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Abstract

In this chapter, the performance of the integrated optimal control and parameter
estimation (IOCPE) algorithm is improved using a modified fixed-interval smooth-
ing scheme in order to solve the discrete-time nonlinear stochastic optimal control
problem.  In  our  approach,  a  linear  model-based  optimal  control  problem  with
adding the adjustable parameters into the model used is solved iteratively. The aim
is to obtain the optimal solution of  the original  optimal control  problem. In the
presence of the random noise sequences in process plant and measurement channel,
the state dynamics, which is estimated using Kalman filtering theory, is smoothed
in a fixed interval. With such smoothed state estimate sequence that reduces the
output  residual,  the  feedback optimal  control  law is  then designed.  During the
computation procedure, the optimal solution of the modified model-based optimal
control  problem  can  be  updated  at  each  iteration  step.  When  convergence  is
achieved, the iterative solution approaches to the correct optimal solution of the
original optimal control problem, in spite of model-reality differences. Moreover, the
convergence of the resulting algorithm is also given. For illustration, optimal control
of a continuous stirred-tank reactor problem is studied and the result obtained shows
the efficiency of the approach proposed.

Keywords: fixed-interval smoothing, Kalman filtering theory, model-reality differen-
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1. Introduction

Optimal  control  approach provides the solution in solving dynamic real-world practical
problems.  Particularly,  the  linear  problems,  which  are  disturbed  by  the  random  noise
sequence, have been well-defined with application of the optimal state estimate in designing
the optimal feedback control law. In such situation, the optimal state estimator and the optimal
controller are designed separately to optimize and control the dynamical systems. This is
called  the  separation  principle  [1–4].  By  virtue  of  this  principle,  the  research  works  on
stochastic  optimal  control  and applications are growing widely,  see for  examples,  linear
systems [5,  6],  fleet  composition  problem [7],  optimal  parameter  selection  problems [8],
Markov jump process [9], power management [10], multiagent systems [11], portfolio selection
model [12], 2-DOF vehicle model [13], sensorimotor system [14], and advertising model [15].

In fact, the exact solution of stochastic optimal control problems is impossible to be obtained,
especially for the problems involving nonlinear system dynamics. To obtain an optimal
solution of the discrete-time nonlinear stochastic optimal control problem, the integrated
optimal control and parameter estimation (IOCPE) algorithm has been proposed to solve this
kind of the problem iteratively [16–18]. In this algorithm, the linear quadratic Gaussian (LQG)
model is applied to a model-based optimal control problem, where the state estimation
procedure is done using the Kalman filtering theory. Based on this model, the adjusted
parameters are added into the model so as system optimization and parameter estimation are
integrated interactively. On this basis, the differences between the real plant and the model
used are measured repeatedly in order to update the optimal solution of the model used. On
the other hand, the output that is measured from the real plant is fed back into the model used
for the state estimator design. When the convergence is achieved, the iterative solution
approaches to the true optimal solution of the original optimal control problem despite model-
reality differences. This optimal solution is the optimal filtering solution, which is obtained
using the IOCPE algorithm. The efficiency of the IOCPE algorithm has been proven in Refs.
[16–18].

However, the output trajectory of the model, which is obtained from the IOCPE algorithm, is
less accurate in estimating the exact output measurement of the original optimal control
problem. In this chapter, our aim is to improve the IOCPE algorithm using the fixed-interval
smoothing approach, where the output residual shall be reduced within an appropriate
tolerance to generate a better output trajectory. In our model, the state dynamics, which is
disturbed by Gaussian noise sequences, is estimated by using the Kalman filtering theory, and
then it is smoothed in a fixed-interval estimation. With such state estimation procedure, we
modify the estimation procedure so that a smoothed state estimate is predicted backward in
time and is used in designing the feedback optimal control law. It is noticed that the output
residual of this smoothed state estimate is smaller than the output residual that is obtained by
using the Kalman filtering theory, see [17]. The procedure of the solution method discussed in
this chapter is almost the same as that was presented in the study of Kek et al. [17], but the
accuracy of the optimal solution with the modified fixed-interval smoothing would be
definitely increased.
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The structure of the chapter is outlined as follows. In Section 2, the description of a general
discrete‐time nonlinear stochastic optimal control problem and its simplified model‐based
optimal control problem is made. In Section 3, an expanded optimal control model is intro‐
duced, where system optimization and parameter estimation are integrated mutually. The
feedback control law, which is incorporated with the Kalman filtering theory and the fixed‐
interval smoothing, is designed. Then, the iterative algorithm based on principle of model‐
reality differences is derived so that discrete‐time nonlinear stochastic optimal control problem
could be solved. In Section 4, a convergence result for the algorithm proposed is provided. In
Section 5, an example of optimal control of a continuous stirred‐tank reactor problem is
illustrated. Finally, some concluding remarks are made.

