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Abstract

Land-atmosphere interaction in the southwestern Karst region of China was investi-
gated from two aspects: response of land cover to climate change and climatic effects of
Karst rocky desertification. The first part focused on the temporal-spatial variation of
growing-season normalized difference vegetation index (NDVI) and its relationship
with  climate  variables.  The  relationships  between  growing-season  NDVI  with
temperature and precipitation were both positive, indicating its limiting role on the
distribution and dynamic of vegetation cover in the study area. The second part was
designed  to  investigate  whether  the  changed  vegetation  cover  and  land  surface
processes in the Karst regions was capable of modifying the summer climate simulation
over East  Asia.  It  was shown that  land desertification resulted in the reduced net
radiation and evaporation in the degraded areas. The East Asian summer monsoon was
weakened after land degradation. Such circulation differences favored the increase in
moisture flux and clouds, and thereby causing more precipitation in southeast coastal
areas. Based on the above findings, it can be concluded that vegetation cover in Karst
region was sensitive to climate change at larger scale, and on the other hand, there was
significant feedback of vegetation cover change to regional climate by altering water
and energy balance.

Keywords: Karst rocky desertification, climate change, land cover, southwest China,
land-atmosphere interaction
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1. Introduction

During the past  decades,  the vegetation-climate interaction has been a research focus of
meteorology, climatology, geography, and ecology. The contents mainly include the impact of
climate change on ecosystem and the feedback of vegetation cover change to atmosphere.
Investigation on the correlation between vegetation variation and climate change and its
influencing mechanisms are  the  basis  for  the  studies  on climate  change adaptation and
mitigation.

The response of terrestrial ecosystem to climate change, a complex issue in the field of global
change, has been focused on in the last 30 years [1]. Vegetation cover has been proven to be
governed by climatic factors, such as precipitation, temperature, solar radiation, and CO2

concentration. Therefore, variation in vegetation and its relationship with climatic factors
reflected the sensitivity and vulnerability of the ecosystem to climate change (i.e., the respond-
ing processes) [2]. In many studies, the normalized difference vegetation index (NDVI) was
selected to detect the impact of climate change on vegetation activity in Eurasia, [3–5].
Although the temperature increase was detected to dominate the vegetation cover and its
dynamic in the northwestern China, western China, and the Tibetan Plateau, the impact of
precipitation in the arid and semiarid regions may be more significant. The complicated and
spatial heterogeneous effects of climate change on NDVI indicate the need to conduct further
investigation at regional scales. Recently, in order to make clear the role of vegetation cover in
the regional climate change, several studies on the feedback of land cover to atmosphere were
conducted, especially after 1990s [6]. Land cover change (LCC) was documented as important
as atmospheric circulation and solar orbit perturbations in climate change [7]. On the other
hand, the feedback is regional-dependent due to the complicated climate and LCC in different
regions.

The Karst region in the southwest China presents the transformation from vegetation covered
landscape to exposed basement rocks, which was defined as the Karst rock desertification
(KRD). In this region, the natural ecosystem is vulnerable while the human disturbance is
severe. Earlier studies mainly emphasized the impact of land use change on vegetation cover
[8–10], lacking consideration of climate change impacts at large scales. Furthermore, it is
unknown the climatic effects of land cover change in the Karst region, especially land degra-
dation. Therefore, in this chapter, the southwestern Karst region of China was selected to
conduct land-atmosphere interactions research.

2. Study area

The southwestern Karst region of China, at 101°73'–112°44'E and 21°26'–29°25'N, and the
Guizhou Karst Plateau, in the center of the southwestern Karst region (Figure 1), were selected
to conduct research of climatic impacts on vegetation cover and climatic effects of vegetation
degradation, respectively. They are located in the subtropical/tropical monsoon climate zone
with annual precipitation of above 900 mm. The temperature and precipitation present great
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difference in spatial patterns, because of the typical topographical features with widely
distributed mountains. Besides the Guizhou Karst Plateau, the southwestern Karst region,
approximately 5.5 × 106 km2, includes Guangxi Zhuang Autonomous Region (GX) and eastern
part of Yunnan Province (YN).

