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Abstract

In this chapter, we present numerical examples of an estimation of shallow water flow
based on Kalman filter  finite  element method (Kalman filter  FEM).  Shallow water
equations  are  adopted  as  the  governing  equations.  The  Galerkin  method,  using
triangular elements, is employed to discretize the governing equation in space, and the
selective lumping method is used to discretize time. We describe the influence on the
numerical results of setting the observation points.

Keywords: Kalman filter FEM, shallow water equation, Galerkin method, selective
lumping method

1. Introduction

Conventionally, shallow water flow analysis based on the FEM has been carried out to
investigate the marine environment, specifically coastal drift sand, storm surges, tsunamis,
and so on [1, 2]. However, the computed results are rarely close to the observed values if the
appropriate governing equation is not employed, the appropriate discretization technique is
not applied to the governing equation, or the boundary conditions are not defined appropri‐
ately. This has prompted a great deal of inverse analysis in recent years, aiming to obtain flow
fields that more closely approach the observed values. Boundary control analysis is one of
these inverse analytic techniques, in which an unknown boundary condition is numerically
determined by iterative computation such that the computed water elevation homes in on the
target value or the observed value [3, 4]. Deterministic methods such as the adjoint variable or
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sensitivity equation methods are commonly employed. On the other hand, the stochastic
approach has also been adopted, in which estimation of the flow field is employed using a
Kalman filter. Removal of the noise data from the observed values and the flow field estimation
are also performed. Conventionally, flow fields are estimated using Kalman filter FEM, and
this method is applied to the practical coastal model [5, 6]. However, the effect of boundary
conditions on the estimated flow field has not been investigated. This prompted us to research
and describe in detail in this chapter the formulation of Kalman filter FEM and numerical
experiments for flow estimation when changing the positions of observation points [7].

2. Concept of state estimation

In the Kalman filter, system and observation equations are employed. Eqs. (1) and (2) are
sample equations:

1n n na qf f+ = + (1)

1 1 1f+ + += +n n nz r (2)

where ϕ, z, a, q, and r indicate the true value of the state variable, the observation value, the
constant coefficient, the system, and the observation noise, respectively. n denotes the number
of time steps. Figure 1 shows relationship between the observation and the estimation values.

Figure 1. Diagram of the relationship between the observation and the estimation values.
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Here, � and p indicate the estimation value for the state variable and estimation error. From
Figure 1, it is found that the estimation value is expressed as a summation of the true value
and the estimation error, and the observation value is expressed by the summation of the true
value and the observation error. Based on this concept, our formulation of the Kalman filter is
shown below.

3. Discretization of the governing equation

The shallow water equations, shown below, are employed as the governing equations.

, 0i iu gh+ =& (3)

, 0i ihuh+ =& (4)

where ui, η, g, and h indicate flow velocity component for the x and y directions, water elevation,
gravitational acceleration, and water depth, respectively. The Galerkin method and the
selective lumping method are applied to discretize the governing equation. The discretized
governing equation is written as Eq. (5) and is represented by Eq. (6),
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(5)

1ˆ ˆ{ } [ ]{ }n nAf f+ = (6)

where Δ, ℎ, [Si], [M], and �  denote the time increment, the mean water depth, the matrix for
the pressure, the consistent mass matrix, and diagonal mass matrix, respectively. �  is
represented by Eq. (7) by using the lumping parameter e(0 ≤ e ≤ 1). �  indicates the estimation
value.

[ ] (1 )[ ] [ ]M e M e M= - +% (7)

The system equation in the Kalman filter is obtained by adding the vector represented by the
multiplication of the driving matrix [Γ] and the system noise vector {g} and is shown as Eq.

Estimation of Shallow Water Flow Based on Kalman Filter FEM
http://dx.doi.org/10.5772/64595

117



(8). Here, the vector {ø} indicates the vector of true value. The observation equation shown in
Eq. (9) is also introduced. The vectors {z} and {r} and the matrix [H] denote the observation
value and the observation noise vectors and the observation matrix.

