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Abstract

Thermally sprayed WC-Co-VC coatings are widely used based on their resistance to
abrasive wear. This chapter shows the fabrication procedure of bimodal WC-Co-VC
coatings applied by a high-velocity oxy-fuel (HVOF) thermal spray process. We analyzed
the effects of the mixture content of the nanostructure and microstructure phase on the
mechanical properties and wear resistance of the coating. Additionally, VC was added to
the bimodal mixture and it presented the best characteristics. The combination of VC
additions and a bimodal WC particle size distribution in the WC-Co coatings proved
successful in increasing their mechanical properties, which permitted the coatings
processed in this work to show better mechanical properties than those reported in the
literature for coatingshaving exclusively abimodal WC particles size distribution or those
only doped with VC additions. The effects of nanostructured phase contents on the
microstructure and wear resistance of the coating are included.

Keywords: wear, thermal spray, nanostructured, coatings

1. Introduction

In industrial processes, the materials are exposed to corrosive and erosive environments that
lead lifetime reduction for certain components and trigger, furthermore, high maintenance
costs. In the different wear mechanisms, there is an intersection of phenomena and by this
means a severe damage, for example, in a suction system can be found: cavitation and erosion;
or heat (thermal fatigue) and erosion of a steam turbine blades or abrasion and corrosion, in
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a screw pulp pump by the presence of Cl" ions. Once the wear mechanisms present on an
equipment or component have been determined, there is a need for search for the alloy or
coating, metallic, polymeric, ceramic or a mixture thereof that can prolong its service. The
most critical area of structural and nonstructural components is usually the surface where
the maximum loads are reached (e.g., mechanical and thermal stresses, corrosion, wear and
their combinations thereof).

A material that works at high temperature normally is not operating in protective atmospheres.
Usually the working environment is air and, in this case, the oxidizing agent is oxygen, but it
is also likely that the atmosphere is composed of aggressive gases that damage the material,
Carburization is the formation of metal carbides in a material as a result of exposure to a carbon
containing atmosphere. In service, it can result in loss of mechanical properties over time in
addition to wastage of the material. Sulfidation is a chemical reaction of a metal or an alloy,
with sulfur in some form in its working environment. This produces compounds of sulfur that
usually form on the solid surface or under the surface of the metal or alloy. Sulfidation most
often causes serious deterioration of the solid surface and the vital functional properties of the
affected substance. Nitridation is a process that results in the formation of nitrides in a material.
It results from exposure to reducing, high temperature environments with high nitrogen
activity. Since nitrides are inherently hard, brittle phases, nitridation can produce local or
widespread loss of material strength and possible metal wastage or chemical attack in presence
of salt deposits or ashes [1, 2]. In all environments that trigger corrosion in the above-mentioned
problems, the oxygen activity is high enough to promote oxidative processes. Furthermore,
the operating conditions of the materials forming part of the steam turbines or part of thermal
plant components suffer corrosion processes at elevated temperature where the atmosphere
contains a lot of water vapor, with this being more aggressive atmosphere than the air [3]. In
reducing environments, the degradation of the material is controlled by the activity of species
such as CO/CO, and H,/H,0, and they are usually more aggressive than oxidants, because the
driving force for forming a protective oxide is less favorable [4].

(a)

Figure 1. Steam turbine blades showing corrosion wear.

The protection of the metal components can be done with hard coatings to improve wear
resistance. They are applied with different techniques, with the thermal spraying techniques
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being the most developed in recent years, where its increasing applications is to reduce the
wear in industrial processes. In steam turbine, components like blades, body rotor, nozzle and
auxiliary devices for cooling and lubrication must be developed to work properly under the
required steam conditions for pressure and temperature. The most common vanes failures are
associated with erosion, stress corrosion, corrosion fatigue and fatigue [5]. Some of these
failures are shown in Figure 1.