Figure 1. Location of the southwestern Karst region of China and the Guizhou Province of China.

There are six vegetation types in the study area, including broadleaf forest, coniferous forest,
shrub, grass, meadow, and cultural vegetation, with shrub covering the largest area. Because
of the widely distributing bare limestone and the unsuitable land use since 1950s, KRD covers
over 20% of the total area with the desertification rate of 2.5 × 104 km2 per year, and thus has
become the most serious environmental problem in the study area. Rocky desertification in
GKP exhibits three characteristics of severe degree, large area and high risk. However, litter
research was carried out to assess the long-term vegetation dynamics and its influence on
regional climate change.
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3. Materials and methods

3.1. Statistical methods

3.1.1. Trend analysis

The NDVI trend from 1982 to 2013 at pixel scale was estimated using the ordinary least squares
(OLS) based on the ArcGIS 10.1 platform:
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where θ is the regression slope and n represents the study year during the research period.
The positive value of θ means increasing NDVI.

3.1.2. Mann-Kendall (MK) test

Mann-Kendall analysis, applied as a nonparametric, rank-based method for evaluating trends
in time-series data [11], was used to detect the changing trend because it is known as more
resilient to outliers. A rank sequence (Sk) for time series was built:
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Under the assumption of random and independent time series, the statistic Z is defined:
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Moreover, Z1 = 0, E (Sk) and Var (Sk) is the mathematical expectation and variance, respectively:
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The positive Zk value means the trend is increasing. Compared Zk with Zα, the result of |Zk| >
Zα (Z0.05 = 1.96) means the trend is statistically significant.

3.1.3. Ordinary linear square

In order to compare the relative importance of temperature and precipitation for NDVI, the
multivariate regression and the standardized coefficients were applied together. The higher
standardized values mean important roles. The MATLAB 8.1 was used to establish multivariate
linear model:

0 1 2 PrNDVI b b Temperature b ecipitation e= + ´ + ´ + (7)

where b0, b1, and b2 are the regression parameters, while ε is the regression residual. Because
of the different range for values of temperature and precipitation, it required normalization to
compare the relative importance of climatic factors in the NDVI variations:
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3.1.4. Geographically weighted regression (GWR)

The GWR analysis, coupled in ArcGIS 10.1, was conducted to reveal the spatial variations in
relationships between NDVI and climatic variables. Both the spatial distribution and the
dynamics of NDVI were considered by the GWR model. GWR extends the traditional OLS to
consider the spatial heterogeneity in climate-vegetation correlations by assigning weight
values [12]:
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where yi, xik, and εi, represent the dependent variable, the independent variables, and the
random error term at location i, respectively. Note that (µi, νi) expresses the coordinate location
of the ith point, k denotes the independent variable number. β0 and βk are the regression
parameters at location i.

The regression coefficients were estimated by:

1( , ) ( ( , ) ) ( , )T T
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β is the unbiased estimate of the regression coefficient. W is the weighting matrix, and X and
Y are matrices for independent and dependent variables, respectively. The kernel function,
used to determine the weight, was performed as the exponential distance decay:
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ωij expresses the weight of observation j for location i, dij represents the Euclidean distance
between points i and j, and b is the kernel bandwidth.

