
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 12

Precision Medicine for Sickle Cell Disease: Discovery of

Genetic Targets for Drug Development

Betty S. Pace, Nicole H. Lopez, Xingguo Zhu and

Biaoru Li

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64817

Provisional chapter

Precision Medicine for Sickle Cell Disease: Discovery of
Genetic Targets for Drug Development

Betty S. Pace, Nicole H. Lopez, Xingguo Zhu and
Biaoru Li

Additional information is available at the end of the chapter

Abstract

Sickle  cell  disease  (SCD)  consists  of  inherited  monogenic  hemoglobin  disorders
affecting over three million people worldwide. Efforts to establish precision medicine
based on the discovery of genetic polymorphisms associated with disease severity are
ongoing to inform strategies for novel drug design. Numerous gene mutations have
been associated with the  clinical  complications  of  SCD such as  frequency of  pain
episodes, acute chest syndrome, and stroke among others. However, these discoveries
have not produced additional treatment options. To date, Hydroxyurea remains the
only Food and Drug Administration-approved agent for treating adults with SCD;
recently it was demonstrated to be safe and effective in children. The main action of
Hydroxyurea is the induction of fetal hemoglobin, a potent modifier of SCD clinical
severity. Three inherited gene loci including XmnI-HBG2,  HBS1L-MYB  and BCL11A
have been linked to HBG expression, however the greatest progress has been made to
develop  BCL11A  as  a  therapeutic  target.  With  the  expanded  availability  of  next
generation  sequencing,  there  exist  opportunities  to  discover  additional  genetic
modifiers of SCD. The progress made over the last two decades to define markers of
disease severity and the implications for achieving precision medicine to treat  the
complications of SCD will be discussed.

Keywords: fetal hemoglobin, single nucleotide polymorphism, drug discovery, ge-
nome-wide association studies
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1. Introduction

Sickle cell anemia is caused by an A to T point mutation in the sixth codon of the β-globin
(HBB) gene on chromosome 11 leading to the production of hemoglobin S (HbSS) during
adult development. When the sickle mutation is combined with one of over 400 additional
mutations reported in the HBB  locus,  different  subtypes of  sickle cell  disease (SCD) are
produced. For example, heterozygosity for the sickle HBB gene and hemoglobin C produces
HbSC disease [1]. A definitive diagnosis of SCD can be made by hemoglobin electrophoresis,
isoelectric focusing, or high-performance liquid chromatography. However, DNA testing is
required to detect the presence of β-thalassemia mutations, which when inherited with the
sickle HBB causes HbS-β0-thalassemia and HbSβ+-thalassemia.

About one in 500 African-American and one in 36,000 Hispanic-American children are born
with SCD disease [2], which is diagnosed at birth by newborn screening in the United States.
The carrier state or sickle cell trait is detected in 1:13 African Americans and 1:100 Hispanic
Americans [3] with an estimated 2.5 million Americans with sickle cell trait [4]. Worldwide
about 3.2 million people have SCD and 43 million have sickle cell trait [5] with 80% occurring
in sub-Saharan Africa mainly as a protective mechanism against malaria. Moreover, the HBB
sickle mutation also occurs in Europe, India, the Arabian Peninsula, and Brazil [6].

Hemoglobin is a tetrameric protein, composed of two α-like and two β-like globin polypeptide
chains, which transports oxygen to the body tissues. During human development, two
switches in the type of hemoglobin synthesized occur, a process known as hemoglobin
switching [1]. The first switch at 6–8 weeks of development involves ε-globin gene silencing
and activation of the HBG2 and HBG1 genes throughout fetal erythropoiesis, during which
Gγ-globin and Aγ-globin fetal hemoglobin (HbF; α2γ2) are produced. The second switch occurs
shortly after birth when the HBG1/HBG2 genes are silenced and HBB is activated. HbF levels
decline to <1% of total hemoglobin by 6–12 months of age [7], and HbF is restricted to a
population of erythrocytes called F-cells [8]. During hemoglobin switching, the site of hema-
topoiesis moves from the yolk sac to the liver/spleen and finally the bone marrow, which
becomes the main site of hematopoiesis where adult hemoglobin A (HbA, α2β2) is produced
in healthy individuals [1]. As the level of HbF decreases around 5–6 months of age, the clinical
symptoms of SCD are observed due to high HbS levels and polymerization under deoxygen-
ated conditions producing sickle-shaped red blood cells (RBCs), vascular occlusion, and tissue
ischemia. Therefore, precision medicine based on genetic or pharmacologic approaches to
maintain high HbF levels is a proven efficacious strategy to treat SCD.

