nearest neighbors for a A site, Figure 12(b), are the same as the graphene case.
The Hamiltonian is

{

}+ −

− 〉 〈 − +

+ 〉 〈 + 〉 〈 +

∑ 1

,

2 1/ 2 3 1/2

= | , , 1|

| , , | | , , | .

N

m m

m n

m m m m

H t A n B n

t A n B n t A n B n h c

(55)

Now, the energies are

α β β
  

− + −  
  
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β α α
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2

x
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E k n t k n cos k n (57)

Recent Advances in Graphene Research74



and energy dispersion for a N =24 zigzag nanoribbon can be seen in Figure 13, where the edge
states are marked blue and gray lines denotes bulk states. In Figure 14, intrinsic spin‐orbit is
applied with λso =0.05t . The electronic density is very localized near the edges of the nanorib‐
bon, Figure 14(b).

Figure 13. Energy band of bulk‐ (gray lines) and edge‐ (blue lines) states of zigzag nanoribbon with width N =24.

Figure 14. (a) Energy band of zigzag nanoribbons with N =24 and λso =0.05t , and (b) electronic probabilities of A‐

and B‐edge states defined by cross points between edge states and Fermi level E =0.05t , as indicated in (a).

Electronic structure of strained graphene nanoribbon‐For the case of strained graphene nanorib‐
bons, we need to replace the strain‐invariant hopping integrals by the strain‐dependent ones
[52, 83] as described in Section 2.2. Many interesting properties are observed in the optical
conductivity [72] and electronic transport [84, 85] when the uniaxial strain is considering in
the graphene nanoribbons. In the next section, we discuss in detail the effects of uniaxial strain
in the spin‐charge electronic transport and QAH effect.
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3.2. Transport properties of strained graphene nanoribbon

Here, we aim to analyze the electronic transport control in GNR with different terminations
in the QAH phase by means of uniform strain deformations [86]. The electronic transport can
be performed using a two‐terminal device akin to a field electron transistor (FET). QAH phase
can be determined experimentally, by spin‐resolved density of states, that can be accessed by
spatially scanning tunneling microscope (STM) or by scanning tunneling spectroscopy (STS)
[87–89]. To calculate the spin‐resolved conductance, we have implemented the standard
surface Green’s function approach [90, 91]. The GNR device is divided into three regions: left
lead, central conductor, and right lead. The uniaxial strain is applied to either the longitudi‐
nal (θ =0) or the transversal (θ =π / 2). The central conductor is the only region under the
influence of SOC effects and exchange field; it is also connected to semi‐infinite leads by
nearest‐neighbor hopping. To avoid surface mismatch in the case of strained GNR [85], we
have considered that the leads are also strained. Therefore, a perfect atomic matching at the
interface leads/central conductor is achieved. The Green’s function of the device (omitting the
spin indices) is then calculated by

( )η
−

± − − Σ − Σ
1/ ( ) = ,a r

C C L R
E E i H (58)

where a / r  denotes the advanced/retarded Green’s function, E  is the energy (η →0) of the
injected electron (the Fermi energy at a given doping). HC  stands for the Hamiltonian in the
central region, and ΣL /R are the self‐energies that describe the influence of the left/right leads,
Σl = H lC

† gl H lC, where gl  is the Green’s function for the l = L ,R semi‐infinite lead obtained through
an iterative procedure of the tight‐binding Hamiltonian [90], and H lC  couples each lead to the
central region. The spin resolved conductance through the system is given by [86],

σσ σ σσ σ σ σ′ ′ ′ ′
 Γ Γ  

0 , ,
= ,

L r R a

C C
G G Tr (59)

where the trace runs through the lattice sites at the central conductor, G0 = e 2 / h  is the quan‐
tum of conductance per spin, and Γσ

l  are the couplings for the leads, related to the spin‐diagonal
self‐energies by Γ l = i Σl

r −Σl
a  [90].