The thermal spraying is one of the most versatile techniques ever used for coating materials
application to protect components from wear by abrasion, adhesion, erosion, corrosion and
fatigue [6]. This technique tends to extend the lifetime of the components, with the aim of
obtaining high yields for longer and reducing the number of failures. The advanced technology
of thermal spraying provides all types of techniques to the industries, being one of the most
effective resources ever developed to combat premature wear by getting ahead of the failure
or even when the equipment or item stops working in optimal conditions. Hence, it optimizes
equipment availability, the maintenance costs are reduced and the lifetime of the equipment
and machinery is maximized, increasing the reliability of critical systems. Through processes
of high-velocity thermal spraying (HVOF), it is possible to obtain coatings with low porosity
structures, low oxidation and high adhesion, thereby minimizing problems caused by the
degradation processes on the components of steam turbines used for the electric power
generation [7-10]. In this technique, oxygen and fuel gas at high pressures and flow rates are
combined to produce a combustion which produces very high-speed particles and tempera-
tures of about 2000°C, which can be considered low compared to other thermal spraying
processes, such as vacuum or air plasma [11]. These flame characteristics are suitable for the
application of corrosion- and wear-resistant coatings. Figure 2 shows a schematic of high-
velocity oxy-fuel (HVOF).
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Figure 2. Schematic of an HVOF torch.

The materials that are often selected for applications at elevated temperatures must have the
fundamental requirements to resist the corrosion and atmosphere deterioration where they
are set. Usually, they are the austenitic stainless steels, nickel-, cobalt- and titanium-based
alloys and besides the intermetallic materials [12, 13]. The selection of suitable material will
depend on the operating temperature, the atmosphere and lifetime required for the working
component in the equipment.
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It is well known that Ni-based coatings show good corrosion resistance at high temperature
and besides have good wear resistance after addition of W and Mo as alloying elements [15].
These alloys exhibit improved properties due to the formation of an amorphous phase that
came from a rapid solidification and a suitable alloy composition [16, 17]. Some researchers
have found that spraying the alloys Ni-Mo-Cr-B to make coatings using atmospheric plasma
exhibited improved wear and corrosion resistance due to the formation of an amorphous phase
coming from the rapid solidification and a suitable alloy composition [18]. An amorphous alloy
phase in the protective coating is achieved by adding some appropriate refractory materials
such as Mo and W and metalloids such as B and C in the base powder [19]. Those additions
result in better resistance to abrasion and wear, while providing resistance to corrosion in
aqueous and alkaline media [20, 21].

Protective coatings are widely used in the aircraft industry because they provide better surface
properties of the structures where they are deposited. Besides, the characteristic that they must
possess is the high structural performance due to the conditions of service that are subjected.
Innovation in this area has focused on nanotechnology and gives special relevance in the world
of materials. Regarding coatings, the extreme mechanical conditions that they must resist must
be taken into account. Many components of an aircraft are subject to wear conditions; to
address this problem, the pieces are coated with materials having good tribological properties.
The components that are subject to wear and corrosion are generally those found in the
undercarriage. The landing gear systems must withstand thousands of cycles of fatigue and
shear stresses during the service life of the aircraft, whereby the material that forms the
protective coating must have a high resistance to fatigue. Many components of the landinggear
are coated with hard chrome and the inner surface of the cylinder sliding as well. However,
environmental regulations require the replacement of those coatings where the use of hexa-
valent chromium [14] is required. Given this requirement, the coatings obtained by HVOF
thermal spraying today are a viable alternative, enhancing the benefits obtained with tradi-
tional hard chromium coatings, both wear resistance and corrosion resistance.

The thermal spraying of WC-Co, WC-CoCr or Cr;C,-NiCr by HVOF, that is, applying a
consistent coating made of metal matrix reinforced with high hardness ceramic inclusions [22]
plus the addition of nanocrystalline WC particles, provides to the coatings an improvement in
the hardness and tribological properties [23, 24]. The WC-Co coatings applied by HVOF are
useful for operating temperatures up to 900°C, while the maximum pressure is up to 1200 MPa,
its friction coefficient is only 0.01 (80 times lower than steel). The WC-Co coatings applied by
HVOF containing nanoparticle sizes have better mechanical and tribological properties by
providing an effective control of processing variables during thermal spraying application [25].
The wide applications as protective coatings permit to be an excellent choice on steam turbines
in the industrial power generation sector and at the same time useful in the aeronautical
industry.

This means that the corrosion behavior depends on the phases and microstructure of the
applied coating.