2. Clinical manifestations of sickle cell disease

Over the last 30 years, survival in people living with SCD has improved significantly due to
decreased death rates during infancy. However, morbidity remains high due to central nervous
system and pulmonary complications during childhood and end-organ damage in adults [9,
10]. The average life expectancy of people with SCD is 50 years in the United States [11].
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Individuals with SCD experience a chronic hemolytic anemia caused by HbS polymerization
under deoxygenated conditions, which [12] produces RBC membrane damage and a shortened
life span of 14–21 days. As a result, HbSS patients have an average hemoglobin level of 6–8 g/
dL with an elevated reticulocyte count and plasma lactate dehydrogenase level [13]. Further-
more, the damaged membrane leads to inflexible and dehydrated sickled RBCs and abnormal
adhesion to the vascular endothelium producing the vasculopathy observed in persons with
SCD [13].

The most common pathophysiology of SCD is vaso-occlusive (VOC) events produced by tissue
ischemia leading to pain and acute or chronic injury to the spleen, brain, lungs, kidneys, and
bones [13]. Individuals with a severe SCD sub-phenotype have more frequent VOC events, a
higher white blood cell count, a lower HbF level, and increased blood vessel flow resistance
under deoxygenation conditions [14–16]. The most common clinical manifestation of SCD is
acute painful episodes which occur mainly in the extremities, but can involve the abdomen,
back, and chest [17, 18].

As HbF falls below protective levels at around 6–12 months of age, dactylitis involving pain
and swelling of the hands and feet is an early manifestation of SCD and is a risk factor for
diseased severity [19]. Splenic sequestration occurs in 30% of children between the ages of 6
months to 3 years, which can cause severe life-threatening anemia and death if not treated
promptly. Over time, repeated episodes of VOC in the spleen lead to infarction and a markedly
increased risk for infection due to encapsulated bacteria such as Streptococcus pneumonia,
Haemophilus influenza, and Staphylococcus aureus among others [20]. To address this significant
cause of early mortality, the Prophylactic Penicillin Study I was conducted which demonstrated
the ability of prophylactic penicillin to decrease overwhelming sepsis by 90% and improved
survival among infants with SCD [21]. This study provided the rationale for establishing
newborn screening for SCD in the late 1980s to facilitate the initiation of penicillin prophylaxis
in the first few months of life to protect against infection and prevent early mortality. Penicillin
prophylaxis has become the standard of care worldwide.

Other types of VOC events include acute chest syndrome [22, 23], silent and acute cerebral
infarcts [24, 25], and osteonecrosis of the femoral head. Episodes of acute chest syndrome can
be caused by pulmonary VOC, infection, and/or fat emboli from bone marrow infarcts [22].
Long-term damage in the lungs can precede pulmonary hypertension [26] in older children
and adults with SCD causing high morbidity and mortality. By adolescents, 50% of individuals
with SCD suffer silent cerebral infarcts [27] and 10% of children over the age of 2 experience
overt strokes requiring chronic transfusions [28, 29]. The process of VOC can affect any organ
system producing a wide variety of complications in SCD involving the heart, liver, gall
bladder, kidney, and skin [30].

3. Treatment of vaso-occlusive complications

Blood transfusions are the mainstay of therapy for individuals suffering from acute and
chronic complications of SCD. Red blood cell transfusions improve the oxygen-carrying ca-
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pacity and prevent sickling by decreasing the HbS level to <30% of total hemoglobin [31–
33]. Transfusions are also used for the acute exacerbation of anemia associated with splenic
sequestration and aplastic crisis caused by Parvo B19 virus infection [34]. The most com-
mon symptom in persons with SCD is acute and chronic pain due to tissue ischemia,
which is correlated with long-term survival [35]. Therefore, early aggressive treatment of
pain episodes to prevent complications is the standard of care [36]. Recent research has
provided insights into mechanisms of pain related to tissue injury (nociceptive), nerve in-
jury (neuropathic), or unknown causes (idiopathic). Effective pain treatment is most often
achieved using opioid narcotics combined with nonsteroidal anti-inflammatory drug.

To address the long-term effects of repeated pain episodes, extensive research has been
conducted to develop drugs that induce HbF, which inhibits HbS polymerization [37] to
improve the clinical symptoms of SCD. Based on findings in the Multicenter Study of Hy-
droxyurea [38], this agent is the only Food and Drug Administration-approved drug for the
treatment of adults with SCD [39]. Subsequent studies in children including BABY HUG
demonstrated that hydroxyurea (HU) is an effective HbF inducer and can be used safely in the
first year of life [40]. Unfortunately, HU has a 30% nonresponse rate in adults, causes bone
marrow suppression, and has detrimental effects on fertility [38, 41]. Therefore, the develop-
ment of novel therapeutic agents based on inherited mutations that alter the expression of the
HBG1/HBG2 genes to produce high HbF levels is desired to establish precision medicine for
SCD.