To study the conductance characteristics in the presence of both Rashba SOC and exchange
field [86], we set the parameters λR=0.1t0, M =0.2t0, and λso=0t0. Notice that with these param‐
eters, the system is in the QAH phase [31]. Nevertheless, if the ISO parameter is different from
zero, there is an upper‐limited value of λso [31, 32], beyond which a new phase characterized
by a vanishing Chern Number C=0 can take place; this phase is the so‐called TRS‐broken QSH
phase [31, 32, 34]. The spin‐resolved conductance Gσσ ′ is shown in Figure 15: for (a) unstrain‐

ed, (b) strained along θ =0, (c) strained along θ =π / 2, and (d) the total conductance ∑σσ ′Gσσ ′

of a ZGNR. Notice that there is a suppression for both the spin conserving and the spin‐flip
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conductance components for either unstrained or strained ZGNR in the energy range
considered. However, these backscattering (transmission dips) at certain precise energies at
the first plateau are different depending on the strain configuration, and a close inspection
shows that conducting channels for non‐spin flip and spin‐flip conductances oscillate.
Depending on the Fermi energy and set parameters, certain conductance components can even
be completely suppressed. This suppression is attributed to the appearance of quasi‐local‐
ized states in the device, which may produce sharp scattering resonances, also known as
resonant backscattering which is a general behavior of quasi‐1D quantum systems [92]. For
higher energies, however, the large number of conducting channels leads to a nonvanishing
transmission, as the channels get mixed along the device and results in the appearance of an
interchannel backscattering leaded by interference effects. Therefore, in the QSH phase
protected by the TRS, nonmagnetic impurities do not cause backscattering on each boun‐
dary, and the spin transport in the edge states is dissipationless at zero temperature.

Figure 15. Effects of strain on spin‐resolved conductance Gσσ ′ of ZGNR with NZ =26 (a)–(c) and AGNR with NA=47

(e)–(g), respectively. Panels (d) and (h) show the total conductance. The parameters used in all panels are λR=0.1t0, λso
=0, and M =0.2t0. Reproduced with permission from Diniz et al. [86]. Copyright (2014), AIP Publishing LLC.

In the QAH phase, however, there is a weak scattering between forward and backward movers,
leading to a low‐dissipation spin transport. At low energy, this interesting strain‐controlla‐
ble behavior of conducting channel suppression might be efficiently used to filter electrical
current of desired spins, in spin filtering devices [86]. In Figure 15(d), we show the total
conductance, which is nearly robust against strains, specially close to the charge neutrality
point, where the deviations due to strain are quite small. In contrast, the conductance of AGNR
shows a drastic modification as one can notice in Figure 15(e)–(h), with the development of a
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transport gap, which is insensitive to the electron spin that is injected and collected in the
device. However, this induced transport gap is dependent upon the direction of the applied
strain, with a larger conduction suppression along θ =0 (red dashed line) with Δg= 0.04 t0, and
Δg= 0.086 t0 while along θ =π / 2, that can be observed in Figure 15(h). Also, the total conduc‐
tance exhibits different plateaus: around 2G0 and approximately G0 in AGNR without and with
strain, respectively, which is one less quantum of conductance available for the electron to be
transmitted along the strained device for energies beyond the transport gap.

Figure 16. (a) Conductance profiles G↑↑ and G↑↓ for 26‐ZGNR (a)–(b) and 47‐AGNR (c)–(d) as function of λR subject‐

ed to different configurations of strain. Panels (e) shows the band gap Δg  of an AGNR as function of strain parameter

ε for θ =0 and θ =π / 2, respectively. (f) Δg  of an AGNR as function of the direction of strain for fixed ε=0.05. Repro‐
duced with permission from Diniz et al. [86]. Copyright [2014], AIP Publishing LLC.

Another remarkable phenomenon is the oscillatory dependence of the spin components of Gσσ ′

on the value of λR [86], which is shown in Figure 16(a)–(d), where the curves correspond to
different topological GNRs and strain setups for E =0.05t0. The same parameters are used as
the Figure 15, except for M . To reveal the effects of Rashba SOC, we set M =0 in the calcula‐
tion. Then, the system is time‐reversal invariant and the conductance components G↑↑ =G↓↓ and
G↑↓ =G↓↑. This oscillatory behavior is reminiscent of the spin field effect transistor (FET) and
has a similar source [93], as the spin precesses as it propagates in the presence of the Rashba
field, acquiring a net phase that is proportional to λR L , where L  is the length of the device.
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Further inspecting the strain‐induced band gap in 47‐AGNR in the presence of SOC and
exchange field interactions, one notices that in Figure 16(e) a similar band gap oscillation
characteristic as reported in a earlier work [84]. In the regime of small strain, the band gap
shows approximately linear response, with increasing values of strain, however, it starts to
oscillate. Further investigation shows that the amplitude and period of the gap oscillation are
tuned by direction of the strain, as shown in Figure 16(e). A specific dependence of trans‐
port gap on the angle of the strain is clearly depicted in Figure 16(f). Notice that the trans‐
port gap is indeed strongly tuned by strain direction. It equals approximately zero at 0.1π,
while it reaches 0.086 t0 at 0.5π.

