
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 8

Fast Algorithm Designs of Multiple-Mode Discrete

Integer Transforms with Cost-Effective and Hardware-

Sharing Architectures for Multistandard Video Coding

Applications

Chih-Peng Fan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64985

Provisional chapter

Fast Algorithm Designs of Multiple-Mode Discrete
Integer Transforms with Cost-Effective and Hardware-
Sharing Architectures for Multistandard Video Coding
Applications

Chih-Peng Fan

Additional information is available at the end of the chapter

Abstract

In this chapter, first we give a brief view of transform-based video coding. Second, the
basic matrix decomposition scheme for fast algorithm and hardware-sharing-based
integer transform design are described. Finally, two case studies for fast algorithm and
hardware-sharing-based architecture designs of discrete integer transforms are
presented, where one is for the single-standard multiple-mode video transform-coding
application, and the other is for the multiple-standard multiple-mode video transform-
coding application.

Keywords: video coding, transform coding, fast algorithm, matrix factorization, hard-
ware sharing, multiple modes, multiple standards

1. Introduction

Video-coding system has generally utilized block-based transform-coding skills to shrink the
data rates by joining quantization and entropy coding. Among some block-based transforms,
the discrete cosine transform (DCT) [1] and integer transforms have extensively been used to
still image and video-coding specifications, such as JPEG [2], MPEG-1/2 [3, 4], MPEG-4 [5], H.
264/AVC [6, 7], AVS [8, 9], VC-1 [10], VP8 [11], and HEVC [12]. Because integer transforms
perform the low complexity and effective coding performance, the advanced video coding
(AVC) in ITU-T H.264 [6, 7, 13, 14], which is also known as MPEG-4 part 10, applies integer

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

transforms for transform process. The 4 × 4 and 8 × 8 transforms in [13, 14] were calculated
exactly to prevent non-adaptation issues of inverse transforms for high-quality moving visual
images. The VC-1 specification [10, 15, 16] employed 4 × 4 and 8 × 8 integer transforms, and it
was developed by Microsoft Corporation and standardized by the Society of Motion Picture
and Television Engineers (SMPTE). The 8 × 8 integer transform is utilized to obtain the high-
coding performance in the Audio Video Coding Standard (AVS) for China [8, 9]. In [11], the
VP8 video-coding standard was developed for Internet browser applications. The Joint
Collaborative Team on Video Coding proposed the high-efficiency video coding (HEVC)
specification [12]. By HEVC, the compression efficiency was greatly better than that achieved
using the H.264/AVC high-profile-coding specification.

To support the single-standard H.264/AVC video coding, several transform architectures in
[17–24] have been developed to approach the multiple transform modes in H.264. To support
the single-standard H.265/HEVC video coding, several transform architectures in [25–32] have
been developed to approach the multiple transform modes in HEVC. Besides, supporting
multiple-standard functions in video coding has been an important issue in multimedia
applications recently, such as H.264/AVC, MPEG-1/2/4, VC-1, AVS, and VP8 standards, and
several transform architectures in [33–41] have also been developed to complete the multiple
transform functions. Owing to the growth of multistandard video-coding applications, how
to achieve low-computational complexities and implement by hardware-sharing-based cost-
effective architectures simultaneously are interesting research topics for the VLSI design of
video codecs.

2. Matrix decomposition preprocessing for fast algorithm and hardware-
sharing-based designs

Based on the resemblance property, the 8 × 8 inverse integer transforms [41] in H.264/AVC,
AVS, VC-1, VP8, MPEG-1/2/4, and HEVC specifications are revealed in Eq. (1), and Table 1
depicts the coefficient values in the transforms.

8 8

a b f c a d g e
a c g e a b f d
a d g b a e f c
a e f d a c g b

C
a e f d a c g b
a d g b a e f c
a c g e a b f d
a b f c a d g e

´

é ù
ê ú- - - - -ê ú
ê ú- - -
ê ú

- - - -ê ú= ê ú- - - -
ê ú

- - - - -ê ú
ê ú- - -ê ú
ê ú- - - -ë û

(1)

Recent Advances in Image and Video Coding178

Transform sizes VC-1 AVS VP8 MPEG-1/2/4 H.264/AVC HEVC

4 × 4 √ √ √ N/A √ √

8 × 8 √ √ N/A √ √ √

16 × 16 N/A N/A N/A N/A N/A √

32 × 32 N/A N/A N/A N/A N/A √

Table 1. The transform modes in several video-coding standards [41].

In Eq. (1), it is decomposed by Eq. (2) as

8 8 1 0 .rC P A P´ = × × (2)

In Eq. (2), A0 is divided into two modules, U4 × 4 and D4 × 4, where �1 =
1 0 0 0 0 0 0 −10 1 0 0 0 0 −1 00 0 1 0 0 −1 0 00 0 0 1 −1 0 0 00 0 0 1 1 0 0 00 0 1 0 0 1 0 00 1 0 0 0 0 1 01 0 0 0 0 0 0 1

,

�� =
1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

, �0 =
� � � � 0 0 0 0� � −� −� 0 0 0 0� −� −� � 0 0 0 0� −� � −� 0 0 0 00 0 0 0 −� � −� �0 0 0 0 −� � −� −�0 0 0 0 −� � � �0 0 0 0 −� −� −� −�

.