4. Genetic modifiers of sickle cell disease severity

While homozygosity for the βS-globin gene mutation (HBB; glu6val) causes sickle cell anemia,
the clinical diversity of phenotypes and disease severity are similar to the manifestations of
multigenic disorders. Intensive studies have been performed to identify genetic risk factors
correlated with SCD complications such as stroke, leg ulcers, pulmonary artery hypertension,
priapism, and osteonecrosis. To extend the findings of genome-wide association studies of
single nucleotide polymorphisms (SNPs) linked with clinical phenotypes, more advanced
genomic techniques including next-generation DNA sequencing provide new opportunities
to define mechanisms of SCD complications. A comprehensive review of genetic studies
conducted in SCD is beyond the scope of this chapter. Therefore, we focus our discussion on
efforts to discover SNPs associated with the clinical sub-phenotypes of SCD including pain
severity, acute chest syndrome, pulmonary hypertension, osteonecrosis, priapism, leg ulcers,
and nephropathy.

4.1. Vaso-occlusive pain

SCD patients experience a wide variety of clinical pain ranging from acute mild/severe to
persistent chronic pain. The underlying mechanisms of differences in pain rates are complex
and likely involve a number of genetic polymorphisms in several biological systems. Studies
have been conducted that provide insights into SNPs associated with the frequency and
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severity of pain in SCD. Jhun et al. [42] identified mutations in the dopamine D3 receptor
(Ser9Gly heterozygotes) associated with a lower acute pain rate. The most commonly used
opioid medications including codeine and hydrocodone require cytochrome P450 2D6
(CYP2D6) for drug activation, which can impact the efficacy of these agents. The CYP2D6 gene
is highly polymorphic, with variant alleles that result in decreased, absent, or ultra-rapid
metabolism [43]. Altered CYP2D6 enzymatic activity in CYP2D6*17 (reduced activity),
CYP2D6*5 (gene deletion), and CYP2D6*4 (absent function) is correlated with the analgesic
response to codeine and hydrocodone. Therefore, genotyping the CYP2D6 gene is a reasonable
approach for developing personalized medicine for the treatment of pain in persons with SCD.
Moreover, missense or frame-shift mutations in CYP2C9 decrease or abolish enzymatic
activity, respectively, which impairs opioid activation [44, 45]. Likewise, an SNP in the
promoter of the gene encoding the enzyme uridine 5′-diphospho (UDP)-glucuronosyltrans-
ferase 2B7 (−840G/A) responsible for morphine glucuronidation in the liver is associated with
lower morphine metabolites in sickle cell patients suggesting that higher doses of morphine
may be required to achieve adequate pain control [46].

4.2. Acute chest syndrome/pulmonary hypertension

Acute chest syndrome continues to contribute to significant morbidity and mortality in
children and adults with SCD [47]; therefore, the discovery of genetic modifiers of this
complication has the potential for high impact and the design of precision medicine. Redha et
al. [48] investigated the association of the vascular endothelial growth factor A (VEGFA) 583C/
T mutation with acute chest rates in children with SCD. The presence of the 583T/T genotype
was associated with increased serum VEGF levels while the VEGFA 583C/T caused reduced
VEGF serum levels.

The rate of RBC hemolysis and release of free heme in the circulation are associated with
clinical severity of SCD. Heme oxygenase-1 (HMOX1) is the inducible, rate-limiting en-
zyme in the catabolism of heme which attenuates the severity of VOC and hemolytic
events. The (GT)(n) dinucleotide repeat in the promoter of HMOX1 is highly polymorphic,
with long repeats linked to decreased gene activation. Bean et al. [49] examined two
HMOX1 promoter polymorphisms including −413A/T and the (GT)(n) microsatellite (with
allele (GT)(n) length from 13 to 45 repeats). The length of the (GT)(n) allele was associated
with acute chest syndrome, but not pain rates in children with SCD.

Over the last decade, numerous studies have been conducted to define risk factors associated
with pulmonary artery hypertension [50, 51], which defines a severe sub-phenotype of SCD
leading to premature death. SNPs in genes involved in the regulation of endothelial function,
which alter the synthesis of the endothelium-derived vasodilators nitric oxide and prostacy-
clin, have been implicated [52]. An extended screen of 297 SNPs in 49 candidate genes [53]
identified mutations in the transforming growth factor (TGF) superfamily including the activin
A type II-like 1 receptor (ACVRL1), bone morphogenetic protein (BMP) receptor 2, bone
morphogenetic protein 6, and the β-1 adrenergic receptor (ADRB1) associated with pulmonary
artery hypertension. A multiple regression model using age and hemoglobin as covariates
demonstrated that SNPs in ACVRL1, BMP6, and ADRB1 independently contribute to pulmo-
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nary hypertension risk. These findings offer promise for identifying patients at risk for this
complication and developing novel therapeutic targets for SCD.

