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Abstract

Biomarkers of reactive oxygen species serve as indicators of oxidative stress in the
pathology of cardiovascular diseases. This chapter presents an overview of the various
biomarkers available to quantify oxidative stress to advance the understanding of the
pathophysiology of cardiovascular diseases as well as to serve as an adjunct in their
diagnosis and prognosis. The plasma levels of reactive oxygen species themselves are
unstable  and  unreliable  markers  of  oxidative  stress.  The  commonly  used  stable
biomarkers are derivatives of oxygen radicals such as products of lipid peroxidation
and protein oxidation, with isoprostanes and malondialdehyde (MDA) being the most
widely used biomarkers due to higher specificity and ease of measurement. Recently,
micro‐RNA is emerging as stable and specific biomarkers for detection of heart failure.
Other biomarkers have a role in certain conditions; for example, advanced oxidation
protein  products  indicate  acute  inflammation,  whereas  advanced  glycation  end
products serve as indicators of chronic disease.

Keywords: biomarkers, reactive oxygen species, isoprostanes, lipid peroxidation, car‐
diovascular diseases

1. Introduction

Reactive oxygen species  (ROS) are  formed as  by‐products  of  cellular  activity  or  cellular
metabolism or cellular respiration. They have useful function‐serving roles in cell signaling,
cell differentiation, cell immunity, etc., when present in low concentrations, all of which are
important in maintaining the body's physiological functions known as redox signaling [1].
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Their concentration is controlled by the various antioxidants produced in the body such as
superoxide dismutases,  catalase,  and glutathione peroxidase,  with the goal  to keep ROS
concentration low [2]. Oxidative stress is a condition resulting from excessive reactive oxygen
species due to either increased production or inadequacy of antioxidants to eliminate them.
This increase in ROS results in damage to the cell which includes oxidizing lipids, nucleic
acids, and proteins, thus leading to a change or loss in their function and ultimately causes
cell death by apoptosis or necrosis. Due to this effect on the cells, oxidative stress has been
implicated in aging [3] as well as many diseases including but not limited to cardiovascular
disease [4], neurodegenerative diseases [5, 6], cancer [7], and diabetes [8].

Biomarkers are measurable characteristics of a biological condition; in this case, biomarkers of
ROS serve as indicators of oxidative stress and how it influences a given disease. Hallmarks
of a good biomarker are sensitivity, specificity, ease of obtaining and measuring samples, and
cost‐effectiveness. The quantification of oxidative stress with biomarkers is important not only
in understanding the pathophysiology of cardiovascular disease but also in the diagnosis,
prognosis as well as in designing new therapeutic measures for individual intervention.
Oxidative stress plays a major role in the pathology of cardiovascular disease. In the heart,
oxidative stress results in the inhibition of Na+‐K‐ pump [9]. The mitochondrial electron
transport chain and enzymes xanthine oxidase and nicotinamide‐adenine dinucleotide
phosphate (NADPH) oxidase are the main producers of ROS. Risk factors and conditions
which predispose to a cardiovascular event such as smoking, hypertension, atherosclerosis,
hypercholesterolemia, diabetes, and obesity increase the effect of these enzymes which results
in an increased production of ROS [10, 11].

2. ROS as biomarkers

ROS themselves act as biomarkers, their plasma levels being indicators of ROS production. A
method known as the reactive oxygen metabolites (ROM) kit is used to measure total oxidative
stress and measures superoxides (02‐) and hydroxyl radical (HO) as well as hypochlorous acid
(HOCl) and hydrogen peroxide (H2O2) [12] among others. This kit measures reactive oxidants
in biological fluids and has been used to assess oxidative stress in animals such as in a study
on ewes done by Rizzo et al. [13]. Cytochrome C reduction has been used in many studies to
measure the production of superoxide (O2