Thus

0 4 4 4 4A U D´ ´= Å (3)

and C8×8 becomes

8 8 1 4 4 4 4() .rC P U D P´ ´ ´= × Å × (4)

In (3), “⊕ “ is the direct sum operator, and the two diagonal blocks U4 × 4 and D4 × 4 are processing
in parallel. To cut down the computational operations and achieve effective hardware shares,
the upper diagonal matrix U4 × 4 and the down diagonal matrix D4 × 4 are further decomposed
into the cascaded multiplication form or the addition form of sparse matrices. After matrix

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

179

factorizations, the chosen sparse matrices have the coefficients which are 1, −1, 0, or an integer,
and an integer value can equal the combination of powers of two. Besides, zero factors in the
chosen sparse matrices could be factorized as many as possible [42].

By Eq. (1), for VC-1 the values of the coefficient set {a, b, c, d, e, f, g} are {12, 16, 15, 9, 4, 16, 6},
and those for AVS are {8, 10, 9, 6, 2, 10, 4}. Next, those for MPEG-1/2/4 are {362, 502, 426, 284,
100, 473, 196}, and those for H.264/AVC are {8, 12, 10, 6, 3, 8, 4}. Finally, those for HEVC are
{64, 89, 75, 50, 18, 83, 36}.

The general 4 × 4 inverse integer transform matrices [41] can be presented in Eq. (5) as

4 4 .

h i h j
h j h i

M
h j h i
h i h j

´

é ù
ê ú- -ê ú=
ê ú- -
ê ú

- -ë û

(5)

By Eq. (5), for VC-1 the values of the coefficient set {h, i, j} are {17, 22, 10}, and those for VP8
are {128, 167, 70}. Next, those for AVS-M are {2, 3, 1}, and those for H.264/AVC are {1, 1, 0.5}.
Finally, those for HEVC are {64, 83, 36}.

3. Case study [32]: single-standard multiple-mode transform design

3.1. Hardware-sharing based 32 × 32 integer core transform for HEVC

The one-dimensional (1D) 32 × 32 inverse core transform for HEVC is described in [30]. By the
symmetrical property, the 32 × 32 inverse core transform is presented as

32 1,i A AH P C= × (6)

where ��1 = �11 �12�21 �22 , �� = �16x16 −�16x16�16x16 �16x16 , �16x16 =
0 0 ⋯ 0 10 0 0 1 0⋮ ⋮ ⋰ 0 ⋮0 1 0 ⋮ 01 0 ⋯ 0 0

, and I16×16 is a 16 × 16

identity matrix. In Eq. (6), PA is the butterfly-like postprocessing, and CA1 is the sparse matrix.
By swapping each column of CA1, it becomes

1 2 .A A ArC C P= × (7)

By Eqs. (6) and (7), Hi32 becomes

Recent Advances in Image and Video Coding180

32 2 ,i A A ArH P C P= × × (8)

where PAr is the permutation matrix. In Eq. (7), CA2 is expressed by

11 16 16
2 11 22

16 16 22

0
,

0
A x

A A A
x A

T
C T T

T
é ù

= = Åê ú
ë û

(9)

where “⊕” means the direct sum operation, and then TA11 and TA22 are 16 × 16 matrices, which
are revealed in [32]. The matrix PAr in Eq. (8) is expressed as

 (2,16),ArP P= (10)

where the permutation matrix P(m, n) is defined in [43], and the notation “⊗” means the
Kronecker product. In Eq. (9), AA22 is presented as

22 1 1 ,A M NT T T= + (11)

First, the lower half of CN1 is divided into sixteen 8 × 1 column vectors Xi, where i = 0, 1, 2, …,
15, and then TN1 becomes

8 16

1

0 1 15

0
.

x

NT
X X X

é ù
ê ú= - - - - - - - - -ê ú
ê ú¼ë û

(12)

Second, the coefficients in a single column vector can be shared. The vector coefficient
computations are achieved by integrating several base coefficients [32]. After realizing the
column vectors of TN1, the lower half of TN1 is factorized as an integration of eight 1 × 16 row
vectors depicted as Yi, where i = 8, 9, …, and 15, and TN1 becomes

8 16

8
1

9

15

0

 .

x

N

Y
T

Y

Y

é ù
ê ú- - -ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

M

(13)

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

181

Adder tree structures are utilized to calculate the aggregate results for the row vectors Y8–Y15

[32]. By the duplicate operations for TN1, TM1 is presented as

0 15

1

8 16

ˆ ˆ

,
0

M

x

X X
T

é ù
ê ú

= - - - - -ê ú
ê ú
ë û

L
(14)

where �� is an 8 × 1 column vector, where i = 0, 1, 2, …, and 15. Then, TM1 becomes

0

1 7

8 16

,

0

M

x

Y

T Y

é ù
ê ú
ê ú
ê ú=
ê ú
- - -ê ú
ê úë û

M
(15)

where Yi is a 16 × 1 row vector, where i = 0, 1, …, and 7. The realization of TM1 equals that of
TN1. Finally, the operations of TM1 and TN1 are merged to TA22. The computational operations
TA22 require 630 additions and 326 shift operations [32]. The matrix TA11 in Eq. (9), which is also
denoted as Hi16, is the 1D 16 × 16 inverse core transform in HEVC [30].