A recent study by Al-Habboubi et al. [54] examined the association between VEGF secretion
and VOC rates among 210 individuals with SCD. Mutations in VEGFA including rs2010963
heterozygous and rs833068 and rs3025020 homozygous states were associated with increased
pain rates. Moreover, Yousry et al. [55] observed that the homozygous mutant eNOS 786T/T
was significantly associated with a high risk of acute chest syndrome. By contrast, the wild-
type eNOS 4a/4b genotype was protective against VOC and pulmonary hypertension while
the homozygous haplotype (C, 4a) was significantly associated with the risk of VOC pain, acute
chest syndrome, and pulmonary hypertension. Thus, eNOS SNPs may be useful as a genetic
marker of prognostic value in SCD to predict a severe disease sub-phenotype.

4.3. Cerebral vascular disease

SCD is the most common cause of ischemic stroke occurring in 10% of children under 15
years of age; by contrast, hemorrhagic strokes are observed more commonly in adults over
30 years of age [56]. Genetic polymorphisms in multiple genes have been implicated in
childhood stroke risk. For example, a mutation in vascular adhesion molecule-1 (VCAM1)
including the G1238C in the coding region was protective and the intronic T1594C SNP
predisposed to small-vessel stroke [57–59]. Mutations in the interleukin (IL)4R, tumor ne-
crosis factor (TNF), and ADRB2 genes were found to be independently associated with
stroke susceptibility in the large-vessel stroke subgroup, while SNPs in VCAM1 and LDLR
NcoI genes were associated with small-vessel stroke risk [59]. Additional genes have been
implicated in stroke risk such as the GT-repeat polymorphism in the angiotensinogen gene
including alleles A3 and A4, which conferred a fourfold increase in risk [60]. Hoppe et al.
[61] identified SNPs in the cystathionine-β-synthase (278thr) and the apoE3 genes that were
associated with protection and increased risk for stroke, respectively.

Ischemic stroke is common in children with SCD producing high morbidity and mortality. A
meta-analysis by Sarecka-Hujar et al. [62] demonstrated the association of SNP 677C/T in the
methylenetetrahydrofolate reductase gene with the risk of stroke. Abnormalities in the
coagulation pathway have been implicated in the pathogenesis of cerebral bleeding. For
example, protein Z, a vitamin K-dependent glycoprotein structurally related to the vitamin K-
dependent coagulation factors, is devoid of catalytic activity and inhibits the generation of
thrombin. Mahdi et al. [63] identified three SNPs in the protein Z gene promoter (rs3024718,
rs3024719, and rs3024731) and one intronic SNP rs3024735 associated with stroke risk sug-
gesting that reduced protein Z levels produced a procoagulant state and increased risk for
thrombotic diseases including ischemic stroke. These studies provide evidence for genetic
markers that can be used to assess stroke risk in SCD and targeted for therapeutic intervention.

4.4. Osteonecrosis

Repeated episodes of bone infarction caused by vaso-occlusive events precede osteonecrosis
of the head of the femur and humerus, a disabling complication of SCD [64, 65]. The discovery
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of SNPs in genes involved in bone morphogenesis, metabolism, and vascular disease will
identify individuals at high risk for osteonecrosis. Previously, 233 SNPs in seven genes
including BMP6, TGFBR2, TGFBR3, EDN1, ERG, KL, and ECE1 were shown to be associated
with this complication. There were 18 SNPs in the KL gene, which encodes the glycosyl
hydrolase protein that participates in a negative regulatory network of vitamin D metabolism;
moreover, 14 SNPs in BMP6 and six SNPs in ANXA2 were significantly associated with
osteonecrosis [66]. A second research group [67] demonstrated the association of rs267196
(BMP6) and rs7170178 (ANXA2) with a higher risk of osteonecrosis. However, additional
studies are needed to confirm if these markers are predictive of the clinical risk for this
complication.

4.5. Priapism

Thirty percent of males with SCD experience the potentially devastating complication of
priapism associated with a clinically severe disease sub-phenotype. Proteins involved in
neuro-regulatory and adrenergic pathways, nitric oxide biology, and ion channels have been
implicated in the pathophysiology of priapism [68–71]. More recently, clinical studies have
identified genetic markers of priapism that produce erectile dysfunction and determine the
ability to respond to phosphodiesterase inhibitors. Nolan et al. [72] identified SNPs in the
KLOTHO gene including rs2249358, rs211239, rs211234, and rs211239 associated with an
increased risk for priapism among 148 males with SCD. To support these findings, Elliott et al.
[69] examined polymorphisms in a second group of adult male SCD patients with a 42% history
of priapism. Mutations in the nitric oxide biology (NOS2, NOS3, and SLC4A1) and KLOTHO
genes were associated with priapism risk providing further evidence for modulating nitric
oxide levels as a therapy for this complication.