‐) in the atrium [14], mouse aorta [15], and vessels
[16]. Chemiluminescent probes which release photon when in contact with ROS can be
detected and used for various ROS measurements with the lucigenin‐enhanced chemilumi‐
nescence being the most commonly used to understand the way superoxide and diseases
related to the cardiovascular system are affected in tissues [10]. Electron spin resonance detects
free radical by the presence of its unpaired electron. Reactive radicals are detected by addition
of probes [10]. As of 2003, the spin traps were not fit to be used in humans due to the potential
for toxicity, but they can be used on tissues and body fluids; for example, PBN was used to
show free radicals in coronary sinus blood during bypass surgery [17]. Aromatic traps for free
radicals such as salicylate have been used in studies to detect superoxide in myocardial
infarction [18]. High levels of dityrosine, an oxidation product of ROS, have been used to
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demonstrate the role of oxidative damage in atherosclerotic plaques [19]. Even though each
reactive oxidant can be measured individually, they have drawbacks of being too costly and
time‐consuming. Their property of being inherently unstable with short half‐lives of merely
seconds, both of which combined with the antioxidants in the circulation, results in very low
intracellular concentration of ROS thus making them unreliable markers of ROS.

The derivatives of oxygen radicals such as products of lipid peroxidation and protein oxida‐
tion on the other hand are stable and thus are more commonly used to measure the pres‐
ence of ROS. The serum derivatives are new biomarkers of ROS which are mainly indicators
of hydroperoxide levels produced by lipid peroxidation and have been shown to be high in
atrial fibrillation [20]. The diacron reactive oxygen metabolites (dROM) test is an inexpen‐
sive analysis which measures ROS in both serum and plasma.

3. Peroxidation of lipids biomarkers

Lipids, especially polyunsaturated lipids, are more susceptible to oxidative damage due to the
presence of many double bonds in their molecular structure [21], and thus, the indicators of
lipid peroxidation are important indicators of free radicals. The presence of biomarkers in
cardiovascular disease confirms the hypothesis that lipid peroxidation contributes to the
development of cardiovascular diseases. There are many biomarkers of lipid peroxidation—
MDA and isoprostanes being the most widely used. Others are lipid hydroperoxides, oxy‐
sterols, and oxidation resistance assays.

4. Isoprostanes

More accurate biomarkers of lipid peroxidation are isoprostanes along with its metabolites as
stated in a study done by the National Institute of Health (NIH) [22]. In 1990, Roberts and
Morrow discovered F2‐isoprostane formed by the peroxidation of arachidonic acid [23] which
is polyunsaturated fatty acid found in the cell membrane phospholipids and is one of the many
targets of ROS. They are specific indicators of lipid peroxidation both in vitro and in vivo [24]
and are stable compounds which are formed in large quantities in vivo following oxidative
damage such as with CCl4 which is a producer of free radicals [25] as well as having detectable
amounts present even in non‐injured tissue making them reliable as a biomarker of ROS [26].
Isoprostanes are excellent biomarkers and have numerous advantages over other biomarkers
of oxidative stress; they are chemically stable markers and are formed in vivo. They are specific
to lipid peroxidation and are not affected by the dietary lipid content [27]. Since they are
detectable in biological fluids, they have the significant advantage over other oxidative stress
markers due to the ease of measuring them since they can be measured by noninvasive
methods extracellularly in the urine, plasma, and tissue [27, 28]. High levels of F2‐isoprostanes
are found in many human diseases such as coronary heart disease [29], obesity, cancer, and
even genetic disorders [30]. They are shown to be increased in risk factors such as smoking,
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obesity, hypercholesterolemia, and myocardial ischemia reperfusion [31–33] as well as in
atherosclerosis [34]. They are also observed in bypass [35] and angioplasty. The extent of lipid
peroxidation can be measured by calculating the level of F2‐IsoPs which is esterified in
phospholipids due to them being initially formed esterified and subsequently gain their free
form [27]. In humans, the two major metabolites of isoprostane which are detectable in the
urine are 2,3‐dinor‐15‐F2t‐IsoP and 2,3 dinor‐5,6‐dihydro‐15‐F2t‐IsoP [36]. Elevated levels of
8‐isoprostane in the plasma and urine are also observed in cardiovascular disease [37]. There
are many other derivatives identified [38]. The method for detecting isoprostanes is gas
chromatography‐mass spectrometry (GC‐MS) and liquid chromatography‐mass spectrometry
(LC‐MS), but drawbacks in using mass spectrometry is the expense and time required for
measurement [22]. ELISA‐based isoprostane detection is currently most reliable indicator of
lipid oxidation [39]. There are commercially available kits to measure them using the sandwich
ELISA method where the isoprostanes in biological samples compete with isoprostane
conjugated with an enzyme to bind to an isoprostane‐specific antibody present in the micro‐
plate. The activity of the enzyme results in increased intensity of color development with
increased amount of conjugated isoprostane bound. Isoprostanes are biomarkers of choice, but
since the results obtained by these two methods do not corroborate, the result of the immune
assays is yet to be given clinical validation [40]. There have been studies showing the variation
in isoprostane levels according to the time of day, and thus, this needs to be taken into account
when further research is conducted [41, 42].