3.2. WRF climate model and experimental design

The WRF-ARW was developed as the next generation for regional climate model. It includes
different parameterization schemes for longwave and shortwave radiation, cloud microphy-
sics, cumulus, and land surface processes. The simplified simple biosphere model (SSiB),
coupled with WRF model, was selected to simulate land surface energy balance. According to
the SSiB model description, there are 12 types of vegetation cover, while the vegetation and
soil parameters were set for every types. Defining different vegetation cover types in this study
enabled investigation of the impact of land degradation and Karst rocky desertification using
the WRF-SSiB model. The domain for WRF model was set as follows: dimensions of 196 × 154
horizontal grid points with center at 35°N and 110°E. In this domain, the influencing factors
for East Asian summer monsoon can be included, for example, the upper level westerly jet
(ULJ) and low-level jet (LLJ), the Bay of Bengal and the southeast trade wind, and so on [13].
The WRF downscaling ability was assessed by comparing the simulations with different
physical schemes (Table 1), and the optimal combination was concluded from the assessment.
For the execution of the WRF, we used the NCEP DOE Reanalysis-2 [14], hereafter NCEP R-2,
at 6-h intervals to provide initial conditions and lateral boundary conditions.

Two experiments were done. One was the Case C, using the original SSiB vegetation map (as
shown in Figure 2a), the other was Case D with the degraded land cover types (Figure 2b).
The degraded types were decided based on the spatial pattern of different rocky desertification
degrees [15]. For example, if the deserted areas accounted more than 30% of the corresponding
counties, the SSiB vegetation was modified to bare soil (type 11 in SSiB model). The type 9
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(broadleaf shrubs with bare soil) was used to replace original vegetation types in areas
described as desert and potential desert areas larger than 45% of the counties and smaller than
30% of the counties, respectively. Based on the reset of vegetation cover types, two vegetation
maps were used in WRF model, and was further used to conduct Case C and Case D.

Cases Microphysics Long-wave radiation Short-wave radiation Factors R Bias RMSE

1 WSM 3 RRTM MM5(Dudhia) Precipitation 0.70 1.68 4.07

Temperature 0.89 3.48 4.65

2 Kessler RRTM MM5(Dudhia) Precipitation 0.37 1.02 5.50

3 Purdue Lin RRTM MM5(Dudhia) Precipitation 0.65 2.64 6.28

4 WSM5 RRTM MM5(Dudhia) Precipitation 0.67 2.84 6.58

5 Ferrier RRTM MM5(Dudhia) Precipitation 0.66 2.81 6.30

6 WSM 3 CAM CAM Precipitation 0.65 1.91 4.33

Temperature 0.88 2.97 4.08

7 WSM 3 RRTMG RRTMG Precipitation 0.67 3.04 5.41

Temperature 0.89 2.24 3.65

R, correlation coefficient; RMSE: root mean square error.

Table 1. Descriptive statistics of precipitation and temperature from WRF/SSiB with different microphysics and
radiation schemes for June 2000 over 18°-52°N, 86°-136°E.

Figure 2. Potential LCC based on the spatial pattern of KRD in GKP. (a) The percentage of areas with KRD for counties.
(b) SSiB vegetation map for GKP and vegetation cover conversion.
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4. Results and discussion

4.1. Variations in growing-season NDVI

As shown in Figure 3, the rate of 0.0015/year during 1982–2013 was estimated for the growing-
season NDVI trend in the Karst region of southwest China. The maximum value can be found
in 2009 with significant variations between different years. It is indicated in Figure 3(b) that
the year of 1994 was a tipping point, which means that there were two states before and after
this year for the NDVI anomaly. We observed decreasing trend for some years, although the
overall trend was increasing. Furthermore, the M-K trend test showed significant increasing
trend, especially after the year 2004. As for the variation in NDVI of different vegetation types,
the increasing rate was highest for coniferous forest, and the smallest value for meadow
(Table 2).

Figure 3. Interannual variations in growing-season NDVI (a) and NDVI anomaly (b) during 1982-2013 in the entire re-
gion, using the annual average growing-season NDVI.
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Vegetation type Growing-season NDVI value NDVI rate Correlation coefficients

Average Maximum Minimum Temperature Precipitation

Broadleaf forest 0.7412 0.8501 0.5056 0.0013 0.315** 0.173**

Shrub 0.6952 0.8369 0.4866 0.0015 0.149** 0.130**

Grassland 0.6946 0.8405 0.4126 0.0013 0.493** 0.289**

Coniferous forest 0.6871 0.8270 0.3932 0.0016 0.252** 0.063

Cultural vegetation 0.6706 0.8398 0.3576 0.0015 0.374** 0.182**

Meadow 0.5910 0.7319 0.4741 0.0008 0.412** −0.109

**means a 0.01 significance level.

Table 2. Statistical characteristics of growing-season NDVI for different vegetation types during 1982–2013.