1{ } [ ]{ } [ ]{ }n n nA qf f+ = + G (8)

1 1 1{ } [ ]{ } { }n n nz H rf+ + += + (9)

4. Derivation of computational equations in the Kalman filter FEM

The process of modification of the estimation vector �  is referred to as “assimilation,” and
the estimation vector before and after assimilation is expressed by “(−)” and “(+)” marks,
respectively. First of all, it is assumed that the estimated value after assimilation is expressed
by the observation value and the estimated value before assimilation, and that the estimated
value after assimilation, i.e., the optimal estimated vector, is expressed by Eq. (10).

1 1 1 1 1
( ) 1 2 ( ){ } [ ]{ } [ˆ ]{ ˆ }n n n n nK z Kf f+ + + + +
+ -= + (10)

where �1� + 1  and �2� + 1  indicate arbitrary matrices. In addition, the optimal estimated

vector �( + )� + 1  is expressed by true value �� + 1  and estimation error �( + )� + 1  as shown in

Eq. (11).

$ 1 1 1
( ) ( ){ } { } { }
n n npf f
+ + +
+ += + (11)

Consequently, Eq. (12) is obtained from Eqs. (9), (10), and (11).
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Here, we consider the expected value for Eq. (12) in time. In addition, the expected value for

vectors �� + 1 , �( + )� + 1  and �( − )� + 1  in time is assumed to be zero, and Eq. (12) is represented

as Eq. (13).
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1 1 1
2 1([ ] [ ][ ] [ ]) { } {0}n n nK K H I f+ + ++ - á ñ = (13)

where [I] denotes the unit matrix, and �� + 1  indicates the expected value of �� + 1  in

time. Because of �� + 1 ≠ 0 , the following relation equation is obtained (see Eq. (14)).

1 1
2 1[ ] [ ][ ] [ ] [0]n nK K H I+ ++ - = (14)

Substituting Eq. (14) for Eq. (10), Eq. (15) is obtained.

$ $ $1 1 11 1
( ) ( ) ( )1{ } { } [ ]({ } [ ]{ })
n n nn nK z Hf f f
+ + ++ +
+ - -= + - (15)

where �1� + 1  is referred to as the Kalman gain matrix.

Next, let us consider the Kalman gain matrix �1� + 1  so as to minimize the trace norm of the

error covariance matrix after assimilation. The estimation vector is represented by Eq. (16).

$ 11 1
( )( ){ } { } { }
nn np f f
++ +
++ = - (16)

Eq. (17) is obtained by substituting Eq. (15) with Eq. (16), and substituting Eq. (9) with the
obtained equation.
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Here, the error covariance matrix after assimilation �( + )� + 1 , i.e., the predicted error covariance

matrix, is expressed by the expected value of the error covariance matrix as shown in Eq. (18).

1 1 1
( ) ( ) ( )[ ] { }{ }n n n TP p p+ + +
+ + += á ñ (18)

Also, in calculating Eq. (18), it is assumed that the expected value of the covariance matrix of
the observation error and the estimation error before assimilation is a zero vector (see Eq. (19)).
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1 1
( ){ }{ } [0]n n Tr p+ +
-á ñ = (19)

Consequently, the predicted error covariance matrix can be expressed, such as in Eq. (20),
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where �� + 1  is the observation error covariance matrix, and is represented by�� + 1 �� + 1 � . Here, let us consider the Kalman gain matrix �1� + 1  so as to minimize the

trace norm of the predicted error covariance matrix such as ∂∂ �1� + 1 tr �( + )� + 1 = 0. Conse‐

quently, we can obtain the equation for calculating the Kalman gain matrix, as shown in Eq.
(21).
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In addition, Eq. (20) is represented by Eq. (22) taking Eq. (21) into account.

1 1 1 1
( ) ( ) 1 ( )[ ] [ ] [ ][ ][ ]n n n nP P K H P+ + + +
+ - -= - (22)

Next, let us consider the computation of the estimated error covariance matrix before assimi‐

lation �( − )� + 1 , i.e., the estimated error covariance matrix. First of all, Eq. (6) is represented as

Eq. (23) based on the consideration expressed in Eq. (11).

1 1
( ) ( ){ } { } [ ]({ } { })n n n np A pf f+ +
- -+ = + (23)

Subtracting Eq. (8) from Eq. (23) gives us Eq. (24).