Regarding the opposite corrosive behavior of the two main components of the alloy, Co and
W, in respect to the influence of the medium [26], it is described that the cobalt shows stable
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passivity in alkaline solutions, while W is readily soluble; the situation observed in acid
electrolytes is completely reverse. Therefore, these hard metals typically fail by corrosion of
the less resistant phase, which is triggered by the testing environment [27]. On the other hand,
it has to be taken into consideration the galvanic interactions between the existing phases,
where typically the WC is nobler than Co [28].

It has been found, according to the literature reports, that VC effectively retards thickening of
tungsten carbide grains after prolonged heat treatment, [29] and furthermore, promotes the
formation of compounds (W, V) C, inhibiting, beside, the formation of brittle species [30]. The
corrosion resistance of WC-Co alloys can be improved with the addition, in small quantities,
of transition carbides. An example of this is the addition of Cr;C,, in amounts of only 0.5%,
improving significantly the corrosion resistance [31]. However, the influence of the additions
of VC was not so easy to assess as the case of Cr;C,.

Some studies have found that small additions of VC in WC-Co had a neutral effect on the
corrosion resistance [31]. On the other hand, the tungsten carbide alloys reinforced with cobalt
and chromium (cermets) and thermally sprayed by HVOF are currently good substitutes for
hard chrome, typically present in some components such as aircraft landing gears, hydraulic
rods, ball valves, printing rollers, etc. [14]. The use of nanocrystalline particles of WC is
expected to improve properties in terms of hardness and tribological coatings [23, 24, 32, 33];
however, due to their high surface area-to-volume ratio, these suffer grain size growth and
oxidation during their passage through the flame, which is detrimental to the coatings in good
final properties such as hardness and wear resistance [34]. However, it has been reported, in
different works [35, 25], a better mechanical and tribological properties using WC-Co coatings
enriched with nanoparticles and deposited under HVOF technique, provided that an effective
control of the processing variables was carried out during thermal spraying. The resistance
against wear and erosion depends on the thickness of the coatings [36] and also on its hardness
[37].

The processing and characterization of tungsten carbide coatings with a bimodal particle size
distribution, that is, nanostructured and microstructured particle sizes of WC-Co, have been
reported by several authors [35, 25]. The use of nano-sized particles in the compounds of cermet
has resulted in a greater hardness than that found in their counterparts containing micron size
particles. Furthermore, their combination, as bimodal particle size distribution, the under
HVOF thermally applied WC-Co coating results in improved wear resistance, compared to
those coatings produced solely from nano-sized powders. Excessive decarburization of
nanoparticles by the torch flame and the formation of W,C in the coating are considered to be
responsible for the decrease in wear resistance of the mentioned coatings. Exposure to high
temperature of WC nanoparticles in the torch flame during the HVOF process results in an
undesirable increment of such particles. As aresult, a decrease in hardness and wear resistance
is observed. On the other hand, one effect of the mixed matrix hardening, done together by
nanoparticles plus the strong arrangement of micrometer WC size grains, was proposed as
possible reasons for the improved wear resistance of the bimodal coatings.

Different studies have reported the influence of VC additions in the kinetics of grain coarsening
of WC-Co cermets [37, 38]. However, there is little information on the influence by additions
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of VC in the properties of WC-Co coatings applied with HVOF technique. Some authors [39,
40] have reported an increase in abrasion resistance of WC-Co-VC coatings compared to their
commercial counterparts WC-Co coatings.

This research explored the influence by additions of VC powders in bimodal WC-Co coatings
manufactured with HVOF thermal spraying, their mechanical properties and compared with
those said properties, found in commercial counterparts.

2. Coatings fabrication

The nanostructured WC-Co powder was processed by mechanical milling in a Simoloyer
CMO01 high-energy ball mill for 20 h at 600 rpm under an argon atmosphere. The powder was
then agglomerated employing a 2% methyl cellulose solution to form slurry which in turn was
baked in a muffle at 80°C for 24 h under an inert nitrogen atmosphere. A solid block of material
was then obtained and crushed into powder. The resulting powder was sieved through 450
and 635 meshes, +32 and +20 um, respectively. Three powders were employed as feedstock in
the present work. A commercial WC-12 Wt%Co powder, a bimodal mixture of commercial
and nanostructured WC-Co powder having the same chemical composition (75 wt% commer-
cial-25 wt% nanostructured), and a bimodal mixture doped with additions of 2 wt% vanadium
carbide. The bimodal and bimodal doped with VC mixture were mixed mechanically in a
double cone blender for 30 min at 20 rpm before being thermally deposited by HVOF.