4.6. Nephropathy

Sickle nephropathy is a serious complication of SCD that can lead to renal failure and is rapidly
becoming a major cause of death in adults. In view of the high medical burden and poor health
outcome of end-stage renal disease, genetic markers of nephropathy risk are desirable. Youssry
et al. [73] identified soluble FMS-like tyrosine kinase-1, a member of the vascular endothelial
growth factor receptor family, as a biomarker for sickle nephropathy. In addition, Ashley-Koch
et al. [53] demonstrated that the myosin, heavy chain 9, non-muscle (MYH9), and apolipopro-
tein L1 (APOL1) genes are associated with risk for focal segmental glomerulosclerosis and end-
stage renal disease in African Americans. Seven SNPs in MYH9 and one in APOL1 remained
significantly associated with proteinuria after multiple testing corrections. The causative role
of these proteins in the development of sickle nephropathy needs to be tested further.

4.7. Leg ulcers

Cutaneous leg ulcers occur more often in adult sickle cell patients with low baseline hemo-
globin levels and increased hemolysis rates indicated by high lactate dehydrogenase, bilirubin,
and reticulocyte levels. The V34L G/T SNP (rs5985) in the factor XIII gene (F13A1) has been
associated with leg ulcers [74]. Other studies have implicated factor V Leiden [75], the fibroblast
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growth factor receptor [76], and the HLA-B3525 antigen [77] in the pathogenesis of leg ulcers.
A larger study involving 243 sickle cell patients [78] examined SNPS in 60 candidate genes that
have a putative role in the pathophysiology of SCD. The association of SNPs in KLOTHO,
TEK, and the TGF-β/BMP-signaling pathway was implicated in leg ulcer risk. Of these,
KLOTHO promotes endothelial nitric oxide production and the TEK receptor tyrosine kinase
is involved in angiogenesis. The TGF-β/BMP-signaling pathway modulates wound healing
and angiogenesis, among other functions. Hemolysis-driven phenotypes such as leg ulcers
could be improved by agents that increase nitric oxide bioavailability.

5. Genetic modifiers of fetal hemoglobin

5.1. HBB locus haplotypes

Inherited genetic mutations that modulate HBG1/HBG2 gene expression enable persons with
SCD to maintain high HbF levels, which ameliorates their clinical symptoms and long-term
survival [17]. Individual SNPs inherited in set patterns define HBB haplotypes and determine
the ancestral origin of the βS-globin gene mutation in different ethnic and racial groups. Five
common haplotypes including Senegal, Benin, Central African Republic (Bantu), Cameroon,
and Asian (Indian/Saudi-Arabian) have been identified [1]. HbF levels vary greatly among
individuals with different and the same HBB haplotype, which has precluded the establish-
ment of a consistent correlation between the two parameters. However, individuals with the
Senegal haplotype generally have higher HbF levels and milder disease [79], whereas indi-
viduals with the Benin haplotype tend to have lower HbF levels and more severe disease [80].
To address this limitation, a genomic study by Liu et al. [81] established the complexity of the
HBB locus providing insights into the challenges of defining distinct HBB haplotypes for the
prediction of disease severity and the development of therapeutic strategies.

5.2. Genome-wide association studies (GWAS)

The normal switch from HbF to HbA synthesis occurs during the first year of life reaching
adult levels of HbF <1% by 12 months of age. A group of disorders known as hereditary
persistence of HbF expression is caused by inherited deletions in the HBB locus or point
mutations in the promoter region of the HBG genes. HbF levels range from 10 to 40% depending
on whether heterozygous or homogeneous mutations are inherited. To gain insights into loci
outside the HBB locus that control HbF heritability, GWAS to identify quantitative trait loci
were conducted [82]. Three major loci were discovered including the Xmn1-HBG2 (Gγ-globin)
on chromosome 11, HBS1L-MYB intergenic region (HMIP) on chromosome 6q23, and BCL11A
gene on chromosome 2p16 that control up to 40% of HbF variance in different populations [83].
These loci will be discussed subsequently in the context of the development of precision
medicine for persons with SCD.
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5.3. Xmn1-HBG2

In 1985, the C/T SNP at nucleotide −158 of the HBG2 gene (rs7482144; T/T) was shown to be
associated with high HbF levels with an increase in HbF expressing erythrocytes or F-cells
(Figure 1A), and a milder disease phenotype in persons with SCD and β-thalassemia [84]. The
positive association between the rs7482144 minor alleles (C/T) and HbF levels was replicated
in European and Native Indian populations. However, this SNP was not associated with HbF
levels in the people of African ancestry [85]. By contrast, the rs7482144 (G/A) allele occurred
at a higher frequency in sickle cell patients with the Senegal and Arab-Indian haplotypes
suggesting that the A allele is associated with the geographical origin of the study population.
The ancestry for African Americans with SCD showed a high degree of European, African,
and Native American admixture at 39.6, 29.6, and 30.8%, respectively.