3.2. Hardware-sharing-based 16 × 16 integer core transform for HEVC

The 16 × 16 integer core transform in [30] changes into

16 1,i B BH P C= × (16)

where �� = �8x8 −�8x8�8x8 �8x8 , and CB1 is revealed in [32]. By swapping each column of CB1, it will

be

1 2 ,B B BrC C P= × (17)

where PBr = P(8,2). By Eqs. (16) and (17), Hi16 is expressed by

16 11 2 .i A B B BrH T P C P= = × × (18)

Recent Advances in Image and Video Coding182

In Eq. (18), CB2 is presented as

11 8 8
2 11 22

8 8 22

0
,

0
B x

B B B
x B

T
C T T

T
é ù

= = Åê ú
ë û

(19)

and TB22 becomes

22 2 2 ,B M NT T T= + (20)

where ��2 =
−9 25 −43 57 −70 80 −87 90−25 70 −90 80 −43 −9 57 −87−43 90 −57 −25 87 −70 −9 80−57 80 25 −90 9 87 −43 −70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

     ��2 =
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−70 43 87 −9 −90 −25 80 57−80 −9 70 87 25 −57 −90 −43−87 −57 −9 43 80 90 70 25−90 −87 −80 −70 −57 −43 −25 −9

.

By the duplicate processed of TN1 in Section 3.1, TN2 turns into

4 8

2

0 7

0
,

x

NT
U U

é ù
ê ú= - - - - - -ê ú
ê ú¼ë û

(21)

where Ui is an 8 × 1 column vector, where i = 0, 1, 2, …, and 7. Next, TN2 also is

4 8

2 4

7

0

,

x

NT V

V

é ù
ê ú- - -ê ú
ê ú=
ê ú
ê ú
ê úë û

M
(22)

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

183

where Vi is a 1 × 8 row vector, where i = 4, 5, 6, and 7. Adder tree schemes are applied to compute
the summed outcomes of V4–V7 [32]. By the same processes of TM1 in Section 3.1, TM2 becomes

0 7

2

4 8

ˆ ˆ

,
0

M

x

U U
T

é ù¼
ê ú

= - - - - - -ê ú
ê ú
ë û

(23)

where �� is a 4 × 1 column vector, where i = 0, 1, 2, …, and 7. Next, TM2 also is

0

2 3

4 8

,

0

M

x

V

T V

é ù
ê ú
ê ú
ê ú=
ê ú
- - -ê ú
ê úë û

M
(24)

where Vi is a 1 × 8 row vector, where i = 0, 1, 2, and 3. Then, adder trees are used to treat the
row vectors V0–V3 [32]. Finally, the calculations of TM2 and TN2 are merged to TB22. The
computational operations of TB22 are 164 additions and 106 shift operations [32]. Meantime,
the TB11 in Eq. (19), which is also denoted as Hi8, is the 1D 8 × 8 inverse core transform in HEVC
[30].

3.3. Hardware-sharing-based 8 × 8 integer core transform for HEVC

The 8 × 8 integer transform in [30] is described as

8 1,i C CH P C= × (25)

where �� = �4x4 −�4x4�4x4 �4x4 , and ��1 =
64 0 83 0 64 0 36 064 0 36 0 −64 0 −83 064 0 −36 0 −64 0 83 064 0 −83 0 64 0 −36 00 −18 0 50 0 −75 0 890 −50 0 89 0 −18 0 −750 −75 0 18 0 89 0 500 −89 0 −75 0 −50 0 −18

. After swapping

each column in CC1, it changes into

8 2 ,C C CrC C P= × (26)

Recent Advances in Image and Video Coding184

where ��� =
1 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

. Based on Eqs. (25) and (26), Hi8 is presented by

8 11 2 ,i B C C CrH T P C P= = × × (27)

In Eq. (27), CC2 becomes

11 4 4
2 11 22

4 4 22

0
,

0
C x

C C C
x C

T
C T T

T
é ù

= = Åê ú
ë û

(28)

where ��11 = 64 83 64 3664 36 −64 −8364 −36 −64 8364 −83 64 −36 and ��22 = −18 50 −75 89−50 89 −18 −75−75 18 89 50−89 −75 −50 −18 .

In Eq. (28), TC22 is factorized as

22 1 2 ,CT S S= + (29)

where �1 = −18 0 0 890 89 −18 00 18 89 0−89 0 0 −18 . Moreover, S1 is expressed by

1 1 2(18),S Z Z= + × (30)

where �1 = 0 0 0 −10 −1 0 00 0 −1 01 0 0 0 and �2 = −1 0 0 5 0 5 −1 0 0 1 5 0−5 0 0 −1 . In Eq. (29), S2 is presented as

2 325 ,S Z= × (31)

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

185

where �3 = 0 2 −3 0−2 0 0 −3−3 0 0 20 −3 −2 0 . By Eqs. (29)– (31), TC22 becomes

22 1 2 3(18) (25).CT Z Z Z= + × + × (32)

In Eq. (32), the computations of TC22 require 36 additions and 28 shift operations [32]. The matrix
TC11 in Eq. (28) is also the 1D 4 × 4 inverse core transform matrix in HEVC.