All powder mixtures were sprayed on AISI 3014 stainless steel substrates employing a Sulzer
Metco DJH 2700 hybrid HVOF gun, with propane being the fuel gas. A KUKA KRC robot arm

Load P (N)

Wear Track

Ball

Disc

U (rpm)

Figure 3. Schematically Pin-on-Disk test to ASTM G 99 [41].
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was employed in order to control the gun transversal speed, at 1.5 m/s for all the experiments.
Also, constant spray distance and powder feed rate (229 mm and 38 g/min), respectively, were
employed.

The microstructure of the coatings was evaluated in the transversal section using a Philips XL
30 ESEM. Coating thickness, interface contamination, oxide contents and porosity percentage
were determined from Backscattered electrons micrographs employing SigmaScan image
analysis software. The Pin-on-Disk test is a model test for friction and wear determination of
two solid surfaces being in sliding contact (pin or ball against coated disk). The test method
and procedure are described in ASTM G99-94A [41] and shown in Figure 3. The normal loads
applied to the ball are typically in the range of 1-10 N. As a result of rotational speed and
radius of the sliding path, the relative velocity between ball and surface varies between v=0.19
and 0.73 m/s. The relative humidity can be adjusted between 5 and 95% using different salt
solutions.

Sliding wear measurements were performed in a CSM Instruments Pin-on-Disk 18-280
Tribometer employing a 10 N load. Samples were tested at ambient temperature using 6-mm-
diameter 440C stainless steel balls as the counterpart. Testing time was 2000 min and the linear
speed was 5 cm/s. Vickers microhardness of all coatings was measured transversally in an
LECO M440H1 microhardness tester, using a 500-gf load and a 15-s dwell time.

3. Microstructured of the powders and coatings

The morphology of the initial powders used in coatings in this investigation is shown in Figure
4. The powders of WC-Co nanostructured show long and irregular conglomerates small
particles of WC and Co, while the commercial powder consists of spherical shape particles,
which is a typical characteristic of the sintered agglomerate powder mixtures. Furthermore,
bimodal mixtures showed a combination of fine powder agglomerates of nanostructured WC-
Co and spherical particles, near in shape to commercial powder. VC powder shows a smaller
particle size in relation to the commercial and nanostructured powders.

The microstructure of the three-alloy powder obtained by thermal spraying coatings is
shown in Figure 5. From the BSE micrographs, it can be observed that the microstructure of
the three coatings are typical of WC-Co coatings with WC islands, having different size
distribution are embedded in a cobalt matrix. As can be seen from Figure 6, the WC particles
size distribution was similar to the three studied coatings. The characteristic feature of the
observed coatings is the strong refinement of their microstructures. The coatings contained
different phases, which can be distinguish by the diversification of the microstructure contrast.
A good coatings adherence was observed. There are discontinuities between the substrate and
coatings. The roughness of the substrate contributes to the better adhesion of deposited
coatings and as it is necessary in the thermal coatings technologies. This result indicated that
the deposited coatings have nanometric microstructure. Nanometric coatings were deposited
by thermal spraying HVOF method, which confirms the possibility to apply nanostructured
coatings by this technique [42]. The statistical analysis showed a slight influence of VC
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additions on the final size of WC grains within the coatings, as a lower mean WC size was
measured in VC-doped coatings compared to that found in the bimodal WC-Co coating. On
the other hand, the calculated mean WC particle size for bimodal mixture was slightly higher

than that of the commercial coating.

SEl  20kV  WD14mm SS40 sum
UANL-CIIIA WC NANO
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Figure 4. Micrographs of the starting powders, (a) nanostructured WC-Co after agglomeration, (b) WC-Co commercial,

(c) bimodal mixture and (d) VC powder.