5. MDA

Malondialdehyde (MDA) is a ketoaldehyde which is produced as an end product of polyun‐
saturated fatty acid and is found in increased concentration in tissue injury. It forms a red
pigmentation when it reacts with thiobarbituric acid. This thiobarbituric acid‐reactive sub‐
stance (TBARS) assay can be used to measure lipid peroxidation using spectrophotometry. In
relation to cardiovascular disease, elevated levels of MDA are associated with smoking [43].
They are seen to be elevated with the progression of atherosclerosis [44] and are predictors of
future cardiovascular events in patients with coronary artery disease [45]. Limitations of this
method include low specificity since TBARS includes many other products of lipid peroxida‐
tion other than MDA [46], tendency for inaccurate results due to the varying results generated
with different assay conditions used as well as the production of artifacts due to the fact that
the MDA measured is mostly generated in vitro [47] with most of the MDA formed due to the
high temperature used in the procedure [48]. Now, high‐pressure liquid chromatography
(HPLC) is preferred over TBARS due to higher specificity [49]. Commercially available ELISA
kits are also available for MDA detection which show better specificity [50].

6. Isolevuglandins

Isolevuglandins (IsoLGs) are also produced due to oxidation of arachidonic acid, but unlike
isoprostanes, they are highly reactive and react with primary amines for example phosphati‐
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dylethanolamine to form lactam and hydroxylactam. The unreacted isolevuglandins are not
detected in the tissues or cells. They have been implicated in many disease processes such as
atherosclerosis and neurodegenerative diseases [51]. Though methods such as mass spec‐
trometry and immunohistochemical studies have shown increased levels of IsoLG, there is still
not enough evidence connecting them with severity of a disease or of their use in predicting
the onset of disease. Further studies need to be conducted to determine the utility of IsoLG as
clinical biomarkers.