2. Problem description

Consider a general class of the dynamical system given below:

( 1) ( ( ), ( ), ) ( )x k f x k u k k G kw+ = + (1a)

( ) ( ( ), ) ( )y k h x k k kh= + (1b)

where �(�) ∈ ℜ�, � = 0, 1, ..., � − 1, �(�) ∈ ℜ�, � = 0, 1, ..., �, and �(�) ∈ ℜ�, � = 0, 1, ..., � are the
control sequence, the state sequence, and the output sequence, respectively.�(�) ∈ ℜ�, � = 0, 1, ..., � − 1, which is the process noise sequence, and �(�) ∈ ℜ�, � = 0, 1, ..., �,
which is the measurement noise sequence, are stationary Gaussian white noise sequences with

zero mean, and their covariance matrices are given by �� ∈ ℜ� × � and �� ∈ ℜ� × �, respec‐

tively. Here, both of these covariance matrices are positive definite matrices. In addition,�:ℜ� × ℜ� × ℜ ℜ� represents the real plant and ℎ:ℜ� × ℜ ℜ� is the real output measure‐
ment, which both are assumed to be continuously differentiable with respect to their respective

arguments, whereas � ∈ ℜ� × � is a process coefficient matrix.

The initial state is

0(0)x x=

where �0 ∈ ℜ� is a random vector with mean and covariance given, respectively, by

T
0 0 0 0 0 0[ (0)] and [( )( ) ] .E x x E x x x x M= - - =
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Here, �0 ∈ ℜ� × � is a positive definite matrix and �[ ⋅ ] is the expectation operator. It is

assumed that initial state, process noise, and measurement noise are statistically independent.

Therefore, our aim is to find an admissible control sequence �(�) ∈ ℜ�, � = 0, 1, ..., � − 1 subject
to the dynamical system given in Eq. (1) such that the scalar cost function

1

0
0

( ) [ ( ( ), ) ( ( ), ( ), )]
N

k

J u E x N N L x k u k kj
-

=

= +å (2)

is minimized, where �:ℜ� × ℜ ℜ is the terminal cost and �:ℜ� × ℜ� × ℜ ℜ is the cost under
summation. It is assumed that these functions are continuously differentiable with respect to
their respective arguments.

This problem is regarded as the discrete‐time nonlinear stochastic optimal control problem
and is referred to as Problem (P).

Notice that, in general, the exact solution of Problem (P) is unable to be obtained and estimating
the state of the real plant by applying the nonlinear filtering theory is computationally
demanding. Due to these reasons, a smoothing model‐based optimal control problem, which
is referred to as Problem (M), is proposed by

T1
2( )

1
T T1

2
0

ˆ ˆmin ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ( ) ( ) ( ) ( )) ( ))

m s s
u k

N

s s
k

J u x N S N x N N

x k Qx k u k Ru k k

g

g
-

=

= +

+ + +å
(3)

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))
ˆ ˆ( ) ( )
s s s

s s

x k x k K k x k x k
y k Cx k

= + + - +

=

with the following state estimation procedure

1ˆ( 1) ( ) ( ) ( )x k Ax k Bu k ka+ = + + (4a)

ˆ( ) ( ) ( )( ( ) ( ))fx k x k K k y k y k= + - (4b)

2( ) ( ) ( )y k Cx k ka= + (4c)
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where ��(�) ∈ ℜ�, � = 0, 1, ..., � and ��(�) ∈ ℜ�, � = 0, 1, ..., � are, respectively, the smoothed state

sequence and the smoothed output sequence. The matrices involved are given as follow: A is
an n × n state transition matrix, B is an n × n control coefficient matrix,  is a p × n output
coefficient matrix, S(N) and Q are n × n positive semidefinite matrices, and R is a m × m positive
definite matrix. The extra parameters �1(�), � = 0, 1, ..., � − 1, �2(�), � = 0, 1, ..., �, and�(�), � = 0, 1, ..., � are introduced as adjustable parameters.