Figure 5. Backscattered electron micrographs in coatings WC-12Co, (a) commercial, (b) bimodal and (c) bimodal mix-

ture + 2wt% VC.
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Figure 6. Particle size distribution of WC-Co coatings applied by HVOF.

The average porosity, oxide content, mean WC particle size, thickness and microhardness of
the coatings are included in Table 1. The VC-doped and commercial coatings showed the
highest levels of porosity, whereas the commercial alloy contained higher interface contami-
nation and oxide contents than those found in bimodal mixture. Average microhardness levels
of bimodal and VC-doped coatings were comparably higher than the microhardness measured
in commercial samples. The thicknesses of all WC-Co coatings fell within allowable limits
commonly accepted in the industry for the processing of OEM (Original Equipment Manu-
facturer) components and/or reconstruction of worn parts [43].

Commercial alloy Bimodal WC-12Co Bimodal WC-12Co-(2% VC)

Thickness (um) 154+ 8 133+ 6 9 +4
WC mean particle size (um)* 1.1 1.5 1.2
Porosity (%) 44+0.1 39+0.1 46+02
Oxide content (%) 0.27 £0.02 0.16 £0.02 0.19 £0.02
Interface contamination (%) 323+1 21.1+1 251+4

All average values with standard error from 10 measurements.
* From statistical analysis shown in Figure 5.

Table 1. Summary of properties from microstructure evaluation of coatings.

The morphology of the WC grains in all HVOF coatings processed in this work is less angular
than that found in sintered WC-Co cermet, as already mentioned by different authors [39-44].
Although the coatings were processed from powders having different particle size distribu-
tions, the average particle size of WC in the final coating was similar. The effects of processing
conditions of thermal spraying on the final microstructure of the coatings were the initial
microstructure and size of the precursor particles of the WC-Co powders as key factors. This
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can be attributed to the deposition conditions, which were the same for all processed samples.
In all cases, a relationship 4.8 oxygen/propane was used in order to reach a temperature slightly
lower than the maximum attainable (T.,,,,), namely 2828°C, for a certain gas mixture using the
relationship of 4.5 O,/C;H; [45]. Lower flame temperature that T,,,, is preferred when nano-
structured materials are processed, in order to preserve a fraction of the nanostructures in the
coating; however, very low flame temperatures should be avoided since they result in coatings
that contain high porosity. The oxygen/fuel used here resulted in samples with levels of
porosity within the range reported for WC-Co coatings applied by HVOF [35, 46]. Coatings
with addition of 2% of VC showed higher porosity compared to commercial coatings; this same
behavior has been reported by Luyckx and Machio [39] when processed WC-Co coatings with
VC additions. The commercial WC-Co coating contains the highest amount of oxides; this kind
of contamination appears to have an important effect on the hardness and wear performance
as shown by the commercial coating with lower hardness and higher wear rate than the whole
coatings studied here. An optimization of the oxygen/fuel ratio, distance and transverse
velocity spray gun has to be performed in order to find the conditions that may lead to reduced
content of oxides.

4. Microhardness

The microhardness of the three coatings obtained by thermal spraying is shown in Figure 7.
The coating hardness is a key factor to optimize screening conditions and parameters, as well
as comparisons between different deposited coatings. Bimodal WC-Co coatings and bimodal
+ 2% VC doped showed the highest hardness. These superior mechanical properties can be
attributed to the bimodal structure of the tungsten carbides WC which provides a balanced
amount of particles between micrometer sizes of WC and nano-sized particles of WC, where
the latter being more prone to decarburization in the torch flame due to its high surface-to-
volume ratio.
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Figure 7. Microhardness of different coatings produced by HVOF.
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5. Wear resistance

The variation of friction coefficient as a function of testing time from the Pin-on-Disc (POD)
tests is included in Figure 8. When the steady state of wear conditions was reached by sliding
in the POD testing set-up, the commercial coating showed greatest value (u = 0.54), while the
bimodal mixture added with 2% of VC coatings showed comparable levels of wear slightly
lower (u = 0.48) but still the lowest compared to the whole samples.

0.56
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Figure 8. Friction coefficient as a function of testing time from POD test.