Figure 1. Summary of major single nucleotide polymorphisms (SNPs) associated with inherited genetic modifiers of
HbF variance. Genome-wide genetic studies and GWAS identified SNPs associated with inherited levels of HbF in var-
ious ethnic and racial groups. Shown are SNPs in the HBB locus (A), the HBS1L-MYB intergenic region (B), and intron
2 of the BCL11A gene (C) associated with HBG regulation.

5.4. HBS1L-MYB (HMIP) region

Early studies conducted in a family of Asian Indian origin using segregation analysis demon-
strated a modifier of HBG gene expression independent of the HBB locus [86]. Using a
regressive model, a major locus was discovered on chromosome 6q23–q24 in the HMIP region.
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Of the three SNPs identified, only rs4895441 was significantly associated with HbF levels,
explaining 9.2% of variance. Later studies showed an association of the other two SNPs,
rs28384513 and rs9399137, with HbF levels in the Northern European population (Figure 1B).
Subsequently, these SNPs were also demonstrated to control HbF expression in African
American, Brazilian, African British, and Tanzanian sickle cell patients [87]. The minor allele
frequency of rs9399137 (C) is most significantly associated with HbF expression, but is less
common in African populations, with a frequency of 1–2% in African sickle cell patients
without European admixture. Similarly, a 3-bp (TAC) deletion on chromosome 6q23 is
common in non-African populations, whereas the minor allele of rs9399137 occurs at a higher
frequency in African Americans with SCD and elevated HbF levels [88].

5.5. BCL11A

After the completion of the Human Genome Project and the development of genome-wide
techniques, GWAS became the preferred approach to identify inherited genetic modifiers of
disease phenotypes. The first GWAS to identify HbF modifiers utilized a selected genotyping
study design, targeting 179 individuals with contrasting extremes of F-cell numbers [89]. The
Xmn1-HBG2 and HMIP regions were identified along with a novel locus in the second intron
of the oncogene BCL11A located at chromosome 2p16; the A allele of rs4671393 was associated
with increased HbF levels. Subsequently, Uda et al. [90] confirmed SNPs in the BCL11A gene
associated with high HbF in Sardinian thalassemia patients, establishing the first major
repressor of HBG1/HBG2 gene expression (Figure 1C). The majority of GWAS to identify
inherited HbF determinants in African Americans with SCD have been conducted using
samples collected during the Cooperative Study of Sickle Cell Disease [91–94]. The first GWAS
conducted by Solovieff et al. [93] confirmed the BCL11A SNP (rs766432) and identified a
polymorphism in the ORB1B5/OR51B6 locus (rs4910755) associated with HbF levels in sickle
cell patients (Figure 1A). A subsequent meta-analysis was conducted using GWAS data
generated in seven African-American SCD cohorts totaling 2040 patients [95]. The most
significant SNPs were identified in BCL11A (rs766432) and the HMIP region (rs9494145), which
represented 11.1 and 3.2% of the phenotypic variability in HbF expression, respectively.
Recently, the first GWAS was conducted in a Tanzanian population of 1213 individuals with
SCD [96]. Similar to African Americans, SNPs in the BCL11A gene and the HMIP region were
replicated in Tanzanians. Other studies have shown up to 10% of HbF variance associated
with the BCL11A SNP rs4671393 in sickle cell patients from Northern Brazil (Figure 1C).

5.6. Mechanism of regulating HBG expression

Many decades of research have revealed that two types of mechanisms play a major role in
modifying HbF levels: (1) direct transactivation of the HBG1/HBG2 genes through the Xmn1-
HBG2 site or (2) an indirect effect on HBG1/HBG2 through the repression of silencers such as
BCL11A or MYB. The Xmn1-HBG2 variant rs7482144 mediates a direct effect on Gγ-globin gene
expression by functioning as a promoter [1]. By contrast, SNPs in the 14-kb second intron of
BCL11A produces a strong enhancement of HbF expression. High levels of the short BCL11A
isoform are associated with enhanced HbF expression in primitive erythroblasts, whereas full-
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length BCL11A isoforms are present in adult-stage erythroblasts when the HBG genes are
silenced. BCL11A interacts with several DNA-binding proteins such as the corepressors LSD1/
CoREST [97], DNMT1 [98], GATA1/FOG1/NuRD complex [99], and Sox6 [100] to facilitate γ-
globin gene silencing through binding in the HbF-silencing region located upstream of the δ-
globin gene [101]. Other studies have shown direct binding of BCL11A to a core motif 5′-
GGCCGG-3″ in the HBG promoters to form a repressor complex in K562 cells [102]. Recently,
an erythroid-specific enhancer was discovered in the second intron of BCL11A [103], which
can be targeted to achieve lineage-specific gene silencing to achieve gene therapy for SCD
directed at inhibiting BCL11A in erythroid progenitors.

