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1. Introduction

Over the past 50 decades, porous materials, from zeolites, coordination polymers to metal
organic frameworks (MOFs), have gained considerable attention. The interesting feature is
their porosity that allows the diffusion of guest molecules into the bulk structure. The shape
and size of pores govern the shape and size selectivity of the guests to be incorporated. MOFs
as defined by Yaghi et al. are porous structures constructed from the coordinative bonding
between metal ions and organic linkers or bridging ligands (Figure 1) [1]. MOFs are formed
by anchoring metal‐containing units or secondary‐building units (SBUs) with organic linkers,
by coordination,  yielding open frameworks  that  show exceptional  feature  of  permanent
porosity,  stable  framework,  enormous surface  area,  and pore  volume.  The porosity  is  a
consequence of long organic linkers that confer large storage space and numerous adsorp‐
tion sites within MOFs. They also bear the ability to systematically vary and functionalize their
pore structure [2, 3]. In the history of MOFs, a benchmark was represented by the synthesis
of MOF‐5 (Zn4O(bdc)3, bdc = terephthalate) and HKUST‐1 (Cu3(btc)2, btc = 1,3,5‐benzenetri‐
carboxylate) with high porosity and low pressure gas sorption, followed by the develop‐
ment  of  chromium(III)  terephthalate  (MIL‐101)  with  high  chemical  stability,  MOF‐74
(Zn2(dhbdc),  dhbdc = 2,5‐dihydroxy‐1,4‐benzenedicarboxylate)  with  low  pressure  adsorp‐
tion of CO2, and several isostructural analogs of Mg‐MOF‐74 termed as IRMOF‐74‐I to IRMOF‐
74‐XI,  with  large  pore  apertures  to  accommodate  protein,  NU‐110E  with  acetylene‐
expanded hexatopic linker, having material highest experimental Brunauer‐Emmett‐Teller
(BET) surface area of any porous material reported to date (7140 m2 g-1) Some examples of
MOFs and their applications are given in Table 1 [1–15].
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and reproduction in any medium, provided the original work is properly cited.



Figure 1. Structure of MOF.

Application MOF  Metal  Ligand Year Author Rf

Drug delivery MIL‐101 [Cr3O(OH,F,H2O)3(1,4‐bdc)3

and MIL‐100
Cr  1,4‐benzenedicarboxylate

moieties (bdc) or H3btc:
Benzene‐1,3,5‐tricarboxylate

2006 Patricia
Horcajada et al.
[4]

Methane
Storage

MOF‐5 Zn4(1,4‐bdc)3 Zn bdc 2002 Li and
Eddaoudi, et al.
[5, 6]

Adsorption
and storage

HKUST( Hong Kong University of
Science and Technology)‐1
Cu2(H2O)2(CO2)4

Cu H3btc 2006 Rowsell and
Yaghi [7]

Adsorption
and storage

IRMOF‐9 Zn4O(bpdc)3 Zn 4,4′‐biphenyldicarboxylate
(bpdc)

2006 Rowsell and
Yaghi [7]

Adsorption
and storage

MOF‐74, Zn2(C8H2O6) Zn 2,5‐dihydroxybenzene‐1,4‐
dicarboxylic acid

2006 Rowsell and
Yaghi [7]

– (In) MIL‐68‐NH2 or IHM‐2 In bdc‐NH2: 2‐
aminoterephthalates

2011 Savonnet and
Farrusseng [8]

Drug
delivery

metal–organic Zn(bix) spheres with
encapsulated DOX [DOX/Zn(bix)],
SN‐38 [SN‐38/Zn(bix)], CPT [CPT/
Zn(bix)] and DAU [DAU/Zn(bix)]
Doxorubicin (DOX), SN‐38,
camptothecin (CPT) and daunomycin
(DAU) 

Zn Bix: 1,4-bis(imidazol-1-
ylmethyl)benzene

2010 Inhar Imaz et al.
[9]
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Application MOF  Metal  Ligand Year Author Rf

Soft
coupling–
deprotection
sequence

(In) MIL‐68‐NH‐ProFmoc and (In)
MIL‐68‐NH‐Ala‐FmocIn
*fluorenylmethyloxycarbonyl group
(Fmoc), a base‐label protecting group
for amines

In Amino acid such as L‐proline
(Pro‐OH) and D‐alanine
(Ala‐OH)

2011 Jerome Canivet
et al. [10]

Antibacterial Cu‐BTC(MOF‐199) Cu H3btc 2014 Rodrıguez et al.
[11]