7. Oxidation of proteins biomarkers

7.1. Myeloperoxidase (MPO)

MPO is an enzyme found in inflammatory cells such as macrophages and neutrophils. It
generates ROS by the conversion of hydrogen peroxide to hydroxy radical (OH), nitric oxide
(ONOO‐NO2), and hypochlorous acid (HOCl) and is a proinflammatory agent responsible for
the oxidation of low‐density lipoprotein (LDL) [52]. It is found in abundance in the athero‐
sclerosis plaques [53] and coronary artery disease where it can serve as an inflammatory
marker for both the risk of CAD and its existence [54]. MPO concentration is measured in
biological samples by ELISA which is commercially available. Its function is measured by
spectrophotometry by peroxidase activity assays such as measuring the formation of guaiacol
oxidation products [55]. Its levels in the serum can predict risk for acute coronary syndromes
[56], for risk of cardiovascular event in patients with chest pain [57] and increased risk of
coronary artery disease in seemingly healthy population [58]. It is prone to varying and
unreliable results due to the fact that the values are altered during the process of collection
and handling as seen in a study done in 2008 by Shih et al. where it was determined that the
concentration of MPO varied depending on the collection tube used and the presence of
heparin in the patient serum [59]. A concern in the measurement of MPO is the artificial release
of MPO from the neutrophils leading to false results showing an increase in MPO. In their
study, Shih et al. used nine different types of tubes containing EDTA, citrate plasma, and
heparin samples and serum samples. The level of MPO varied in all these tubes, with EDTA
and citrate samples showing the lowest concentration and heparin and serum samples
showing 10 and 100% higher values, respectively. This suggests that the serum levels of MPO
are higher due to their release from leukocytes during coagulation. It has previously been
shown by Li et al. that heparin leads to release of MPO from neutrophils during neutrophil
activation [60].

8. Growth differentiation factor‐15

It is a cytokine expressed in many cells including cardiomyocytes [61]. It increases in many
cardiovascular diseases such as atherosclerosis [62] and heart failure [63]. It has been studied
with respect to the progress and outcome of disease since it has a protective role in the heart
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[64] such as against ischemia reperfusion injury [61] and acute myocardial infarction [65]
making it a useful biomarker in clinical settings though more research still needs to be con‐
ducted.

9. Oxidized low‐density lipoprotein (OxLDL)

The use of OxLDL as a biomarker of oxidative stress in cardiovascular diseases has been re‐
ported due to its ability to promote lipid deposition. The oxidation of LDL is linked to the
pathology of atherosclerosis by immunohistochemical staining apolipoprotein B‐100 [66]. It
is thought to be formed by activated platelets [67]. High‐density lipoproteins (HDL) lead to
decreased activation of platelets since it competes with them to bind to oxidized LDL pro‐
tecting against the development of atherosclerosis [68]. Circulating OxLDL is already pro‐
ven to be able to predict the presence of atherosclerosis [69] and coronary artery disease [70].
OxLDL is detected by immune assays in plasma. According to Trpkovic et al., there are cur‐
rently three ELISA assays namely 4E6, E06, and DLH3 developed to detect OxLDL in the
blood [71]. Out of these, 4E6 binds to LDL but also detects native LDL and the other two,
DLH3 which measures LDL and E06 are used for oxidized phosphatidylcholine [72]. A
drawback of E06 method is its non‐specificity to oxidized lipids. In 2001, Holvoet et al.
measured circulating LDL levels by ELISA using monoclonal antibody 4E6 which detected
higher number of circulating OxLDL in patients with coronary artery disease [73].

10. Allantoin

Over the years, allantoin has emerged as a reliable biomarker of oxidative damage both in
vivo and in vitro. It is formed by the ROS‐induced oxidation of uric acid [74], where uric acid
is converted to allantoin due to overproduction of ROS [75]. In relation to cardiovascular
diseases, increased levels of allantoin in the plasma have been shown in people with type 2
diabetes [75] as well as in heavy smokers [76] both of which are risk factors for developing
cardiovascular disease. It has been shown to be increased in the plasma in oxidative stress‐
related chronic heart failure [77]. The use of allantoin as a widely applied biomarker is limit‐
ed due to the difficulty of measuring allantoin in the body fluids [78]. The most specific and
sensitive method for its measurement is liquid chromatography [79].