SNP Gene Phenotype Reference

rs1186868 BCL11A Baseline HbF Uda et al. [90]

rs766432 BCL11A Baseline HbF Sedgewick et al. [92]

rs4671393 BCL11A Baseline HbF Lettre et al. [94]

rs7557939 BCL11A Baseline HbF Lettre et al. [94]

rs7482144 HBB Baseline HbF Lettre et al. [94]

rs10128556 HBB Baseline HbF Galarneau et al. [110]

rs3759070 HBE1 Baseline HbF Sebastiani et al. [91]

rs5024042 OR51B5/OR51B6 Baseline HbF Solovieff et al. [93]

rs4895441 HBS1L-MYB Baseline HbF Lettre et al. [94]

rs9494145 HBS1L-MYB Baseline HbF Bae et al. [95]

rs9399137 HBS1L-MYB Baseline HbF Creary et al. [107]

rs28384513 HBS1L-MYB Baseline HbF Galarneau et al. [110]

rs12103880 GLP2R Baseline F-cells Bhatnagar et al. [109]

rs4769058 ALOX5AP HbF induced by HU Sebastiani et al. [91]

rs1867380 AQP9 HbF induced by HU Sebastiani et al. [91]

rs17599586 ARGI HbF induced by HU Ware et al. [108]

rs2295644 ARG2 HbF induced by HU Ware et al. [108]

rs10483802 ARG2 HbF induced by HU Ma et al. [105]

rs2182008 FTL I HbF induced by HU Ma et al. [105]

rs10494225 HAO2 HbF induced by HU Ma et al. [105]

rs7130110 HBE1 HbF induced by HU Sebastiani et al. [91]

rs7977109 NOSI HbF induced by HU Ma et al. [105]

rs944725 NOS2A HbF induced by HU Ma et al. [105]

rs4282891 SAR1A HbF induced by HU Kumkhaek et al. [111]

rs2310991 SAR1A HbF induced by HU Kumkhaek et al. [111]

HbF, fetal hemoglobin; HU, hydroxyurea.

Table 1. SNPs known to modulate HbF levels and response to hydroxyurea therapy.
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The mechanism by which the HMIP region silences HBG expression is less clear. It is known
that a 24-kb nonprotein-coding region exists between the HBS1L and MYB oncogenes. A recent
study identified a distal regulatory locus HMIP 2, which contains a regulatory element
composed of several GATA-1 motifs that coincided with DNaseI-hypersensitive sites associ-
ated with intergenic transcripts in erythroid precursor cells [104]. It was suggested that the
HMIP 2 element might regulate MYB, which is a repressor of the HGB genes.

5.7. Genetic modifiers of response to hydroxyurea therapy

Data from the Multicenter Hydroxyurea Study [38] suggest that not all persons with SCD
respond to HU treatment with increased HbF expression. Therefore, genetic markers to predict
response to HU would support the development of precision medicine by limiting unnecessary
exposure to a chemotherapy drug that causes bone marrow suppression and decreased
fertility [41]. Although limited, studies have identified genetic modifiers of HbF response to
HU. For example, SNPs in the ARG2, FLT1, HAO2, and NOS1 genes were associated with
increased HbF expression based on HapMap data [105]. Interestingly, 29 genes involved in HU
metabolism were located in loci previously reported to be linked to HbF levels including
6q22.3–q23.2, 8q11–q12, and Xp22.2–p22.3 [105, 106]. A novel bioinformatics method Random
Forest was used to investigate the association between SNPs and the change in HbF after stable
long-term HU therapy. SNPs in the ARG2, FLT1, HAO2, and NOS1 genes and 6q22.3–23.2 and
8q11–q12 regions were associated with the HbF response to HU [105]. A summary of the SNP-
associated HBG expression at baseline or in response to HU treatment in sickle cell patients is
shown in Table 1 [90-92, 94, 95, 107–111].

5.8. MicroRNA-mediated control of HBG gene expression

Recent studies have focused on posttranscriptional mechanisms of HBG regulation via
microRNA (miRNA) gene expression. For example, Miller and colleagues [112] demonstrated
the ability of LIN28 to silence miRNA let-7 to activate HbF in human primary erythroid
progenitors. Likewise, miR-15a and miR-16-1 [113] enhance HBG expression through the
inhibition of MYB expression. Studies by Walker et al. correlated miR-26b with baseline HbF
levels and miR-151-3p expression with the maximal tolerated dose of HU in children with
SCD [114].