1
( ) ( ){ } [ ]{ } [ ]{ }n n np A p q+
- += - G (24)

Here, the estimated error covariance matrix �( − )� + 1  is also represented by the expected value

of the error covariance matrix, as shown in Eq. (25).
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1 1 1
( ) ( ) ( )[ ] { }{ }n n n TP p p+ + +
- - -= á ñ (25)

Considering the relation equations �( + )� �� � = 0  and �� �( + )� � = 0  in the calcula‐

tion in Eq. (25) allows Eq. (26) to be derived.

1 1
( ) ( )[ ] [ ][ ][ ] [ ][ ][ ]n n T n TP A P A Q+ +
- += + G G (26)

where ��  is the system error covariance matrix and is represented by �� + 1 �� + 1 � .

5. Computational algorithm based on the Kalman filter FEM

If the matrices [A], [Q], and [R] are steady coefficient matrices, the computational algo‐
rithm can be divided into two parts: the computations of the Kalman gain matrix and the
estimated value in time. The computational algorithm for the Kalman filter FEM is shown
below.

5.1. Computation of Kalman gain matrix

1. Set input data: [A], �( + )0 , �( + )0 , [Γ], [Q], [R], ε, (n = 0 ∼ imax)

2. Calculation of estimated error covariance matrix: �( − ) = � �( + ) � �+ � � � �
3. Calculation of Kalman gain matrix: �1 = �( − ) � � � �( + ) � �+ � −1
4. Calculation of predicted error covariance matrix: �( + ) = �( − ) − �1 � �( − )
5.

Check of convergence: if �� �( + )� + 1 − �( + )� �( + )� + 1 − �( + )� � ≤ � then go to Step

6, else go to Step 2.

5.2. Computation of estimated value in time

6. Calculation of estimated value: �( − )� + 1 = � �( + )�
7. Calculation of optimal estimated value: �( + )� + 1 = �( − )� + 1 + �1 �� + 1 − � �( − )� + 1
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6. Numerical example 1

Figures 2 and 3, respectively, show the computational model and the position of observation
points in the computation using the Kalman filter FEM. The estimation of shallow water flow
was carried out based on the Kalman filter FEM. Table 1 shows the computational conditions.
In this study, we simulated the observed data from the shallow water flow analysis based on
the FEM. The boundary condition for the water elevation is given by η(t) = sin (t) on the left‐
hand side of the open channel, and the artificial observed data is obtained by summation of
the numerical result and observation noise, i.e., the white noise. In the computation of the
Kalman filter FEM shown in this section, the inflow boundary condition is ignored, and the
artificial observation data flow velocities ux, uy, and water elevation η, i.e., the computational
result by the FEM, are given at the observation points.

Figure 2. Computational model.

Figure 3. Numerical examples.
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Time increment ��, s 0.001

Time steps 2000

Number of nodes 153

Number of elements 200

Gravitational acceleration g, m/s2 9.8

Lumping parameter e 0.8

Initial of estimated error covariance �( + )0 1.0

Initial of estimated value �( + )0 0

Convergence determination constant ε 0.01

Table 1. Computational conditions.

The computational results are shown below. Figures 4 and 5 show the convergence criterion
expressed by the Frobenius norm. The equation for the Frobenius norm is shown in Step 5 of
the flowchart in Section 4. It is seen that the convergence criterion monotonically decreases
and converges. Figures 6 and 7 show the time history of water elevation at (x, y) = (5.0 m, 0.4
m) in Case A and Case B, respectively. It is found that the observation noise can be removed
in both cases. Figures 8 and 9 show the distribution of water elevation on line y = 0.4 m in Case
A and Case B, respectively. From Figures 8 and 9, it can be seen that if the observation point
is not set at the upstream side in the channel, the distribution of the water elevation cannot be
appropriately obtained. Conversely, from the result of Case A, it can be said that the distribu‐
tion of water elevation can be correctly obtained if the position of the observation point is
appropriately given in the computational model. Figures 10 and 11 show the distribution of
flow velocity u and v and water elevation η at T = 2.0 s. It can be seen that water elevation on
the upstream side in Case B is not appropriately obtained in comparison with the result of
Case A. Therefore, from this numerical example, it can be said that it is necessary to set the
observation points uniformly in the computational domain.