Figure 4. Spatial patterns of average values in growing-season NDVI during 1982–2013.
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Figure 4 shows the spatial distribution of NDVI values in the study area, ranging from 0.32 to
0.85. Due to higher temperature and more precipitation in Guangxi Zhuang Autonomous
Region, there were high values of NDVI in the east part of the study area. Under the back-
ground of complex climate change, there was also spatial heterogeneity for the dynamical
variation of NDVI. The higher increasing rate was observed in the northwest and the smaller
values in the southeast (Figure 5).

Figure 5. Spatial patterns of temporal trend in growing-season NDVI during 1982–2013.

4.2. Correlations between NDVI and climate factors

We observed warming rate of 0.018°C/year in the study area (Figure 6a). It fluctuated from
−0.6 ∼ 0.8°C for average growing-season temperature. The year of 1995 was a tipping point
for temperature and NDVI changes. Specifically, the average temperature for different months
presented obvious variations with a maximum temperature (25.2°C) in July. For the changes
in precipitation, Figure 6(c) shows a decrease of −1.21mm/year during 1982–2013. The dynamic
processes for precipitation can be classified as falling under three stages: 1982–1992, 1993–2002,
and 2003–2013 (Figure 6d). Additionally, the significant uptrend for temperature can be
concluded from the Mann-Kendall test.
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Figure 6. Interannual variations in average growing-season temperature trend and anomaly (a); monthly temperature
(b); precipitation trend and anomaly (c); monthly precipitation (d); and the results (e, f) of Mann-Kendall test during
1982–2013 in the entire region.
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4.2.1. Traditional linear regression for NDVI and climate variables

As shown in Figure 7(a), there was obvious synergy for NDVI and temperature, but the
synergy for NDVI and precipitation was relatively weak (Figure 7b). The lower regression
coefficients of precipitation indicated the weaker impact of precipitation on vegetation cover
change. The reason may be that there was rich rainfall in the study area, and the annual
variation cannot play significant roles. Moreover, the correlations between NDVI and climatic
variables were different for different vegetation types (shown in Table 2). The largest regres-
sion coefficient was in grassland.

Figure 7. The overall relationship between annual growing-season NDVI and temperature (a); precipitation (b) during
1982–2013.

In most areas, the relationship between NDVI and temperature (Figure 8a) was positive due
to the strengthened photosynthesis and vegetation activity by the increase in temperature. It
should be pointed out that only within an appropriate range, the temperature rise can result
in beneficial effects, and if the temperature is too high, it will cause negative impact on
vegetation growth. Figure 8(b) shows the regression coefficient for NDVI and precipitation.
Although the correlation was positive in most of the areas, there were some negative values
in the northern part of the study area.

4.2.2. Local regression for the spatial relationships

The later one means applying the changing rate of NDVI (Figure 5) as the dependent variable
of GWR while the changing rate of climatic factors as independent variables. Figure 9 lists the
GWR regression coefficients, where colors ranging from blue to red represented values from
low to high. Additionally, the standard errors were analyzed by the points with different sizes.

There was positive relationships between multiyear average NDVI and temperature (Fig-
ure 9a), however, the regression coefficients for NDVI and precipitation contained both
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positive and negative values (Figure 9b). It was found that the positive values for NDVI and
precipitation were mainly located in Yunnan Province, where the climate is more arid than
other areas of the study area. The GWR regression coefficients for dynamic relationships were
listed in Figure 9(c) and (d). The NDVI was lower with increasing surface temperature, which
may be explained as more serious aridity due to the warming. On the other hand, the corre-
lation between the changing rate of NDVI with precipitation were positive, meaning that the
increase in NDVI during 1982–2013 could have been caused mainly by the precipitation
variations.