11. Protein carbonyls

Oxidation of protein amino acid residues leads to the formation of protein carbonyls by dif‐
ferent means such as deamination of glutamic acid and lysine or due to the resulting break‐
age of protein backbone [80]. They are stable compounds formed early and are usually
higher in concentration due to their multiple sources, making them good biomarkers due to
the ease of detection as well as no need of expensive equipment. It is a commonly used pro‐
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tein oxidation marker, and there are various assays for its detection. They have been shown
to increase with age implicating them in the process of aging [81]. They have even been re‐
ported in the human heart following coronary surgery [82]. Assay has been done to observe
them in dilated cardiomyopathy [83]. In 1990, Levine et al. were the first ones to determine
various methods to measure carbonyls in oxidized protein [84].

A highly sensitive assay is protein carbonyl content (PCC) which has various modifications
but in all of them 2,4‐dinitrophenylhydrazine (DNPH) reacts with the protein carbonyls and
forms its 2,4‐dinitrophenyl (DNP) hydrazone which is stable and can then be optically
measured by immunohistochemistry or by radioactive counting [85]. Spectrophotometric
assay can be employed due the ability of this hydrazone product to absorb ultraviolet light
which when coupled with high‐performance liquid chromatography, in short HPLC, makes
the measurement more specific and sensitive [86]. One sensitive method is to detect carbonyls
by first labeling them with tritiated sodium borohydride then separating with SDS‐PAGE [87]
or by reducing with tritiated sodium borohydride in solution [88]. An important limitation of
carbonyl measurement is that there are different protocols used by researchers leading to
variable levels of carbonyls in tissues.

12. Advanced oxidation protein products (AOPPS)

Advanced oxidation protein products (AOPPs) are the end products of free radical affected
proteins. They have been shown to be linked to many human diseases such as diabetes mel‐
litus [89], coronary artery disease [90], and chronic renal disease [91] among others, and
since they have been shown to produce oxidative stress in inflammatory conditions [92],
they serve to indicate acute inflammation.

13. Advanced glycation end products (AGES)

They are molecules which are formed as a result of the reaction between reducing sugars
and amino groups. Their concentration tends to increase in conditions of oxidative stress.
The two main advanced glycation end products are pentosidine and carboxymethyl valine
which result from a process known as glycoxidation where the amino acids lysine and argi‐
nine react with carbohydrates as well as the oxidizing effect of ROS on polyunsaturated fatty
acids. A precursor of carboxymethyl valine known as glyoxal is formed when RNase incu‐
bates with arachidonate [93]. The presence of AGES has been shown in diseases such as dia‐
betes mellitus and obesity among others [94]. They also have a role in diabetic heart failure
as shown by Brouwers et al., where they overexpressed glyoxalase‐I, a glycation precursor
detoxifying enzyme in order to reduce AGES, and found that it leads to prevention of diabe‐
tes‐induced oxidative damage in the heart [95]. They are detected after derivatization with 2,
4‐dinitrophenylhydrazine (DNP). The hydrazone formed is then detected using a spectro‐
photometer or by using anti‐DNP antibodies with along with ELISA [96] or by high‐per‐
formance liquid chromatography (HPLC) or by Western blot or immunohistocytochemistry
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[97]. Out of these methods, HPLC is more specific and can measure carboxymethyl lysine
CML [98] and pentosidine [99]. They mainly serve as indicators of chronic diseases [100].