The state estimation procedure, which is given in (4a), (4b), and (4c), is obviously from the

Kalman filtering theory, where �(�) ∈ ℜ�, � = 0, 1, ..., � − 1 and �(�) ∈ ℜ�, � = 0, 1, ..., � are,
respectively, the filtered state sequence and the predicted state sequence, whereas�(�) ∈ ℜ�, � = 0, 1, ..., � is the expected output sequence. The filter and smoother gains, which

are ��(�) ∈ ℜ� × � and ��(�) ∈ ℜ� × �, are, respectively, given by

T 1( ) ( ) ( )f x yK k M k C M k -= (5a)

T 1( ) ( ) ( 1)s xK k P k A M k -= + (5b)

whereas the state error covariance matrices are

T 1( ) ( ) ( ) ( ) ( )x x y xP k M k M k C M k CM k-= - (6a)

T T( 1) ( )xM k AP k A GQ Gw+ = + (6b)

T( ) ( ) ( )( ( 1) ( 1)) ( )s s s x sP k P k K k P k M k K k= + + - + (6c)

and the output error covariance matrix is

T( ) ( )y xM k CM k C Rh= + (6d)

with the boundary conditions ��(0) = �0 and ��(�) = ��(�) The filtered state error cova‐

riance �(�) ∈ ℜ� × �, the predicted state error covariance ��(�) ∈ ℜ� × �, the smoothed state

error covariance ��(�) ∈ ℜ� × �, and the output error covariance ��(�) ∈ ℜ� × � are positive

definite matrices.

Here, the cost function given in Eq. (3) is evaluated from the expectation of the quadratic forms
[2], both for random and deterministic terms with trace matrix tr(⋅), which is simplified by

a. � �(�)T�(�)�(�) = �� �(�)��(�) + �(�)T�(�)�(�)

Smoothing Solution for Discrete-Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences
http://dx.doi.org/10.5772/64564

65



b. � �(�)T��(�) = �� ���(�) + �(�)T��(�)
c. � �(�)T��(�) = �(�)T��(�)
d. � �(�) = �(�), � �1(�) = �1(�), and � �2(�) = �2(�).
Follow from this simplification, the trace matrix terms that are depend on the state error
covariance matrix are ignored in the model used since they are constant values. In such a way,
the cost function of the linear model‐based optimal control model could be evaluated.

Notice that the separation principle [1–4] is applied to solving Problem (M), where the optimal
feedback control law and the optimal state estimate are designed separately as discussed in
[16–18]. Further from this, the accuracy of the optimal state estimate is increased by smoothing
the state estimate in the fixed interval [2, 4]. Then, based on this smoothed state estimate, the
smoothing optimal control law is designed. On the other hand, the output measured from the
real plant is fed back into the model used, in turn, to improve the state estimation procedure
and to update the solution of the model used. Moreover, only solving Problem (M) without
adding the adjusted parameters into the model used would not approximate to the optimal
solution of Problem (P). Hence, by taking the adjusted parameters into the model used and
solving Problem (M) iteratively, the correct optimal solution of the original optimal control
problem could be obtained, in spite of model‐reality differences.

3. Modified smoothing with model-reality differences

Now, let us introduce an expanded optimal control problem with smoothing state estimate,
which is referred to as Problem (E), given below:

( )

T1
2( )

1
T T1

2
0

2 21 1
1 22 2

ˆ ˆmin ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ) ( ) ( ) ( ) ( ))

ˆ|| ( ) ( ) || || ( ) ( ) ||

e s s
u k

N

s s
k

s

J u x N S N x N N

x k Qx k u k Ru k k

r v k u k r z k x k

g

g
-

=

= +

+ + +

+ - + -

å (7)

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( )s sy k Cx k=
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T1
2 ( ) ( ) ( ) ( ) ( ( ), )z N S N z N N z N Ng j+ =

T T1
2 ( ( ) ( ) ( ) ( )) ( ) ( ( ), ( ), )z k Qz k v k Rv k k L z k v k kg+ + =

1( ) ( ) ( ) ( ( ), ( ), )Az k Bv k k f z k v k ka+ + =

2( ) ( ) ( ( ), )Cz k k h z k ka+ =

( ) ( )v k u k=

ˆ( ) ( )sz k x k=

where �(�) ∈ ℜ�, � = 0, 1, ..., � − 1 and �(�) ∈ ℜ�, � = 0, 1, ..., � are introduced to separate the
control and the smoothed state from the respective signals in the parameter estimation

problem and ∥ ⋅ ∥ denotes the usual Euclidean norm. The terms 12�1 ∥ �(�) − �(�) ∥2 and12�2 ∥ ��(�) − �(�) ∥2 are introduced such that the convexity is improved and the convergence

of the iterative algorithm is enhanced. The main purpose of designing the algorithm in this
way is to ensure that satisfying of the constraints �(�) = �(�) and �(�) = ��(�) is fulfilled at the

end of the iterations. More specifically, applying the state estimate �(�) and the control �(�)
for the computation in the parameter estimation and the matching schemes will increase the
practical usage of the algorithm. Moreover, implementing the relevant smoothed state ��(�)
and control �(�) that will be reserved for optimizing the model‐based optimal control problem
leads the iterative solution toward to the true optimal solution of the original optimal control
problem.