Figure 8. Multivariate regression coefficients of temperature (a); and precipitation (b) to NDVI based on pixel during
1982–2013.
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Figure 9. Geographically weighted regression analysis between NDVI and temperature and precipitation during 1982–
2013. (a) Coefficients image for temperature; (b) coefficients image for precipitation; (c) coefficients image for tempera-
ture trend; (d) coefficients image for precipitation trend.
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4.3. The decrease in NDVI during 2009–2012 and its climatic explanation

Additional to the uptrend of NDVI from 1982 to 2013, there were some years when the NDVI
decreased, that is, from 2009 to 2012. The decreasing rate during this time was −0.017/year. The
significant decline was mostly in Guizhou Province where a decreased rate less than −0.02/
year was observed (Figure 10). Correlation analysis between NDVI and climate change,
revealed that the impact of temperature on the decreased NDVI was more profound than that
from precipitation (Figure 11). Furthermore, the negative relationships between NDVI and
precipitation also indicated the indirect impact of precipitation on temperature change. The
increase in precipitation with more cloud could have led to the decrease in solar radiation and
temperature, thus inhibiting photosynthesis.

Figure 10. Spatial patterns of variations in growing-season NDVI during 2009–2012.

4.4. Assessing the dynamic downscaling of WRF

Uncertainty on the downscaling capability of regional climate model (RCM) has in most cases
led to skepticism for its use. Despite the weakness, the RCM dynamic downscaling is better
than the simulations from General Circulation Model (GCM) or reanalysis datasets [13].
Furthermore, the uncertainty increases when the RCM is used to simulate the impact of land
cover change on regional climate. In this section, the state-of-the-art RCM's downscaling ability
was evaluated first, and was followed by analysis of the climatic effects of land degradation.

To reveal the improvement of WRF simulations over reanalysis dataset, daily rainfall, tem-
perature, and other circulation factors from WRF and reanalysis were compared with the
APHROD (Asian Precipitation-Highly-Resolved Observational Data) precipitation dataset,
the GTS (Global Telecommunication System) temperature dataset, and the JRA-25 (Japanese
25-year Reanalysis) atmospheric variables dataset. The assessment was conducted from the
viewpoint of correlation coefficient (R), bias and root mean square error (RMSE) over the years
of 1998, 2000, and 2004 and over 18°–52°N, 86°–136°E (Table 3). The lower Bias and RMSE and
the higher R values indicate better performance.
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Figure 11. Multivariate regression coefficients of temperature (a) and precipitation (b) to NDVI based on pixel during
2009–2012.

Variables Bias RMSE R

Precipitation NCEP R-2 1.95 4.22 0.60

WRF/SSiB 1.57 3.16 0.78

Temperature NCEP R-2 −1.93 3.62 0.86

WRF/SSiB −2.29 4.21 0.85

VQ700 NCEP R-2 2.89 11.38 0.65

WRF/SSiB −1.37 7.49 0.70

VQ700, water vapor flux at 700 hpa (g/kg/ms).

Table 3. Descriptive statistics of ensemble mean JJA daily precipitation, temperature and water vapor flux at 700 hpa
from WRF/SSiB and NCEP R-2 over 18°-52°N, 86°-136°E.
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We further observed that the phenomenon of most rainfall occurring in the south of China,
especially in the south of Yangtze River, can be detected from both WRF simulation and
APHROD dataset. From the WRF simulation, there was also an obvious increasing trend from
the northwest to southeast in the south of about 38°N with the minimum temperature in
Qinghai-Tibetan Plateau. The WRF simulation of precipitation out-performed NCEP R-2, and
was probably caused by the improved simulations of low level water vapor flux (Table 3), a
key factor influencing the atmospheric convection in East Asian summer monsoon. Although
the simulated surface temperature from WRF was not improved over NCEP R-2, the clearer
spatial information for temperature was presented from WRF output, which suggests that, it
is also an applicable tool in downscaling temperature.