As final conclusion, the friction coefficient of bimodal WC-Co + 2% VC coatings was less than
the commercial coatings. The addition of VC in bimodal coatings resulted in a slight increase
in the mechanical and wear resistance properties. The same behavior is described by Guile-
many et al. [25] for bimodal WC-Co coatings, who showed lower values of friction coefficient
(1) in nanostructured systems and in commercial, both with the same chemical composition.
The wear resistance of WC-Co coatings can be explained by the limited amount of debris
removed during the sliding wear tests, the nanostructured WC-Co coatings contain a lower
volume fraction of cobalt than commercial coatings. Therefore, it has been shown in various
studies that a bimodal particle size distribution of WC improves response to wear on WC-Co
coatings use conditions without lubrication (Luyckx and Machio [39]). Therefore, this work
shows that a combination of micro- and nanostructures is beneficial to improve the wear
resistance of WC-Co coatings.

The major wear mechanism of the HVOF hard metal coating is connected with the gradual
primary loss of the metal matrix from the areas between coatings hard particles, followed by
the weakening of their particles and pulling them out of the coating surface. The design of the
CSM Tribometer does not allow the wear debris to naturally fall off; they are trapped in the
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wear track and serve as an abrasive medium. Then the mechanism of wear changes from sliding
to abrasive wear [47, 48].

The wear mechanism of the cermet coatings is described as the contact between the pin and
coatings-carbides, which are slightly protruding from the matrix due to grinding. Such
conditions lead only to a very slight wear [49].

The wear resistance strongly depends on the smoothness of the coating surface [50, 51], which
becomes better if the size of grains becomes smaller. From this point of view, the refinement
of microstructure coating by thermal spraying has strong influence on their wear properties.

The dependence of wear resistant to the microhardness level implicates for searching other
reasons of resistance against the wear of the deposited coatings. Some data suggest that the
wear mechanisms depend on the roughness of the coating face [50, 51].

These results indirectly indicate that the wear resistance is a complicated mechanism and
depends not only on the hardness but also on the state of the coating surface and its internal
microstructure. Specifically it was found that the refinement of microstructure to a nanometric
dimensions favorably influences the wear resistance.

6. Conclusion

As general conclusion, it can say to that the vanadium carbide additions to bimodal WC-Co
deposited by HVOF make coatings that slightly increase the mechanical properties of micro-
hardness with 15% and tribological properties decrease in friction coefficient to 0.48. Then, the
obtained hardness in bimodal WC-Co coatings is primarily influenced by the reinforcing WC
particles.

Other conclusions are as follows:

* There is slight influence of the VC additions on the final WC grain size present in coating.
Nevertheless, the mean WC grain size doped with VC was shorter than the grain size in
bimodal WC-Co coatings. On the other hand, the WC particle size in the bimodal mixture
was slightly larger than that in commercial alloy coatings.

* The commercial WC-Co coating contains the highest amount of oxides; this kind of con-
tamination appears to have an important effect on the reduction of hardness and wear
performance.

* In microhardness, the bimodal WC-Co coatings and bimodal + 2% VC doped showed the
highest hardness. These superior mechanical properties can be attributed to the bimodal
structure of the tungsten carbides WC which provides a balanced amount of particles
between micrometer sizes of WC and nano-sized particles of WC

* In steady state, the friction coefficient for commercial coatings is larger (u = 0.54) than the
bimodal mixtures +2% of VC coating (i = 0.48), being slightly lower the wear in the last one.



Wear Resistance of Thermal Spray WC-Co-VC Nanostructured Coatings
http://dx.doi.org/10.5772/64575

Acknowledgements

We also thank the Academic Body UANL-CA-316 “Deterioration and integrity of composite
materials” and the Advanced Technology Center (CIATEQ A. C.) for allowing the use of their
facilities.