3.3. Quantum phase transitions in strained graphene nanoribbon

Quantum spin Hall and quantum anomalous Hall (QAH) states have topologically protect‐
ed edge states, where the electron back scattering is forbidden, making these systems good
candidates for electronic devices with dissipationless electronic transport [33, 35, 38, 41]. The
potential possibility to explore the different Quantum Hall phases in strained graphene has
motivated us to study the strain‐related physics at zero magnetic field in graphene nanorib‐
bons [49].

Figure 17. Energy band of ZGNR with intrinsic‐ and Rashba‐SOC terms (a), intrinsic SOC and EX (b), Rashba SOC and
EX (c), and intrinsic‐ and Rashba‐SOCs and EX (d). The Fermi level is assumed to be above zero, as indicated by the
dashed horizontal line, and thus has four intersections with the conduction bands. This gives rise to four edge currents
on the ribbon edges. The following parameters are used: (a) λso =0.06t , λR =0.20t ; (b) λso =0.06t , M =0.20t ; (c)

λR =0.20t , M =0.20t ; (d) λso =0.06t , λR =0.20t , and M =0.20t  for the ZGNR with width W =48. The arrows
represent the major components of spin. Copyright (2015) by the American Physical Society [49].
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If the mirror symmetry about the graphene plane is preserved, then the intrinsic SOC which
opens gaps around Dirac points is the only allowed spin‐dependent term in the Hamiltonian.
Otherwise, if the mirror symmetry is broken, then a Rashba term is allowed, which mixes spin‐
up and spin‐down states around the band crossing points. Besides, Rashba SOC pushes the
valence band up and the conduction band down, reducing the bulk gap. Following Refer‐
ence [45], we present our results for the ZGNR in Figure 17, which shows the effects of intrinsic‐
and Rashba‐SOCs and EX upon the energy band of the ZGNR [49]. Notice in Figure 17(a) that
the interplay between intrinsic‐ and Rashba‐SOCs partially lifts the degeneracies of both bulk‐
and edge‐state, breaks particle‐hole symmetry and pushes the valence band up. In turn, the
presence of the EX breaks the TRS and lifts the Kramer’s degeneracy of electron spin, push‐
ing the spin‐up (spin‐down) bands upward (downward), as shown in Figure 17(b). In strong
contrast with Figure 17(b), the presence of Rashba SOC and EX induces coupling between edge
and bulk states, which significantly modifies the group velocity of edge states, as shown in
Figure 17(c). The combined effects of intrinsic, Rashba SOCs and EX are shown in Figure 17(d),
which are in agreement with results reported in Reference [45] (see for instance Figure 2).
Notice that the Fermi level enters into the valence band and the energies of some edge modes
are smaller than the valence band maximum.

The intrinsic SOC can be strongly enhanced by impurity (adatom) coverage on the surface of
graphene, which produces strong lattice distortions [59]. In this context, one may ask how the
quantum phase transition in a graphene ribbon changes as the intrinsic SOC is tuned [49].
Following the discussion of Reference [45], the effects of strain fields are shown in Figure 18
(with a similar representation to the one introduced in Reference [45]) with parameters W=48,
λR =0.20t, M =0.20t , and uniaxial strain ε =0.10 along θ =0. The left panel of Figure 18 shows the
effects of intrinsic SOC on the energy spectrum of a ZGNR. The Fermi level is set at EF =0.05t .
The corresponding edge state probability distributions across the width of the nanoribbon, for
each of the four edge states indicated by A, B, C, and D, are shown in the middle panel.
Schematic diagrams of charge current distributions on the edges of ZGNR are illustrated in
the right panel. To determine the edge current direction, I = − | e |vx (indicated by the arrow),
the electron group velocity vx =∂E(k ) / ∂kx has been calculated [45]. In the case of weak intrinsic
SOC, at the ribbon boundaries, the edge states pair A and D would form a single handed
loop (in the sense that the turning point is at infinity along the ribbon length), meanwhile there
is the formation of another loop with opposite handedness, which is formed by the edge states
pair B and C. Both edge states A and B, consequently IA and IB, are located at the same edge,
as indicated in Figure 18(c). Thus, the chirality of the current loop due to the A and D edge