14. Glutathione and glutathione disulfide

Reduced glutathione (GSH) is present in large quantities in the cells and acts as an inhibitor
of lipid peroxidase. Glutathione disulfide (GSSG) is the oxidized form of glutathione. Pro‐
tein glutathionylation regulates cardiovascular function [101]. Its values have been shown to
increase in ischemia reperfusion injury [102], atherosclerosis [103], and cardiac hypertrophy
[104]. In patients with atherosclerosis obliterans, increased glutathionylation is shown to be
related to the progression of the disease proving to be a biomarker at early stage [105]. The
ratio of GSH and GSSG is used as an indicator of ROS due to the fact that there occurs a
decrease in GSH and increase in GSSG concentration in oxidative stress [106]. There are a
number of methods to detect protein s‐glutathionylation. Quantifying the total amount of s‐
glutathionylated proteins is by measuring fluorescence [107]. Labeling glutathione is a
method for glutathionylation analysis such as 35s radiolabeling [108], though it is not very
sensitive and can only be used in cell culture; furthermore, it cannot detect proteins which
have already undergone glutathionylation. Biotinylated glutathione either reduced or oxi‐
dized is superior to the 35s labeling methods, it detects only glutathionylated proteins thus
is specific plus it can be analyzed by multiple methods such as fluorescence microscopy
[109] or immunoblotting using biotin antibodies [110]. One drawback of this method is that
the presence of biotin tag on glutathione may have an effect on the protein function. Anti‐
glutathione antibodies allow the detection of glutathionylated proteins in physiological con‐
ditions. Studies done with antibodies are by using mouse monoclonal antibodies [111–113].
Drawback of antibody method is the lack of specificity, and it can only detect a few proteins
in total extract [109] limiting its utility in detecting glutathionylated proteins on a large
scale. Recently, the use of liquid chromatography‐couple mass spectrometry using whole
proteins is found to be a good method to identify proteins in larger numbers [114].

Recently, the role of micro‐RNA (miRNA) in the generation of ROS and its consequences such
as inflammation, angiogenesis, cell proliferation, and apoptosis has been a subject of research.
They are found intracellularly and outside cells in body fluids [115]. They are stable and specific
such as miR‐499 miRNA for the heart. Another advantage of miRNA as a biomarker is that
they are not affected by posttranslational modifications. They can also be easily assessed by
methods like polymerase chain reaction (PCR) and microarrays. PCR is an expensive method
which detects small quantities of miRNA, but the results are affected by the primer used.
Microarray measurements require the development of probes and can thus be useful in that
many RNAs can be detected at the same time [116]. Other less used methods are direct
sequencing by next‐generation sequencing [117], which eliminates the influence of primers as
in the case of PCR but is still not used widely because of expense. Stem loop probe ligation
[118] and Northern blotting are other methods which may be used to measure concentration
of miRNA. The miRNA found most abundantly in the heart is mR‐1 which is heart specific
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and can be used as a sensitive and specific marker for diagnosis of acute myocardial infarction
[119, 120].

Elevated miRNAs specifically miR423‐5p has also been observed in heart failure patients
making them important clinical biomarkers in the diagnosis of heart failure [121]. Although
miRNA measurement has shown promise, there are still various issues that need to be
addressed. The concentration of miRNA in body fluids is low making its isolation rather
difficult. The values obtained also tend to be different in different body fluids which need to
be normalized. Therefore, it is necessary to develop a method to obtain accurate results with
miRNA measurement across the various samples [116]. The product of DNA damage, 8
dydroxy‐2'‐deoxyguanosine urinary levels, seems to be elevated in dilated cardiomyopathy
[122]. It is also evidently a predictor of future events following myocardial infarction [123].
Other specific biomarkers have also been studied but are not yet studied as extensively as the
above biomarkers. Ascorbic acid is an endogenous antioxidant which has been linked to
unstable coronary syndrome where it is thought to have an effect on the lesion [124]. Gluta‐
thione peroxidase‐I is evidently decreased in coronary artery disease patients [125] which is
an antioxidant enzyme. Low levels of bilirubin have been linked to cigarette smoking and
increased levels of triglycerides and cholesterol making it a potential biomarker of cardiovas‐
cular disease [126]. Oxidative bilirubin metabolites called biopyrrins are elevated in the urine
in patients with heart failure [127] and are thought to be predictors of future cardiac events in
acute myocardial infarction [128].

Several biomarkers of oxidative stress have been studied over the years in an effort to under‐
stand the mechanism of cardiovascular generation with the intention to use the information
by targeting oxidative stress with cardio‐protective drugs. Further research into understand‐
ing the mechanism of ROS generation and their role in therapeutic intervention will be
beneficial for the management of cardiovascular diseases.
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