3.4. Hardware-sharing-based 4 × 4 integer core transform for HEVC

The 4 × 4 integer core transform matrix is indicated as

4 1,i D DH P C= × (33)

where �� = 1 0 1 00 1 0 10 1 0 −11 0 −1 0 and ��1 = 64 0 64 064 0 −64 00 −36 0 830 −83 0 −36 . By swapping each column of CD1, it

changes into

1 2 2.D D DC C P= × (34)

where �Dr = 1 0 0 00 0 1 00 1 0 00 0 0 1 . From Eqs. (33) and (34), Hi4 is described by

4 11 2. .i C D D DrH T P C P= = × (35)

In Eq. (34), CD2 is rewritten as

2 11 22.D D DC T T= Å (36)

In Eq. (36), TD11 becomes

11 464 ,DT Z= × (37)

Recent Advances in Image and Video Coding186

where �4 = 1 11 −1 . In Eq. (36), TD22 is indicated by Z5 and Z6 as

22 5 636 11 ,DT Z Z= × + × (38)

where �5 = 2 11 −2 and �6 = 1 00 −1 . Thus, the computations of TD22 are 10 additions and 10

shift operations [32]. Based on Eqs. (35)– (38), Hi4 is changed into

4 4 5 6[(64) (36 11)] .i D DrH P Z Z Z P= × × Å × + × × (39)

By the abovementioned discussions, the hardware modules of 4 × 4, 8 × 8, and 16 × 16 inverse
core transforms are shared to implement Hi8, Hi16, and Hi32, respectively [32]. By sharing the
hardware of Hi4 in Eq. (39), the cost-effective design of the 8 × 8, 16 × 16, and 32 × 32 inverse
core transforms is obtained progressively. First, the hardware-sharing-based eight-point
inverse transform is presented as

8 4 1 2 3{ [(18) (25)]} .i C i CrH P H Z Z Z P= × Å + × + × × (40)

Next, the hardware-sharing-based 16-point inverse transform is described as

16 8 2 2{ []} .i B i M N BrH P H T T P= × Å + × (41)

Finally, the hardware-sharing-based 32-point inverse transform is depicted as

32 16 1 1{ []} .i A i M N ArH P H T T P= × Å + × (42)

In this section, the hardware-sharing transform architecture cuts down the hardware cost
because the same submodules and coefficients of the transforms are extracted to be shared.
Figure 1 illustrates the architecture of the hardware-sharing-based inverse core transform
design for 4 × 4/8 × 8/16 × 16/32 × 32 transforms [32].

3.5. Architecture comparison

The proposed 1D inverse core transform in [32] involves four inputs to sustain 4 × 4, 8 × 8, 16
× 16, and 32 × 32 transform modes. Several multiplexers are utilized to acquire the transform
outputs of the 32 × 32 inverse core transform by the shared design of 4 × 4, 8 × 8, and 16 × 16
inverse core transforms [32]. Table 2 lists the number of adders and shifters needed to calculate
four modes of the 1D inverse core transform for HEVC. The developed architecture in [32]
does not require any multiplier, and the fixed-coefficient multiplications are replaced with

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

187

simple additions and shift operations. Table 3 shows the comparison of three 16-point inverse
transform designs. Compared with the previous works in [29] and [31], the applied architecture
contains fewer adders. However, several more shifters are required. Compared with the cost
of adders, the shifters need lower hardware expense. Thus, the used architecture decreases the
hardware cost more efficiently than previous transform schemes do.

Figure 1. The hardware-sharing-based inverse core transform structure for HEVC.

Transform sizes 32 × 32 16 × 16 8 × 8 4 × 4

No. of shifters 256 93 40 11

No. of adders 461 146 64 10

Table 2. The 1D inverse transform architecture at different transform modes [32].

Designs No. of shifters No. of adders

Ahmed [29] 132 232

Haggag [31] 58 242

Design in Section 3.2 93 146

Table 3. Hardware comparison of three 1D 16-point transform designs [32].

4. Case study [41]: multiple-standard multiple-mode transform design

4.1. Hardware-sharing design for 8 × 8 transforms mode

For H.264/AVC, the transform matrix is employed as a foundation matrix for the multistandard
hardware-sharing scheme. Based on Eq. (3), the cost of the upper diagonal matrix in Eq. (43)
is eight adders and two shifters.

Recent Advances in Image and Video Coding188

4 4 _ 1 2

8 8 8 4
8 4 8 8

8 ,
8 4 8 8
8 8 8 4

AVCU C C´

é ù
ê ú- -ê ú= = × ×
ê ú- -
ê ú

- -ë û

(43)

where �1 = 1 0 0 10 −1 1 00 1 1 01 0 0 −1 , and �2 = 1 0 1 00 −0.5 0 11 0 −1 00 1 0 0.5 . For AVS, the upper diagonal matrix

U4×4_AVS in Eq. (44) costs 10 adders and four shifters.

4 4 _ 1 2 3

8 10 8 4
8 4 8 10

8 (),
8 4 8 10
8 10 8 4

AVSU C C C´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(44)

where �3 = 0 0 0 00 0 0 0.250 0 0 00 0.25 0 0 . In Eq. (45), the upper diagonal matrix U4×4_VC1 for VC1 needs 14

adders and eight shifters.

4 4 _ 1 1 4 5 2

12 16 12 6
12 6 12 16

8 (),
12 6 12 16
12 16 12 6

VCU C C C C´

- -
= = × × + ×

- -
- -

(45)

where and �4 = 0 0 0 00 0 0 0.50 0 0 00 0.5 0 0 , and �5 = 1.5 0 0 00 1.5 0 00 0 1.5 00 0 0 1.5 . For HEVC, the 8 × 8 transform matrix

is acquired by the AVS design in Eq. (44), and the design in Eq. (46) costs 16 adders and 12
shifters.