states would produce a Chern number of , which is the same as that of current loop
owing to B and C edge states. Since the system is akin to two integer quantum Hall subsys‐

tems, its Chern number( ) is equal to , i.e.,  or

, with . Therefore, the ZGNR with a weak intrinsic SOC is in
the QAH phase. For a ZGNR with strong intrinsic SOC, however, one can notice that the edge
states pair A and C are located on the same edge, whereas the B and D edge states are in the
opposite edge, as shown in Figure 18(f). Due to the handedness of the current loop of edge
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states A and D, the Chern number would give a contribution of , and the pair B and C,

which has an opposite handedness, produces a Chern number of . Since the ZGNR is
composed of these two integer quantum Hall subsystems, its Chern number  is obtained by

, i.e., . Therefore, the GNR is in the TRS broken QSH phase.

Figure 18. Energy spectrum of ZGNR with W =48, λR =0.20t , M =0.20t , ε =0.10, and θ =0, for (a) λso =0.035t
and (d) λso =0.055t , respectively. The Fermi level E =0.05t  corresponds to four different edge states, as indicated by

A, B, C, and D. The corresponding probability distributions |ψ|2  across the width of the ribbon, and diagrams of
charge current distributions are shown in the middle (b)–(e) and right panels (c)–(f), respectively. The arrows indicate
the current flux. Copyright (2015) by the American Physical Society [49].

To understand the QPT and show intuitively how it takes place [49], we follow Reference [45]
and introduce the average value of the position y n, as a parameter to label the angular
momentum of the current [49]. It is defined as: y n =∑i yi |φn(yi)| 2, where n represents the
edge states at the Fermi level and i is the site index along the width of ribbon. We chose the
origin of y axis at the lower boundary of the ribbon. Figure 19(a) shows the average values
y n of edge states as a function of λso in the ribbon with the width W =48, λR =0.20t, M =0.20t ,

ε =0.10, and θ =0, where n = A,B,C , and D, respectively. The direction and magnitude of a group
velocity are indicated by the direction and length of an arrow, respectively. When the intrinsic
SOC is vanishing, the Rashba SOC and EX are dominant, A and B are on the same boundary
of the ribbon, and thus both y A and y B →0. The edge states C and D also follow the same
behavior, but are localized at the other edge of the ribbon, thus y C  and y D →W . The system
is in the QAH phase. When the λso increases, however, three different topological phases are
found. In the regime of small λso (0.03t <λso <0.04t), the positions of the edge states are only very
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slightly shifted. With increasing λso, the states A and D become delocalized, swiftly moving to
the center of the ribbon from different boundaries owing to the edge‐ and bulk‐states cou‐
pling. In the regime of large λso (λso >0.05), the locations of state A and D have been ex‐
changed. Since the group velocity of state A is opposite to D, the exchange of their locations
results in a change of chirality. Therefore, the system is in the QSH phase. It is worthy to point
out that owing to the finite‐size (finite‐width) effect, the edge states are not exactly localized
at the two boundaries. Remarkably, a similar behavior is also presented in Figure 19(b) in
which y  versus strain is plotted. At first glance, it seems to be hard to understand this exotic
behavior. But, recalling the discussion of phase transition in bulk graphene, one can logical‐
ly speculate that this is a manifestation of strain‐induced QPT between QSH and QAH states
in the ZGNR. This strain‐induced QSH state shares many emergent properties similar to the
usual zero‐strain QSH effect. We notice that with realistic values for uniaxial strain the critical
value for the spin‐orbit coupling is reduced by a factor between 10% and 20%. Thus, the
combination of strain and appropriate substrates shows a promising direction to realize the
phase transition in current settings.

Figure 19. (a) Average values y  of edge states versus λso in ZGNR, subjected to a strain with ε =0.10 and θ =0. (b)

y  as a function of strain with θ =0 for λso =0.05t . W =48, λR =0.20t , and M =0.20t  are used in the computa‐

tions. Vertical axis is the Fermi velocity VF  modulus. The arrows point in the directions of band velocities and their

lengths present the magnitudes of VF . Copyright (2015) by the American Physical Society [49].