Author details

José Cabral Miramontes!, Citlalli Gaona Tiburcio!, Abraham Velasco Tellez!,
Carlos Poblano Salas? and Facundo Almeraya Calderon’

*Address all correspondence to: jocamira@hotmail.com

1 Autonomous University of Nuevo Leon (UANL), Faculty of Mechanical & Electrical
Engineering (FIME), Center for Research and Innovation in Aeronautical Engineering,
Apodaca, Nuevo Leon, Mexico

2 Advanced Technology Center (CIATEQ), El Marqués, Querétaro, Mexico

References

[1]
(2]
[3]

[4]
[5]
[6]

[7]

N. S. Stoloff. Mater. Sci. Eng. A. 1998;258:1-14.
N. S. Stoloff, C. T. Liu, S. C. Deevi. Intermetallics. 2000;8:13-20.

B. Szczucka Lasota, B. Formanek, A. Hernas. ]J. Material. Process. Technol. 2005;164—
165:930-934.

G. Ji, O. Elkedimc, T. Grosdidier. Surf. Coat. Technol. 2005;190:406—416.
W. Z. Wang, F. Z. Xuan, K. L. Zhu, S. T. Tu. Eng. Fail. Anal. 2007;14:632-641.

N. F. Ak, C. Tekmen, I. Ozdemir, H. S. Soykan, E. Celik. Surf. Coat. Technol. 2003;173-
174:1070-1073.

J. A. Cabral Miramontes, C. Gaona Tiburcio, F. Almeraya Calderdn, F. H. Estupifian
Lopez, G. K. Pedraza Basulto, C. Poblano Salas. Int. J. Corros. 2014;2014. Article ID
703806, 8 pages, http://dx.doi.org/10.1155/2014/703806

J. G. Chacon Nava, A. Martinez Villafafie, F. Almeraya Calderon, J. A. Cabral Mira-
montes, M. M. Stack. Tribol. Int. 2010;43:1307-1317. d0i:10.1016/j.triboint.2009.12.012

T. Kinos. Proc. NTPC, 1994, 357.
K.A. Khor, N.L. Leh: Proc. NTSC, 1993:613.

63



64  Advancesin Tribology

[11]

[12]
[13]
[14]

[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

J. R. Davis, editor. Handbook of Thermal Spray Technology. 1st ed. Prepared under the
direction of the Thermal Spray Society Training Committee. 2004. 52, 54 and 263 p.

M L. Lau, H. G. Jiang, W. Nuchter, E. J. Lavernia. Phys. Status Solidi. 1998;166:257.
T. Grosdidier, A. Tidu, H. L. Liao. Scr. Mater. 2001;44:387.

C. Bartuli, T. Valente, F. Cipri, E. Bemporad, M. J. Tului. J. Therm. Spray Technol.
2005;14:187195.

J. C. Tan, L. Looney, M. S. J. Hashmi. J. Mater. Process. Technol. 1999;92:203.
S. K. Das, E. M. Norin, R. L. Bye. Mater. Res. Soc. Symp. Proc. 1984;28:233.
C. H. Lee, E. P. Yoon. Surf. Coat. Technol. 1998;99:203.

A.H. Dent, A.]J. Horlock, D. G. McCartney, S. ]. Harris. Mater. Sci. Eng. 2000;A283:242—
250.

C. H. Lee, K. O. Min. Surf. Coat. Technol. 2000;132:49-57.

A. H. Dent, A. J. Horlock, D. G. McCartney, S. J. Harris. Surf. Coat. Technol.
2001;139:244-250

T. S. Sidhu, S. Prakash, R. D. Agrawal. Thin Solid Films. 2006;515:95-105.

N. Espallargas, ]. Berget, ]. M. Guilemany, A. V. Benedetti, P. H. Suegama. Surf. Coat.
Technol. 2008;202:1405-1417.

B. R. Marple, J. Voyer, J. F. Bisson, C. J. Moreau. J. Material. Process. Technol
2001;117:418-423.

J. He, M. Ice, S. Dallek E. J. Lavernia. ]J. Metall. Mater. Trans. A. 2000;31 A:555-564.
J. M. Guilemany, S. Dosta, J. R. Miguel. Surf. Coat. Technol. 2006;201:1180-1190.

M. Pourbaix. Atlas of electrochemical equilibria in aqueous solutions. National
Association of Corrosion Engineers (NACE); 1974.

S. Hochstrasser-Kurz, D. Reiss, T. Suter, C. Latkoczy, D. Giinther, S. Virtanen, P. J.
Uggowitzer, and P. Schmutz. Electrochem. Soc. 2008;155(8):415-426.