Other miRNAs have been implicated in HBG regulation including miR-96 [115], miR-486-3p,
miR-210 [116], and miR-34a [117]. Recent studies demonstrated the preferential expression of
miR-96 in adult erythroid cells and its ability to directly target the open-reading frame of γ-
globin mRNA; the inhibition of miR-96 resulted in a 20% increase in γ-globin expression in
erythroid progenitors [115]. BCL11A is directly targeted by miR-486-3p, and its overexpression
reduces BCL11A levels followed by an increase in γ-globin expression [118]. The role of MYB
as a repressor of γ-globin was demonstrated in children with trisomy 13 where increased
miR-15a and miR-16 expression targets MYB expression directly to mediate high HbF levels
[113]. By contrast, a subset of miRNAs has been shown to be associated with enhanced γ-globin
expression. For example, miR-210 was elevated in a β-thalassemia patient with high HbF
expression [116]. Similarly, the Pace group recently demonstrated the ability of miR-34a to
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exert a positive regulatory effect on the HBG1/HBG2 genes when stably expressed in K562 cells
[117] suggesting that these miRNAs target repressor proteins. These studies demonstrate the
potential of developing miRNAs as targets for precision medicine and the development of
therapeutic options for individuals with SCD.

6. Precision medicine for sickle cell disease

Completion of the Human Genome Project greatly improved efforts to develop gene-based
treatment strategies for β-hemoglobinopathies. Early efforts to identify genetic modifiers of
clinical severity and sub-phenotypes of disease severity in SCD consisted of candidate gene
studies. Insights were gleamed into risk factors for acute VOC pain events such as SNPs in the
dopamine D3 receptor [42]. Expanded investigations to understand the wide range of opioid
dose required by individual sickle cell patients led to the characterization of mutations in the
CYP2D6 gene required for opioid activation and classification of slow, intermediate, and rapid
metabolizers [43]. However, additional studies with larger sample sizes and/or direct DNA
sequencing are required to develop gene markers of disease severity for the development of
precision medicine to inform clinical decision making.

A great urgency exists to identify genetic factors associated with risk for acute chest syndrome,
the leading cause of morbidity and mortality in children and adults with SCD. Mutations in
VEGF [48] and the HMOX1 [49] genes hold promise since they serve as markers of endothelial
damage and hemolysis associated with the release of free heme in the vascular space, respec-
tively. Long-term repeated episodes of acute chest syndrome can lead to pulmonary hyper-
tension and early death. With a paucity of effective therapies for this complication, genetic
markers that identify subgroups of sickle cell patients at risk will support efforts to develop
precision medicine. For example, SNPs in the TGF superfamily of proteins and the ADRB1gene
can be targeted for drug development to improve clinical outcomes. Likewise, SNPs in the
eNOS genes [55] required for maintaining normal nitric oxide levels might serve as excellent
targets for pharmacologic modulation. Interestingly, SNPs in the KLOTHO [72] and NOS2/
NOS3 [69] genes have been associated with the occurrence of priapism in SCD. These obser-
vations suggest that developing drug therapy-targeting genes involved in nitric oxide
regulation might treat multiple complications of SCD. Genome-wide studies involving next-
generation DNA sequencing technology will move the field closer to achieving precision
medicine in SCD.

Based on the absence of clinical symptoms in infants and the amelioration of symptoms in
persons with hereditary persistence of HbF, the most effective strategy to modulate disease
severity in persons with SCD is HBG activation. Therefore, understanding molecular mecha-
nisms of HBG1/HBG1 gene silencing during hemoglobin switching is an attractive but
challenging strategy adopted by many investigators over the last three decades. Early genome-
wide family genetic studies [82] and subsequent GWAS identified the XmnI-HBG2, HBS1-
MYB, and BCL11A loci that account for ~40% of inherited HbF variance [83]. Orkin and
colleagues advanced the field significantly by defining mechanisms of BCL11A-mediated γ-

Precision Medicine for Sickle Cell Disease: Discovery of Genetic Targets for Drug Development
http://dx.doi.org/10.5772/64817

229



globin gene repression during murine development and correction of the SCD phenotype
[119]. Genetic studies in an extended family identified mutations in KLF1 that produce
hereditary persistence of HbF [120, 121] suggesting this transcription factor is a viable target
for gene therapy. However, the efficacy of targeting transcription factors for therapeutic
development remains to be demonstrated.

Additional genetic studies that utilize high-throughput DNA (whole genome and exome) and
RNA/miRNA (RNA-seq) sequencing will increase our knowledge of mechanisms involved in
HBG regulation. With the expanded availability of genome-wide approaches, novel technol-
ogies for gene editing, and preclinical mouse models, the translation of bench research findings
to clinical trials will be accelerated to improve treatment options for SCD and β-thalassemia.
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