4 4 1 2 3 1

64 83 64 36
64 36 64 83

2 [32 ()],
64 36 64 83
64 83 64 36

HEVC
U C C C U´

é ù
ê ú- -ê ú= = × × × + -
ê ú- -
ê ú

- -ë û

(46)

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

189

where �1 = 0 0 0 00 2 0 −1.50 0 0 00 −1.5 0 −2 . For MPEG-1/2/4, the upper diagonal matrix is factorized by

4 4 _ 1 4 5 2 2 3

362 473 362 196
362 196 362 473

[256 () ()],
362 196 362 473
362 473 362 196

MPEGU C C C C U U´

é ù
ê ú- -ê ú= = × × + × - +
ê ú- -
ê ú

- -ë û

(47)

where �2 = 22 0 22 00 0 0 022 0 −22 00 0 0 0 ,and �3 = 0 0 0 00 4 0 390 0 0 00 39 0 −4 . In Eq. (47), the parameter “22” of U2 is

implemented by (C5 · C5 ≪ 4) – (C1 ≪ 1), where “≪1” is left shifting one bit, and the cost in
Eq. (47) requires 28 adders and 26 shifters.

By Eq. (3), on the other side, the down diagonal matrix D4×4_AVC for H.264/AVC becomes Eq.
(48), and it needs 17 adders and eight shifters.

4 4 _ 4 4 5 2 3

3 6 10 12
6 12 3 10

8 () (),
10 3 12 6
12 10 6 3

AVCD U D D D U´

- -é ù
ê ú- - -ê ú= = × × + × +
ê ú-
ê ú
- - - -ë û

(48)

where �4 = 1 0 0 00 1 0 00 0 1 00 0 0 −1 , �4 = −1 −1 1 01 0 1 −1−1 1 0 −10 1 1 1 , �5 = −0.5 0 0 00 0 0.5 00 0.5 0 00 0 0 0.5 ,

�2 = 0.25 0 0 00 0.25 0 00 0 −0.25 00 0 0 0.25 , �3 = 0 0 0 −10 0 1 00 1 0 01 0 0 0 .

For AVS, the D4×4_AVS matrix becomes (49), and D4 and D5 are shared with the design in Eq. (48),
and then U3 and U4 are also partially shared with the scheme in Eq. (48). In Eq. (49), it costs 24
adders and 12 shifters

Recent Advances in Image and Video Coding190

4 4 _ 4 4 5 3 1 3

2 6 9 10
6 10 2 9

4 () (),
9 2 10 6
10 9 6 2

AVSD U D D D D U´

- -é ù
ê ú- - -ê ú= = × × + × × +
ê ú-
ê ú
- - - -ë û

(49)

where �3 = 0 −1 0 00 0 0 −11 0 0 00 0 1 0 , �3 = 1 0 0 00 −1 0 00 0 −1 00 0 0 1 , and �1 = 1.5 0 0 00 1.5 0 00 0 −1.5 00 0 0 1.5 .

For VC-1, the D4×4_VC1 matrix is factorized by Eq. (50), and the design requires 21 adders and

12 shifters

4 4 _ 1 4 4 6 5 2 3

4 9 15 16
9 16 4 15

8 () (),
15 4 16 9
16 15 9 4

VCD U D D D D U´

- -é ù
ê ú- - -ê ú= = × × × + × +
ê ú-
ê ú
- - - -ë û

(50)

where �6 = 1.5 0 0 00 1.5 0 00 0 1.5 00 0 0 1.5 . For HEVC, the D4×4_HEVC matrix is expressed by Eq. (51), and it

expends 44 adders and 20 shifters

4 4 _ 4 4 _ 5 1 6 7

18 50 75 89
50 89 18 75

9 [4 ()],
75 18 89 50
89 75 50 18

HEVC AVSD D U D U U´ ´

- -é ù
ê ú- - -ê ú= = × + × × + -
ê ú-
ê ú
- - - -ë û

(51)

where �5 = 0 0 −1 00 0 0 11 0 0 00 1 0 0 , �6 = 0 −1 0 01 0 0 00 0 0 −10 0 1 0 , �7 = 0 0 0 10 1 0 00 0 1 0−1 0 0 0 . For MPEG-1/2/4, based on

D4×4_AVS, the D4×4_MPEG matrix is presented by Eq. (52), and the design costs 48 adders and 32

shifters

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

191

4 4 _ 4 4 _ 5 1 6 7

100 284 426 502
284 502 100 426

50 [16 () 2].
426 100 502 284
502 426 284 100

MPEG AVSD D U D U U´ ´

- -é ù
ê ú- - -ê ú= = × + × × + + ×
ê ú-
ê ú
- - - -ë û

(52)

4.2. Hardware-sharing design for 4 × 4 transforms mode

For AVS-M, the matrix M4×4_AVS is presented by (53), and it spends 10 adders and six shifters

4 4 _ 1 2 8

2 3 2 1
2 1 2 3

(2),
2 1 2 3
2 3 2 1

AVSM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(53)

where �8 = 0 0 0 00 0 0 10 0 0 00 1 0 0 . For VC-1, M4×4_VC1 is expressed by Eq. (54), and the design requires 14

adders and 12 shifters

4 4 _ 1 1 2 9

17 22 17 10
17 10 17 22

(16),
17 10 17 22
17 22 17 10

VCM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(54)

where �9 = 1 0 1 00 −2 0 61 0 −1 00 6 0 2 . For VP8, all coefficients in 4 × 4 transform matrix are multiplied by

128 to get integer values, and it costs 18 adders and 14 shifters

4 4 _ 8 1 2 10

128 167 128 70
128 70 128 167

(128),
128 70 128 167
128 167 128 70

VPM C C U´

é ù
ê ú- -ê ú= = × × +
ê ú- -
ê ú

- -ë û

(55)

Recent Advances in Image and Video Coding192

where �10 = 0 0 0 00 −6 0 390 0 0 00 39 0 6 . The matrix U4×4_AVC/8 equals the 4 × 4 inverse transform matrix in H.