Highly potent
bacteriocidal
activity

Co‐TDM Co H8 tdm: tetrakis [(3,5‐
dicarboxyphenyl)‐
oxamethyl] methane

2012 Wenjuan
Zhuang et al.
[12]

Delivery of
nitric oxide

MIL‐100(Fe or Cr)
and MIL‐127(Fe)

Fe, Cr or
Fe

tricarboxylate or
tetracarboxylate

2014 Eubank et al.
[13]

Antibacterial Ag2(O‐IPA)(H2O)·(H3O) and
Ag5(PYDC)2(OH)

Ag HO‐H2ipa = 5‐
hydroxyisophthalic acid and
H2pydc = pyridine‐3, 5‐
dicarboxylic acid

2014 Xinyi Lu et al.
[14]

Adsorption of
CO2 over N2

Mn3(HCOO)6 ·DMF Mn 3‐nitrophthalic acid (H2npta)
and 4,4′‐bipyridine (4,4′‐
bipy)

2014 Ying‐Ping Zhao
et al. [15]

Table 1. Some examples of MOFs and their applications.

2. Chemistry

MOFs consist of both inorganic and organic units. The organic units (linkers/bridging ligands)
consist of carboxylates, or anions, such as phosphonate, sulfonate, and heterocyclic com‐
pounds (Figures 2 and 3). The inorganic units are the metal ions or clusters termed as SBUs.
Its geometry is determined by the coordination number, coordination geometry of the metal
ions, and the nature of the functional groups. A variety of SBU geometries with different
number of points of extension such as octahedron (six points), trigonal prism (six points),
square paddle‐wheel (four points), and triangle (three points) have been observed in MOF
structures (Figure 4). In principle, a bridging ligand (ditopic, tritopic, tetratopic, or multitop‐
ic linkers) reacts with a metal ion with more than one vacant or labile site. The final frame‐
work topology of MOF is governed by both SBU connectors and organic ligand linkers.
Depending upon the nature of the system used, infinite‐extended polymeric or discrete‐closed
oligomeric structures can arise (Figure 4). Metal‐containing units and organic linkers can be
varied resulting in a variety of MOFs, tailored for different applications [3]. MOFs with large
spaces may result in the formation of interpenetrating structures. Thus, it is very important to
inhibit interpenetration by carefully choosing the organic linkers. The pore size is allowed to
be tuned and spatial cavity arrangement be controlled, by judicious selection of metal centers
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and organic ligands and also by adjusting their conditions of synthesis. The large porosity
allows their applications in adsorption and separation of gaseous molecules, catalysis,
microelectronics, optics, sensing applications, bioreactors, drug delivery, and others. MOFs
have pore openings up to 2‐nm size, which can accommodate small molecules. However, the
pore openings rarely allow the inclusion of large molecules (e.g., proteins and enzymes).
Attempts have been taken to increase the pore size to mesopore regime (pore size of 2–50 nm)
and to decrease the crystal size to the nanometer scale. The large pore aperture benefits surface
modification with a number of functionalities, without sacrificing the porosity of MOFs, also
allowing the encapsulation of large molecule MOFs. The synthesis of MOFs involves reac‐
tion conditions and simple methods such as solvothermal, ionothermal, diffusion, micro‐
wave methods, ultrasound‐assisted, template‐directed syntheses, and others [2, 3].

An interesting and significant advancement in the field is to combine MOFs with functional
nanoparticles, yielding new nanocomposite materials with unparalleled properties and
performance. Nano‐MOFs are advantageous over conventional nanomedicines owing to their
structural and chemical diversity, high loading capacity, and biodegradability. The final
properties are dependent on the particle composition, size, and morphology. These can be
obtained as either crystalline or amorphous materials. As soft porous crystals, framework
flexibility (triggered by an external stimulus, e.g., mechanical stress, temperature, light
interactions) may be shown by MOFs, also in the absence of guests or with no involvement of
adsorption and desorption [1–3, 16].

Figure 2. Some examples of organic ligands with carboxylic functionality used for the preparation of MOFs.

Metal-Organic Frameworks6



Figure 3. Some examples of ligands containing nitrogen, sulfur, phosphorous and heterocycles used for the prepara‐
tion of MOFs.