Figure 4. Convergence criterion in Case A.
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Figure 5. Convergence criterion in Case B.

Figure 6. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case A.

Figure 7. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case B.
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Figure 8. Distribution of water elevation on line y = 0.4 m in Case A.

Figure 9. Distribution of water elevation on line y = 0.4 m in Case B.

Figure 10. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case A.
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Figure 11. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case B.

7. Numerical example 2

In this section, the numerical experiment is carried out with the inflow boundary conditions
given in Case B, shown in the previous section. An image diagram of the numerical example
is shown in Figure 12. The inflow boundary condition is given by η(t) = sin (t). The computa‐
tional conditions in this section are the same as in Table 1. As the computational result,
Figure 13 shows the convergence criterion expressed by the Frobenius norm. It can be seen
that the convergence criterion decreases and converges monotonically. Figure 14 shows the
time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case C. It is found that the observation
noise can be removed. Figure 15 shows the distribution of water elevation on line y = 0.4 m in
Case C. From Figure 15, it is found that the distribution of the water elevation can be appro‐
priately obtained in comparison with the result shown in Figure 9. In addition, Figure 16 shows
the distribution of flow velocity u and v and water elevation η at T = 2.0 s. It is seen that water
elevation on the upstream side can be more accurately obtained than with the result for Case
B. Therefore, from this numerical experiment, it is necessary to give the boundary conditions
if the computation of the flow field estimation is carried out based on the Kalman filter FEM,
and the observation point cannot be uniformly given.

Figure 12. Numerical example.
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Figure 13. Convergence criterion in Case C.

Figure 14. Time history of water elevation at (x, y) = (5.0 m, 0.4 m) in Case C.

Figure 15. Distribution of water elevation on line y = 0.4 m in Case C.
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Figure 16. Distribution of flow velocity u and v and water elevation η at T = 2.0 s in Case C.

8. Comparison of estimation accuracy in Cases A, B, and C

Based on the estimation result at (x, y) = (5.0 m, 0.4 m) shown in Figures 6, 7, and 14, the
numerical accuracy is investigated by comparison of data between the true and the estimated
values in each case. The L2 norm with respect to the difference between the true and the
estimated values in each case is shown in Table 2.

Case Number of observation points Inflow boundary condition L2 norm

Case A 10 Not given 1.899

Case B 5 (only downstream side) Not given 4.161

Case C 5 (only downstream side) Given 2.463

Table 2. Comparison of L2 norm.

A comparison of the results in Cases A and B shows that it is necessary to set the observation
points uniformly in the computational domain to obtain a highly accurate estimation result.
In addition, when comparing the results in Case B and Case C, it is found that the estimation
accuracy increases if the inflow boundary condition is taken into account.
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9. Conclusions

In this study, flow field estimation analysis in an open channel was carried out based on the
Kalman filter FEM. The shallow water equations were employed as the governing equations,
and the Galerkin and the selective lumping methods were used to discretize the governing
equation in space and time, respectively. In the numerical experiments, the observed value is
created by adding white noise to the simulation result in the open channel model. The
following conclusions were obtained from this study.

• The observation noise can be removed from the observed value by using Kalman filter FEM.

• When the observation points are set only on the downstream side of an open channel, the
estimated water elevation on the upstream side is almost constant.

• If the inflow boundary condition is given in the case where the observation points are
positioned only on the downstream side of an open channel, the distribution of the water
elevation can be appropriately obtained, including the upstream side in the open channel.

Nomenclature

ui: flow velocity component for x and y directions

η: water elevation

g: gravitational acceleration

h: water depth

Δt: time incrementℎ: mean water depth

[Si]: pressure matrix

[M]: consistent mass matrix� : diagonal mass matrix

e: lumping parameter� : estimation value vector

[Γ]: driving matrix

{q}: system noise vector

{ø}: true value vector

{z}: observation value vector

{r}: observation noise vector

[A]: state transition matrix

[H]: observation matrix
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{p}: estimation error vector

[K1]: Kalman gain matrix

[P]: estimated error covariance matrix

[Q]: system error covariance matrix

[R]: observation error covariance matrix
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