264/AVC. In addition, the matrix U4×4_HEVC equals the 4 × 4 inverse transform matrix in HEVC.
Thus, several multiplexers are used to share the hardware between the submatrices to decrease
hardware cost.

4.3. Architecture comparison

The applied hardware-sharing-based 1D multistandard inverse integer transform scheme has
two inputs, which sustain 4 × 4 and 8 × 8 transform modes. The hardware blocks of processing
the 4 × 4 inverse transforms are shared with that of the upper diagonal matrix U8×8. Thus, several
multiplexers are utilized for U8×8 to compute the 4 × 4 inverse transforms without additional
operations. For the multistandard applications, the hardware-sharing architecture of the fast
1D 4 × 4 and 8 × 8 inverse integer transforms is illustrated in [41]. The shifters are also realized
by wiring. Compared with the individual designs without hardware shares, Table 4 depicts
that the used scheme in [41] decreases the number of shifters and adders by 50 and 75%,
respectively.

Different 1D inverse integer transform modes No. of adders No. of shifters

Individual designs without hardware shares 336 180

Hardware-sharing-based design in Section 4 82 90

Reduction of cost 75% 50%

Table 4. Hardware comparison between two architectures [41].

To implement the discussed architecture, a cell-based VLSI design flow is utilized to design,
simulate, and verify the cost-effective hardware-sharing architecture. For fair comparisons
among different transform structures, the normalized mode gain, which is required to
normalize the gate counts, is described as follows: By matrix dimensions and without missing
generality [40], the normalized mode gains defined for the 32 × 32, 16 × 16, 8 × 8, and 4 × 4
inverse integer transform matrices are 16, 4, 1, and 1/4, respectively.

The hardware-sharing-based design in Section 3 supports 4 × 4, 8 × 8, 16 × 16, and 32 × 32 inverse
transform modes for HEVC. Thus, the normalized mode gain of the design is 21.25 (i.e., 16 + 4
+ 1 + 0.25). Similarly, five 8 × 8 and five 4 × 4 inverse transform functions are provided by the
hardware-shared design in Section 4. Therefore, the normalized mode gain is assigned by 6.25
(i.e., 5 + 1.25) [41]. Afterwards, the normalized gate counts are defined by [40, 41]

 .
GatecountsNormalized gatecounts Normalized mode gain= (56)

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

193

Table 5 shows the hardware cost comparisons among different 1D multiple transform
architectures, which includes single-standard multiple-mode [32] and multiple-standard
multiple-mode [41] transform designs.

Architecture Ahmed et
al. [29]

Hardware-
sharing
based-design
in Section 3

Shen et. al.
[26]

Martuza
et. al. [28]

Qi et al. [36] Wang
et al. [38]

Hardware-
sharing-based
design in Section
4

Gate counts 144.8K 115.7 K 134.8 K 39.4 K 18 K 23.06 K 27.4 K

Normalized
mode gain

21.25 21.25 25.75 5 3.5 4.5 6.25

Normalized
gate counts

6.81 K 5.44 K 5.23 K 7.88 K 5.14 K 5.12 K 4.38 K

Supporting
modes

Single-
standard
Multiple-
mode

Single-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-
mode

Multiple-
standard
Multiple-mode

Supporting
standards/
Transforms

HEVC:
4 × 4, 8 × 8,
16 × 16, 32
× 32 modes

HEVC:
4 × 4, 8 ×
8, 16 × 16, 32
× 32 modes

H.264/AVC,
VC-1:
4 × 4,8 × 8
modes
MPEG-1/2/4,
AVS: 8 × 8
mode;
HEVC: 4 × 4,
8 × 8, 16 × 16,
32 × 32 modes

H.264/
AVC,
VC-1,
AVS,
HEVC:
4 × 4, 8 × 8
modes

H.264/AVC,
VC-1:
4 × 4, 8 × 8
modes;
MPEG-1/2/4:
8 × 8 mode

H.264/
AVC;,
VC-1:
4 × 4,
8 × 8
modes;
MPEG-
1/2/4,
AVS:
8 × 8 mode

H.264/AVC,
VC-1, HEVC:
4 × 4, 8 × 8 modes;
MPEG-1/2/4,
AVS: 8 × 8 mode;
VP8, AVS-M: 4 ×
4 mode

Table 5. Hardware cost comparisons among different 1D multiple transform architectures [32, 41].

5. Conclusion

For the single-standard multiple-mode transform design, this chapter discussed the 4 × 4, 8 ×
8, 16 × 16, and 32 × 32 inverse core transforms in HEVC with a cost-effective and hardware-
efficient design. By the symmetrical characteristics of the elements, the core transform matrices
were factorized into several submatrices. Thus, the hardware of the (N/2) × (N/2) inverse core
transform was shared with that of the N × N inverse core transform for N = 32, 16, and 8.
Compared with the direct design without hardware shares, the applied transform scheme in
Section 3 decreased the hardware cost of adders and shifters by 32 and 36%, respectively.
Besides, for VLSI implementation, the design in Section 3 requires less normalized gate counts
than the design does in [29].