Figure 1 shows the block diagram of the approach proposed. The methodology of the approach
proposed is further discussed in the following sections.

From the block diagram in Figure 1, the definition of the principle of model‐reality differences
could be given.

Definition 3.1: Principle of model‐reality differences is a unified framework, which integrates
system optimization and parameter estimation interactively to define an expanded optimal
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control problem, aims to give the correct optimal solution of the original optimal control
problem by solving the model‐based optimal control problem iteratively.

Figure 1. Block diagram of the approach proposed.

3.1. Optimality conditions

Define the Hamiltonian function for Problem (E) as follows:

T T1
2

2 21 1
1 22 2

T T

T

T

ˆ ˆ( ) ( ( ) ( ) ( ) ( )) ( )

ˆ|| ( ) ( ) || || ( ) ( ) ||

ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ ˆ( 1) ( ( ) ( ) ( )( ( 1) ( 1))).

e s s

s

s

s s

s s s

H k x k Qx k u k Ru k k

r v k u k r z k x k

k u k k x k

q k Cx k y k

p k x k x k K k x k x k

g

l b

= + +

+ - + -

- -

+ -

+ + - - + - +

(8)

Then, the augmented cost function becomes
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T T1
2

T1
2

1
T T

0
T T1

2
T

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

( )( ( ( ), ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( )

( )( ( ( ), ( ), ) ( ( ) ( ) ( ) ( )) ( ))

( ) ( ( ( ), ( ), ) ( ) (

e s s s

N

e
k

J k x N S N x N N x N z N

N z N N z N S N z N N

H k k v k k z k

k L z k v k k z k Qz k v k Rv k k

k f z k v k k Az k Bv

g

x j g

l b

x g

m

-

=

¢ = + + G -

+ - -

+ + +

+ - + -

+ - -

å

1
T

2

) ( ))

( ) ( ( ( ), ) ( ) ( ))

k k

k h z k k Cz k k

a

p a

-

+ - -

(9)

where �(�), �(�), �(�), �(�), �(�), �, �(�), and �(�) are the proper multipliers to be judged the
value later.

The following necessary conditions for optimality are resulted when applying the calculus of
variation [2, 4, 17] to the augmented cost function given in Eq. (9):

(a) Stationary condition:

T
1( ) ( ) ( 1) ( ) ( ( ) ( )) 0.sRu k B K k p k k r v k u kl+ + - - - = (10a)

(b) Smoothed costate equation:

2ˆ ˆ( ) ( ) ( 1) ( ) ( ( ) ( )).s sp k Qx k p k k r z k x kb= + + - - - (10b)

(c) Smoothed state equation:

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - + (10c)

with the boundary conditions ��(�) = �(�) and �(�) = � .
(d) Adjustable parameter equations:

T1
2( ( ), ) ( ) ( ) ( ) ( )z N N z N S N z N Nj g= + (11a)

T T1
2( ( ), ( ), ) ( ( ) ( ) ( ) ( )) ( )L z k v k k z k Qz k v k Rv k kg= + + (11b)

1( ( ), ( ), ) ( ) ( ) ( )f z k v k k Az k Bv k ka= + + (11c)
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2( ( ), ) ( ) ( ).h z k k Cz k ka= + (11d)

(e) Multiplier equations:

( ) ( ) ( ) 0z k S N z NjG -Ñ + = (12a)

T

( ) ˆ( ) ( ( )) ( 1) 0
( )v k
fk L Rv k B p k
v k

l
æ ö¶

+ Ñ - + - + =ç ÷¶è ø
(12b)

T

( ) ˆ( ) ( ( )) ( 1) 0
( )z k
fk L Qz k A p k
z k

b
æ ö¶

+ Ñ - + - + =ç ÷¶è ø
(12c)

with �(�) = 1, �(�) = �(� + 1) and �(�) = �(�) = 0.

(f) Separable variables:

ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ).sv k u k z k x k p k p k= = = (13)

In view of these necessary optimality conditions, the conditions (10a), (10b), and (10c) define
the modified model‐based optimal control problem, the conditions (11a), (11b), (11c), and (11d)
define the parameter estimation problem and the conditions (12a), (12b), and (12c) are used to
compute the multipliers. They are further discussed as follows.