Figure 4. MOFs resulting from different metal nodes and bridging ligands.
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3. Metal biomolecule frameworks (BioMOFs)

Biomolecules are naturally and abundantly available. They are cost‐effective, rigid, and flexible
with different coordination sites, rendering structurally diverse, biologically compatible
MOFs. MOFs have also been synthesized from nontoxic endogenous cations (such as Ca, Mg,
Fe, and Zn) and ligands consisting of naturally occurring derivatives or biomolecules [17].
These BioMOFs are usually biocompatible and suitable for biomedical applications [17–47].
Such combinations of natural ligands with endogenous cations are also associated with several
therapeutic effects (anti‐allergic, anti‐inflammatory, antimicrobial, anticarcinogenic activi‐
ties). Table 2 shows some examples of BioMOFs and their applications [18–47]. Such biologi‐
cally and environmentally compatible MOFs are designed and constructed based on specific
composition criteria governed by judiciously selecting metal ions and organic linkers as
building blocks, which are nontoxic and biologically and environmentally compatible.
Biomolecules such as amino acids, peptides, proteins, nucleobases, carbohydrates, and other
natural products such as cyclodextrins, porphines, and some carboxylic acids (Figure 5) serve
as emerging building blocks for the design and construction of metal‐biomolecule frame‐
works with novel and interesting properties and applications that cannot be obtained through
the use of traditional organic linkers [17, 43, 44, 48, 49].

Aplication BioMOF Metal Ligand Year  AuthorRf

Ar and CH4 sorption [Cu(trans‐fum)] Cu Fum:Fumaric acid 2001 K. Seki et al
[18]

Reversible H2O
sorption/desorption

[Ni7(suc)6(OH)2

(H2O)2·2H2O
Ni Suc: Succinic

acid
2002 Forster et al.

[19]

– [Ni7(suc)4(OH)6

(H2O)3]·7H2O
Ni Suc 2003 Guillou et al.

[20]

Sorption of more
than 30 kinds of
guests (e.g. DMF,
benzene,etc.);
structural change

[Mn3(HCOO)6]
·(CH3OH)
·(H2O)

Mn Formic acid 2004 Wang et al.
[21]

Selective CO2

and H2 sorption
Mn(HCOO)2·1/3
(C4H8O2)

Mn Formic
acid

2004 Dybtsev et al.
[22]

Adsorption Fe3O(MeOH)3(fum)3

(CO2CH3)]·4.5MeOH
Fe Fum 2004 Serre et al.

[23]

1,3‐Butanediol
sorption

[Ni2O(L‐Asp)
H2O]·4H2O

Ni Amino acid L‐Asp:L‐
aspartic acid

2004 Anokhina et al.
[24]

Enantioselective
separation and
catalytic

Zn2(bdc)
(L‐lac)(DMF)

Zn bdc: 1,4‐
benzendicarboxylic
acid and L‐
lac:Lactic acid

2006 Dybtsev et al.
[25]

Metal-Organic Frameworks8



Aplication BioMOF Metal Ligand Year  AuthorRf

CO2 sorption [Ni2(L‐Asp)2

(4,4′‐bipy)]
·2H2O

Ni L‐Asp and
4,4′‐bipy : 1,2‐bis
(4‐pyridyl)ethane

2006 Vaidhyanathan
et al. [26]

H2 sorption Co2(L‐Asp)2

(4,4′‐bipy)]·2H2O
Co L‐Asp and 4,4′

‐bipy
2008 Zhu et al.

[27]

Heterogeneous
asymmetric
catalysts for
the methanolysis
of rac‐propylene
oxide

Ni2(L‐Asp)2

(4,4′‐bipy)
·(HCl)1.8(MeOH)

Ni L‐Asp and 4,
4′‐bipy

2008 Ingleson
et al. [28]

Heterogeneous
asymmetric
catalysts for
the methanolysis
of rac‐propylene
oxide

Cu2(L‐Asp)2

(bpe)·(HCl)2·
(H2O)2

Cu L‐Asp
and bpe: 1,2‐bis(4‐
pyridyl)ethane

2008 Ingleson
et al. [28]

Cation exchange
capabilities,
including
cationic drugs
and lanthanide
ions

Zn8(Ade)4(bpdc)6O·2
Me2NH2·
8DMF·11H2O

Zn Nucleobases
Adenine:Ade
and bpdc:
biphenyldicarboxylate

2009 An et al.
[29]

Selective
CO2. sorption

Co2(Ade)2(CO2CH3)2

·2DMF· 0.5H2O
Co Ade 2010 An et al.