4.5. Influence on precipitation and temperature due to KRD

The area over 20°–34°N, 104°–124°E was chosen to investigate the impact of Karst rocky
desertification on precipitation and temperature, because the significant and consistent effects
were located in this region. There was spatial variation in the precipitation changes among the
regions (Figure 12a). The reduced rainfall was mainly observed in the middle of Guizhou Karst
Plateau. The areas with increased precipitation, mainly the middle and lower parts of Yangtze
River and the surrounding areas, were of much larger magnitude and extent than that with
decreased rainfall. It can be inferred that the consistent but nonsignificant reduction in rainfall
with Guizhou Karst Plateau was due to high moisture influence from the Bay of Bengal. The
land surface warming mainly occurred in the areas where the original vegetation types were
replaced with bare soil type (Figure 12b), while the rainfall changes not only occurred within
the desertification area but also beyond the area.

4.6. Influence of KRD on land surface energy balance

As shown in Figure 13, the substantial changes of surface energy components occurred in
Guizhou Karst Plateau. In the degraded areas, the higher albedo (Figure 13a) led to more
reflected shortwave radiation from the land surface (Figure 13b). Due to the higher surface
skin temperature (Figure 12b), the outgoing longwave radiation increased significantly, which
further caused the reduced net longwave radiation at the surface (Figure 13c). Both the
reduction of the net shortwave radiation and the net longwave radiation certainly resulted in
the decrease in land surface net radiation (Figure 13d). More sensible heat flux was also
induced by the warmer surface (Figure 13e), however, the reduction in surface latent heat flux
(Figure 13f) was much more than the sensible heat flux increase. The decrease in evaporation
was probably contributed by changes in vegetation and soil properties, such as the lower LAI
and roughness length, and the higher surface albedo. It can be concluded that evaporation
decrease produced the most profound influence on the hydrological balance at land surface.
Additionally, the above-mentioned higher temperature in the degraded areas was caused by
the reduced evaporative cooling.
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Figure 12. Ensemble mean differences in JJA (a) daily precipitation (mm/day) and (b) temperature (°C) between Case
D and Case C. GKP is bounded by a heavy border.

Land Degradation and Desertification - a Global Crisis46



Figure 13. Ensemble mean differences in JJA (a) surface albedo, (b) net shortwave radiation, (c) net longwave radiation,
(d) net radiation, (e) sensible heat flux, (f) latent heat flux, and (g) incoming shortwave radiation (W/m2) between Case
D and Case C.
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Consistent with the spatial changes in precipitation, there were areas with significantly
changed energy budget extending beyond the degraded area. Outside the Guizhou Karst
Plateau, the variations in sensible heat flux and latent heat flux were controlled by the
precipitation differences. For example, in the areas between 30°–34°N, 112°– 120°E (i.e., the
southeastern coastal area of China), the increased evaporation (Figure 13f) was caused by the
increase in precipitation (Figure 12a), which further led to the lower temperature (Fig-
ure 12b), and the lower sensible heat flux (Figure 13e). The issue on the impact of atmospheric
circulations on precipitation will be discussed in the next section.

Figure 13(g) shows the impacts of cloud albedo and land surface albedo on shortwave
radiation. In the degraded areas within Guizhou Karst Plateau, the cloud fraction was reduced
due to the less evaporation and moisture flux convergence after land degradation, and the
reduced cloud fraction further led to more incoming shortwave radiation. However, the
increase in upward shortwave radiation (Figure 13a) due to the higher land surface albedo
was much more than the downward shortwave radiation, which resulted in the reduced net
shortwave radiation (Figure 13b). Moreover, in the southeastern coastal areas of China, the
increased cloud fractions, consistent with more rainfall, led to the decrease in incoming
shortwave radiation, dominating the alteration in net shortwave radiation.