G. Mori, H. Zitter, A. Lackner, M. Schretter. G. Kneringer, P. Rodhammer, H. Wildner,
editors. 15th International Plansee Seminar; Reutte: Plansee Holding AG: 2001. p. 222-
236.

W. Kroemmer, P. Heinrich. C. Berndt, J. Heberlein, R. Tucker, C. Moreau, editors.
Thermal Spray; Beijing, China: Global Coatings Solutions; 2007. p. 118-122.

T.D. Xiao, Z. Zhang, D. M. Wang, R. W. Rigney, P. R. Strutt. Tungsten Hard Met. Refract.
All. 2000;25-27:161-167.



[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]
[50]
[51]

Wear Resistance of Thermal Spray WC-Co-VC Nanostructured Coatings
http://dx.doi.org/10.5772/64575

C. N. Machio, D. S. Konadu, J. H. Potgieter, S. Potgieter Vermaak, Van der Merwe.
International of Corrosion. 2013(2013);:506759.

A. I Gusev. Effects of the nanocrysralline state in solids. 1st ed. Phys. Usp.; 1998. 49-76
p.

F. gartner, t. K. Bormann, H. Kreye, N. Mitra. ]. Metast. Nano Mater. 2000;8:933-940.
P. H. Shipway, D. G. Mccartney, T. Sudapraset. Wear. 2005;259:820-827.

Y. Qiao, T. E. Fischer, A. Dent. Surf. Coat. Technol. 2003;172:24-41.

N. G. Hashe, J. H. Neethling, P. R. Berndt, H. O. Andrén, S. Norgren. Int. ]. Refract. Met.
Hard Mater. 2007;25:207-213.

F. Arenas, I. B. de Arenas, J. Ochoa, S. A. Cho. Int. J. Refract. Met. Hard Mater.
1999;17:207-213.

K. Choi, N. M. Hwang, D. Y. Kim. Powder Metall. 2000;43:168-172.
S. Luyckx, C. N. Machio. Int. J. Refract. Met. Hard Mater. 2005;25:11-15.
C. N. Machio, G. Akdogan, M. J. Witcomb, S. Luyckx. Wear. 2005;258(1-4):434—442.

ASTM G99-94a. Standard test method for wear testing with a Pin-on-Disk apparatus
(1995-00).

J. Gang, ]J. P. Morniroli, T. Grosdidier. Scr. Mater. 2003;48:1599-1604.

B. D. Sartwell, K. O. Legg, J. Schell, ]. Sauer, P. Natishan, D. Dull, J. Falkowski, P. Bretz,
J. Deverauz, C. Edwards, D. Parker. Naval Research Laboratory Report. 2004;:NRL/MR/
6170-04-8762.

H. De Villiers Lovelock, S. Luyckx. 1st ITSC Int. Thermal Spray Conference; Montreal,
Canada. 2000. p. 647-656.

W. Kroemmer, P. Heinrich. C. Berndt, J. Heberlein, R. Tucker, C. Moreau, editors.
Thermal Spray; Global Coating Solutions; Beijing, China. 2007. p. 118-122.

T. D. Xiao, Z. Zhang, D. M. Wang, Y. Wang, R. W. Rigney, P. R. Strutt. Tungsten Hard
Met. Refract. Alloys 2000;25-27:161-167.

S. Houdkova, M. Kasparova, F. Zahalka. Vrstvy a Poclaky; Trencin; 2007. p. 49.

B. Bhushnan. Introduction to Tribology. 1st ed. NY, USA: John Wiley and Sons; 2002.
G. Bolelli, V. Cannillo, L. Lusvarghi, T. Manfredini. Wear. 2006,261:1298-1315.

H. jianhong, ]J. M. Schoenung. Mater. Sci. Eng. A. 2002;336:274-319.

K. Holmberg, A. Matthews, editors. Coating tribology: properties, mechanisms,
techniques and applications in surface engineering. 1st ed. B. V. Nederland: Tribology
and Interface Engineering Series, Elsevier; 2009.

65



ntechOpen

ntechOpen