To seek the controllable topological QPTs induced either by strain (EX), or intrinsic SOC, or
any of their combinations [49], the phase diagrams in which the phase is characterized by the
difference in the average value of position y C  and y A, defined as y AC  = y C − y A, are
constructed, as shown in Figure 20. Figure 20(a) and (b) plots the phase diagrams of ε versus
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λso for θ =0 and θ =π / 2, respectively. It is trivial to notice that if y AC≅0, the edge states A and
C are localized at the same boundary, corresponding to a QSH phase, as indicated by blue.
Otherwise, if y AC≅W , the system is in the QAH phase, as marked by red. The other values
of y AC  correspond to delocalized state A. Notice that both strength and direction of the strain
change considerably the phase diagram. In the regime of small intrinsic SOC, the GNR lies in
the QAH state. The critical λso

c  at which topological QPT depends strongly on both the strength
and direction of the strain. The larger the strain, the smaller the λso

c  is required to reach the
QSH state. In addition, the strain drives the GNR from the QAH into QSH states for a given
λso

c . It is also noted that in the case of θ =π / 2, when the λso
c  changes in the boundary between

the QSH and QAH states, the correspondent critical value of ε varies faster than that for
θ =0.

Figure 20. Phase diagrams (strain vs. intrinsic SOC) of a ribbon with W =48, λR =0.20t , and M =0.20t , character‐

ized by a difference in the average value of position between mode A and C, defined as y AC  =  y C  -  y A, for θ =0
(a) and θ =π / 2 (b), respectively. Copyright (2015) by the American Physical Society [49].

The underlying physics of the strain tuned phase diagram is as follows. It is well established
that uniaxial mechanical strain does not break the sublattice symmetry, but rather deforms the
Brillouin zone, such as, the Dirac cones located in graphene at points K  (K ′) being shifted in
the opposite directions [52, 83]. This is reminiscent of the effect of pseudomagnetic field BS

induced by the strain on charge carriers, i.e., accumulating charge in place where the BS  is
maximum. Because the BS  does not break TRS, the strain will not have any direct effect on the
spin degrees of freedom of the electrons, even though it couples with sublattice pseudospin.
Therefore, at first glance, it seems that the strain only induces a renormalization of the energy
scales. Actually, this is not true for graphene with SOC. Since SOC couples the spin and the
momentum degrees of freedom of the carriers, BS  could affect real spin of an electron through
the SOC. Therefore, a strong pseudomagnetic field should lead to Landau quantization and a
QSH state due to opposite signs of BS  for electrons in valleys K  (K ′). In this context, the strain
enhances the carrier localization and pushes the edge states much closer to the boundaries of
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the ribbon. Hence, the QSH state could be stabilized by the strain. Finally, it is worthwhile to
argue that since inter‐valley scattering requires a large momentum transfer [94], it is strong‐
ly suppressed in wide ZGNRs in which we are interested.

4. Conclusion

In summary, we have performed a systematic investigation of the effects of uniaxial strains,
exchange field, staggered sublattice potential, and SOC on the electronic and transport
properties of graphene and graphene nanoribbons. We have employed the tight‐binding
approximation, and Green’s function formalism in order to fully describe the electronic and
transport properties of these interesting nanostructures.

Using an effective low energy approximation, we were able to describe the Berry curvature
and the associated Chern numbers for different orientation and uniaxial strain strength, as
function of exchange field interaction. The QSH–QAH phase transition associated to the
tunability of Chern number for the bulk graphene displays an interesting behavior accord‐
ing to specific directions of strains: an increase in the critical exchange field Mc for the QAHE
phase transition for θ=π / 2 as the strain modulus is enhanced, in contrast to the θ =0, which
shows a reduction (above a limiting strain modulus of approximately ε =0.078) in the critical
exchange field Mc for the QAHE phase [32]. The investigated spin‐resolved electronic transport
and LDOS of GNR devices have demonstrate that it is possible to achieve a total electron
transmission suppression of specific spin specie, which can be further tailored by uniaxial
tensile strain on specific directions [86]. In addition, we have implemented a formalism to
describe the zero‐field topological QPT between QSH and QAH states in GNRs in the presence
of internal EX, uniaxial strain, and intrinsic and Rashba SOCs [49].

Our results demonstrated in this Chapter offer the prospect to efficiently manipulate the
electronic structure, transport properties, and consequently the QAHE by strain engineering
of the graphene. We also envision that our work can be extended to other layered materials
(for instance, transition metal dichalcogenides), with a great potential application on novel
electronic devices with the focus on dissipationless charge current.
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