4.7. Effects of KRD on atmospheric circulation

The modified water and energy budget due to Karst rocky desertification was the first-order
effects. Because of the different input of heat and moisture into atmospheric circulation, the
large-scale circulation features were altered, resulting in climatic effects beyond the desertifi-
cation area. As shown in Figure 14, the weakened 3-month mean wind vector at 700 hPa

Figure 14. Ensemble mean differences in JJA wind vector (m/s) at 700 hPa between Case D and Case C.
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between Case D and Case C was caused by the lower surface heating in GKP (Figure 13d). The
monsoon airflow from the Bay of Bengal, an important moisture source for the East Asia, was
weakened from the degraded areas to the northeast. Furthermore, the weakened southwest
airflow had significant impacts on the East Asian monsoon, especially, the anomaly cyclone
(Figure 14) and the stronger horizontal convergence in the southeastern coastal area that led
to the strengthened vertical ascending motion and the increase in precipitation.

On the other hand, the longitude-height section of the composite difference of zonal circulation
along 24°–30°N between Case D and Case C was plotted to conduct further analysis (Fig-
ure 15). After the land degradation in GKP, an anomalous descending motion appeared in both
the upper and middle level of troposphere over GKP and the middle and lower troposphere
of the adjacent regions to the east. Such circulation modification caused the strengthened
ascending motion over 114°–122°E. Moreover, the stronger lifting over the coastal areas led to
the increase in the vertically integrated moisture flux convergence (VIMFC) from 1000 to 300
hPa. Consequently, the different circulation and moisture flux reduced the rainfall over GKP
and promoted the formation of clouds and the positive rainfall anomalies over southeastern
coastal areas of China (Figure 12a). Also, in the southeast China, the surface cooling (Fig-
ure 12b) was induced by the increased amount of clouds and further a negative net cloud
radiation forcing.

Figure 15. Zonal-height cross sections of ensemble mean differences in JJA zonal (ms−1) and vertical (10–2 ms−1) winds
averaged over 24°–30°N. Gray shading indicates topography.

5. Conclusions

The growing-season NDVI increased significantly during the last 30 years in the Karst region
of the southwest China. There were also differences in the increase rate of vegetation types.
The distribution of NDVI presented obvious spatial patterns, specifically, lower values in the
western part and higher values in the east. The correlation between NDVI and climatic factors
implied the limiting role of temperature for the vegetation growth and distribution in the study
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area, although the regression coefficients presented spatial heterogeneity. Additionally, the
decreased NDVI was analyzed to detect the influencing mechanism. It was found that the
increased cloud cover and rainfall led to the decrease in solar radiation and temperature, and
further impeded photosynthesis.

We also observed that after the land cover change, there is need to consider its climatic effects
through the impact of LCC on land surface water and energy budget. Karst rocky desertifica-
tion (i.e., extensive exposure of basement rocks, serious soil erosion, drastic decrease in soil
productivity and appearance of desert-like landscape) can modify the energy budget at land
surface and then the regional climate. Specifically, after land degradation, the higher surface
albedo and temperature caused the reduced net shortwave radiation and net longwave
radiation. The sensible heat flux was increased by the higher temperature. Specifically, the
substantial increase in sensible heat flux from ground offset the decrease in that from canopy.
Due to higher stomatal resistance and lower LAI, the latent heat flux in KRD was reduced
significantly. Less atmospheric heating from degraded land resulted in relative subsidence and
less moisture flux convergence (MFC). The decrease in rainfall was probably attributed by both
the reduced MFC and the reduced evaporation. A feedback loop was activated when precip-
itation was affected, for example, the altered soil moisture, vegetation growth, and phenology
can further result in less diabatic heating rates, less moisture flux convergence, and lower
rainfall. Moreover, the changed rainfall beyond the degraded areas was more significant. The
modified energy and water balance due to land degradation weakened the southwest monsoon
flow and affected the atmospheric circulation and moisture flux. In the southeastern coastal
areas, the precipitation increased due to two reasons: (1) the weaker low-layer anticyclone
causing the stronger vertical ascending motion, (2) the air mass diverging in the lower
troposphere accompanying rising up over southeastern China.
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