For the multiple-standard multiple-mode transform design, this chapter also discussed the
fast algorithm and hardware-sharing-based design of 4 × 4 and/or 8 × 8 inverse transforms
among H.264/AVC, VC-1, HEVC, MPEG-1/2/4, AVS, and VP8 for multistandard video

Recent Advances in Image and Video Coding194

decoders. By only shifters and adders, the decomposition scheme of matrices was used to
develop the hardware-shared scheme. The used structure in Section 4 decreased the number
of shifters and adders by 50 and 75% more than the individual fast algorithm-based imple-
mentation did. Besides, for VLSI implementation, the design in Section 4 requires less nor-
malized gate counts than the designs do in [26, 28, 36, 38].

Acknowledgements

This work was supported by Ministry of Science and Technology, Taiwan, R.O.C. under Grant
MOST 105-2221-E-005-078.

Author details

Chih-Peng Fan

Address all correspondence to: cpfan@dragon.nchu.edu.tw

Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan,
ROC

References

[1] J. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantage, Applications,
New York, NY: Academic, 1990.

[2] ISO/IEC JTC 1/SC 29/WG 1—Coding of Still Pictures, 2009.

[3] ISO/IEC 11172-2 MPEG-1 Video Coding Standard, Information Technology—Coding
of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1,5
Mbit/s – Part 2: Video, 1993.

[4] ISO/IEC 13818-2 MPEG-2 Video Coding Standard, Information Technology—Generic
Coding of Moving Pictures and Associated Audio Information: Video, 1995.

[5] ISO/IEC 14496-2 MPEG-4 Video Coding Standard, Information Technology—Coding
of Audio-Visual Objects – Part 2: Visual, 2004.

[6] T. Wiegand and G. Sullivan, Draft ITU-T Recommendation and Final Draft Interna-
tional Standard of Joint Video Specification, (ITU-T rec. H.264/ISO/IEC 14496-10 AVC,
presented at Joint Video Team (JVC) of ISO/IEC MPEG and ITU-T VCEG), 2003.

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

195

[7] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression—Video Coding for Next-
generation Multimedia, John Wiley & Sons, 111 River Street, Hoboken NJ07030-5774,
New Jersey, United States, 2003.

[8] W. Gao, C. Reader, F. Wu, Y. He, L. Yu, H. Lu, S. Yang, T. Huang, and X. Pan, AVS—The
Chinese Next-Generation Video Coding Standard, National Association of Broadcast-
ers (NAB) Conference, 2004.

[9] L. Yu, S. Chen, and J. Wang, Overview of AVS video coding standards, Signal Process-
ing: Image Communication, vol. 24, issue 4, pp. 247–262, April 2009.

[10] SMPTE, Standard for Television: VC-1 Compressed Video Bitstream Format and
Decoding Process, SMPTE 421M-2006.

[11] J. Bankoski, P. Wilkins, and Y. Xu, Technical overview of VP8, an open source video
codec for the web, IEEE International Conference on Multimedia and Expo (ICME), pp.
1–6, July 11–15, 2011.

[12] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, HEVC: the new gold standard
for video compression: How does HEVC compare with H.264/AVC ?, IEEE Consumer
Electronics Magazine, vol. 1, pp. 36–46, July 2012.

[13] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, Low-complexity transform
and quantization in H.264/AVC, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 598–603, July 2003.

[14] S. Gordon, D. Marple, and T. Wiegand, Simplified use of 8x8 transforms—updated
proposal and results, JVT-K028, 11th Meeting, Munich, Germany, March 2004.

[15] S. Srinivasan, P. Hsu, T. Holcomb, K. Mukerjee, S. L. Regunathan, B. Lin, J. Liang, M.
C. Lee, and J. Ribas-Corbera, Windows media video 9: overview and applications,
Signal Processing: Image Communication, vol. 19, issue 9, pp. 851–875, October 2004.

[16] S. Srinivasan and S. L. Regunathan, An overview of VC-1, Proceedings of the SPIE,
Visual Communications and Image Processing (VCIP), Beijing, China, vol. 5960, pp.
720–728, July 2005.

[17] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, Parallel 4x4 2D transform and
inverse transform architecture for MPEG-4 AVC/H.264, IEEE International Symposium
on Circuits and Systems, vol. 2, pp. 800–803, 2003.

[18] Z. Y. Cheng, C. H. Chen, B. D. Liu, and J. F. Yang, High throughput 2-D transform
architectures for H.264 advanced video coders, IEEE Asia-Pacific Conference on
Circuits and Systems, pp. 1141–1144, December 2004.

[19] K. H. Chen, J. I. Guo, and J. S. Wang, A high-performance direct 2-D transform coding
IP design for MPEG-4 AVC/H.264, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 4, pp. 472–483, April 2006.

Recent Advances in Image and Video Coding196

[20] G. A. Su and C. P. Fan, Cost effective hardware sharing architecture for fast 1-D 8x8
forward and inverse integer transforms of H.264/AVC high profile, IEEE Asia Pacific
Conference on Circuits and Systems, pp. 1332–1335, November 2008.