[30]

Drug delivery
and imaging

Fe3O(MeOH)3(fumarate)3‐
(CO2CH3)]·4.5
MeOH and [Fe3O(MeOH)
(C6H4O8)3Cl]·6MeOH

Fumarate and C6H4O8

is galactarate
2010 Horcajada

et al. [31]

Therapeutic agent BioMIL-1 Fe Nicotinic acid (pyridine-3-
carboxylic acid, also called
niacin or vitamin B3)

2010 Miller et al.
[32]

Reversible
flexible structure;
CO2, MeOH and
H2O sorption

[Zn(GlyAla)2]·(solvent) Zn Peptide,
Glycine‐adenine

2010 Rabone et al.
[33]

(γ‐CD)
(KOH)2

K Saccharides
γ ‐CD: cyclodextrins

2010 Smaldone et al.
[35]

Inclusion of
several molecules
(e.g. Rhodamine B,

(γ‐CD)
(RbOH)2

Rb γ‐CD
γ‐CD is a (chiral) cyclic
oligosaccharide

2010 Smaldone et al.
[34]
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Aplication BioMOF Metal Ligand Year  AuthorRf

4‐phenylazoplenol,etc.) composed of
eightR‐1,4‐
linkedD‐
glucopyranosyl
(R‐1,4‐D‐Glup)

Highly selective
adsorption of CO2

CD‐MOF‐2 Rb γ‐CD 2011 Jeremiah J.
Gassensmith et al.
[35]

Photostable O2

sensor
Zn8(Ade)4(bpdc)6·
O·2Me2NH2] loaded
with lanthanide
cations( Tb(III),
Sm(III), Eu(III)
and Yb(III))

Zn and
lanthanide

Ade and bpdc 2011 An et al.
[36]

– M(II/III)
Gallates

Fe, Mn, Co
and Ni

H4gal: gallic
acid

2011 Saines et al.
[37]

Porous α‐CD‐MCF Rb α‐CD
R‐cyclodextrin
(R‐CD),
comprised of
sixR‐1,4‐
D‐Glupresidues
portrayed in
their stable
4C1 conformations

2012 Gassensmith
et al. [38]

Adsorption CD‐MOF‐1
and CD‐MOF‐2
CD‐MOF‐3

K, Rb and
Cs

γ‐CD 2012 Forgan et al.
[39]

Drug storage
and release
or for the
immobilization
and organization
of large biomolecules

Bio‐MOF‐100 Zn Ade 2012 Jihyun An
et al. [40]

– MIL‐151 to ‐154 Zr H4gal 2014 Cooper et al.
[41]

Antibacterial BioMIL‐5 Zn AzA: azelaic
acid

2014 Tamames‐Tabar
et al. [42]

Antioxidant
carrier

Mg(H4gal) Mg H4gal 2015 Cooper et al.
[43]

Inclusion and CD‐MOF‐1 Na β‐CD: 2015 Lu et al.

Metal-Organic Frameworks10



Aplication BioMOF Metal Ligand Year  AuthorRf

loading the
drug molecules

cyclodextrins [44]

Electrochemical
nitrite
detection

MOF‐525 Zr H4tcpp: meso‐tetra
(4‐carboxyphenyl)
porphine

2015 Kung et al.
[45]

Ammonia uptake Al‐PMOF Al H4tcpp 2015 Wilcox et al.
[46]

Highly active
anti‐diabetic
activity

[Zn(ain)(atz)]n Zn Hatz : 5‐
aminotetrazole
and Hain: 2‐
amino‐4‐isonicotinic

2016 David Briones
et al. [47]

Table 2. Some examples of BioMOFs and their applications.

Figure 5. Examples of organic linkers used for the synthesis of BioMOFs.
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4. Summary

MOFs find versatile applications as drug‐delivery agents, sensors, storage and separation
systems, catalysts, and others. Nontoxic nano‐MOFs bearing tailored cores and surfaces can
be used as nanodrug carriers for antitumor and anti‐HIV drugs (biomedicine, nontoxic, drug).
MOFs with biomolecules as organic linkers are still in cradle stage in contrast to their
counterparts bearing traditional organic linkers. However, biomolecules confer biological
compatibility and easy recyclability to MOFs. They also confer unique characteristics such as
chirality and specific recognition, self‐assembly characteristic, separation, ion exchange, and
catalytic properties, also rendering bioinspired structures. In future, a better understanding
and control of chemistry and design of MOFs may provide plethora of opportunities to‐
wards their structures, properties, and applications in different fields.
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