[21] T. T. T. Do and T. M. Le, High throughput area-efficient SoC-based forward/inverse
integer transform for H.264/AVC, IEEE International Symposium on Circuits and
Systems, pp. 4113–4116, May 2010.

[22] W. Hwangbo and C. M. Kyung, A multi-transform architecture for H.264/AVC high-
profile coders, IEEE Transactions on Multimedia, vol. 12, no. 3, pp. 157–167, April 2010.

[23] M. L. Hsia and Oscal T. C. Chen, Low-complexity inverse integer transform in H.264/
AVC, IEEE International Conference on Multimedia & Expo, pp. 826–830, July 2010.

[24] M. Nadeem, S. Wong, and G. Kuzmanov, Inverse integer transform in H.264/AVC intra-
frame encoder, Sixth IEEE International Symposium on Electronic Design, Test and
Application, pp. 228–233, 2011.

[25] R. Jeske, J. C. de Souza, G. Wrege, R. Conceicao, M. Grellert, J. Mattos, and L. Agostini,
Low cost and high throughput multiplierless design of a 16 point 1-D DCT of the new
HEVC video coding standard, Conference on Programmable Logic (SPL), pp. 1–6,
March 2012

[26] S. Shen, W. Shen, Y. Fan, and Xiaoyang Zeng, A unified 4/8/16/32-point integer IDCT
architecture for multiple video coding standards, IEEE International Conference on
Multimedia and Expo (ICME), pp. 788–793, July 2012.

[27] W. Zhao, T. Onoye, and T. Song, High-performance multiplierless transform architec-
ture for HEVC, IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1668–1671, 2013.

[28] M. Martuza, K. A. Wahid, Implementation of a cost shared transform architecture for
multiple video codecs, Journal of Real-Time Image Processing, vol. 10, no. 1, pp. 151–
162, March 2015.

[29] A. Ahmed, M. U. Shahid, and A. Rehman, N point DCT VLSI architecture for emerging
HEVC standard, VLSI Design, volume 2012, Article ID 752024, pp. 1–13, 2012.

[30] Joint Collaborative Team—Video Coding, CE10: Core transform design for HEVC,
JCTVC-G495, Geneva, Switzerland, 21–30, November 2011.

[31] M. N. Haggag, M. El-Sharkawy, and G. Fahmy, Efficient fast multiplication-free integer
transformation for the 2-D DCT H.265 standard, IEEE International Conference on
Image Processing, pp. 3769–3772, September 2010.

[32] C. W. Chang, H. F. Hsu, C. P. Fan, C. B. Wu, and Robert C. H. Chang, A fast algorithm-
based cost-effective and hardware-efficient unified architecture design of 4×4, 8×8,
16×16, and 32×32 inverse core transforms for HEVC, Journal of Signal Processing
Systems, vol. 82, no. 1, pp. 69–89, 2016.

Fast Algorithm Designs of Multiple-Mode Discrete Integer Transforms with Cost-Effective and Hardware-Sharing...
http://dx.doi.org/10.5772/64985

197

[33] S. Lee and K. Cho, Architecture of transform circuit for video decoder supporting
multiple standards, Electronics Letters, vol. 44, no. 4, pp. 274–275, February 2008.

[34] C. P. Fan and G. A. Su, Efficient low cost sharing design of fast 1-D inverse integer
transform algorithms for H.264/AVC and VC-1, IEEE Signal Processing Letters, vol. 15,
pp. 926–929, December 2008.

[35] G. A. Su and C. P. Fan, Low-cost hardware sharing architecture of fast 1-D inverse
transforms for H.264/AVC and AVS applications, IEEE Transactions on Circuits and
Systems, Part II, vol. 55, no. 12, pp. 1249–1253, December 2008.

[36] H. Qi, Q. Huang, and W. Gao, A low-cost very large scale integration architecture for
multistandard inverse transform, IEEE Transactions on Circuits and Systems, Part II,
vol. 57, no. 7, pp. 551–555, July 2010.

[37] Y. K. Lai and Y. F. Lai, A Reconfigurable IDCT architecture for universal video decoders,
IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1872–1879, August 2010.

[38] K. Wang, J. Chen, W. Cao, Y. Wang, L. Wang, and J. Tong, A reconfigurable multi-
transform VLSI architecture supporting video codec design, IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 58, no. 7, pp. 432–436, July 2011.

[39] K. Wahid, M. Martuza, M. Das, and C. McCrosky, Resource shared architecture of
multiple transforms for multiple video codecs, 24th Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 000947–000950, 2011.

[40] C. P. Fan, C. W. Chang, and S. J. Hsu, Cost effective hardware sharing design of fast
algorithm based multiple forward and inverse transforms for H.264/AVC, MPEG-1/2/4,
AVS, and VC-1 video encoding and decoding applications, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 714–720, April 2014.

[41] C. W. Chang, H. F. Hsu, and C. P. Fan, High-efficiency multiple 4x4 and 8x8 inverse
transform design with a cost-effective unified architecture for multistandard video
decoders, 2014 IEEE Asia Pacific Conference on Circuits & Systems, Okinawa, Japan,
pp. 507–510, November 2014.

[42] C. W. Chang, Fast algorithm based cost-effective and hardware-sharing architecture
designs of multiple-mode discrete integer transforms for multi-standard video Codecs,
Ph.D. dissertation, National Chung Hsing University, Taiwan, 2015.

[43] http://en.wikipedia.org/wiki/Kronecker_product

Recent Advances in Image and Video Coding198