3.2. Modified model-based optimal control problem

The modified model‐based optimal control problem, which is referred to as Problem (MM), is
given below:

T T1
2( )

1
T T1

2
0

2 21 1
1 22 2

T T

ˆ ˆ ˆmin ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ) ( ) ( ) ( )) ( )

ˆ|| ( ) ( ) || || ( ) ( ) ||

ˆ( ) ( ) ( ) ( )

mm s s s
u k

N

s s
k

s

s

J u x N S N x N N x N

x k Qx k u k Ru k k

r v k u k r z k x k

k u k k x k

g

g

l b

-

=

= + + G

+ + +

+ - + -

- -

å (14)

subject to
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ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( ).s sy k Cx k=

From the outcome of Problem (E) and Problem (MM), the theorem of the smoothed optimal
control law which is applied to solve Problem (MM) is described.

Theorem 3.1: Suppose the expanded optimal control law for Problem (E) exists. Then, this
control law is the smoothed feedback control law for Problem (MM) given by

ˆ( ) ( ) ( ) ( )s ffu k K k x k u k= - + (15)

where

T 1 T

T 1
1

( ) ( ( ) ( 1) ) ( ( ) ( 1) ( )

ˆ( ) ( 1)(( ( ) ) ( ) ( )))

ff a s s a

s s

u k R B K k S k B B K k s k k

B K k S k A K k x k k

l

a

-

-

= - + + + -

+ + - +
(16a)

T 1 T 1( ) ( ( ) ( 1) ) ( ) ( 1) ( )a s s sK k R B K k S k B B K k S k K k- -= + + + (16b)

1( ) ( 1)( ( ) ( ))a sS k Q S k K k BK k-= + + - (16c)

1
1ˆ( ) ( 1)(( ( ) ) ( ) ( ) ( )) ( 1) ( )s ff as k S k A K k x k Bu k k s k ka b-= + - + + + + - (16d)

with the boundary conditions �(�) given and �(�) = 0, and

�� = � + �1��; �� = � + �2��;��(�) = �(�) + �1�(�); ��(�) = �(�) + �2�(�) .
Proof: From the necessary optimality condition (10a), we have

T( ) ( ) ( 1) ( ).a s aR u k B K k p k kl= - + + (17)

Applying sweep method [2, 4],
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ˆ( ) ( ) ( ) ( )sp k S k x k s k= + (18)

we substitute Eq. (18) for � = � + 1 into Eq. (17), which yields

T T( ) ( ) ( 1) ( 1) ( ) ( 1) ( ).a s s s aR u k B K k S k x k B K k s k kl= - + + - + + (19)

Rewrite the smoothed state equation from Eq. (10c),

1ˆ ˆ ˆ( 1) ( 1) ( ( )) ( ( ) ( )).s s sx k x k K k x k x k-+ = + + - (20)

Then, substitute Eq. (20) into Eq. (19). After some algebraic manipulations, the smoothed
control law (15) is obtained, where Eqs. (16a) and (16b) are satisfied.

From the smoothed costate equation (10b), we substitute Eq. (18) for � = � + 1 to give

ˆ ˆ( ) ( ) ( 1) ( 1) ( 1) ( )a s s ap k Q x k S k x k s k kb= + + + + + - (21)

Consider Eq. (20) in Eq. (21), we obtain

1ˆ ˆ ˆ( ) ( ) ( 1)( ( 1) ( ( )) ( ( ) ( )) ( 1) ( ).a s s s ap k Q x k S k x k K k x k x k s k kb-= + + + + - + + - (22)

By doing some algebraic manipulations, it is found that Eqs. (16c) and (16d) are satisfied after
comparing to Eq. (18). This completes the proof.

From Eqs. (4a), (10c), and (15), the smoothed state equation becomes

1

1

ˆ ˆ( ) ( ( ) ( )) (( ( ) ) ( )
ˆ( )( ( 1) ( ) ( )))

s n s n s

s s ff

x k I K k BK k I K k A x k
K k x k Bu k ka

-= - -

+ + - -
(23)

and the smoothed output is measured from

ˆ ˆ( ) ( )s sy k Cx k= (24)

with the boundary condition ��(�) = �(�).
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3.3. Parameter estimation

After solving Problem (MM), the defined separable variables given in Eq. (13) are used for the
further computations. Particularly, in the parameter estimation problem, the differences
between the real plant and the model used are taken into account in which the matching
schemes are established. In view of this, the adjusted parameters, which are resulted from
parameter estimation problem defined by Eq. (11), are calculated from

1( ) ( ( ), ( ), ) ( ) ( )k f z k v k k Az k Bv ka = - - (25a)

2( ) ( ( ), ) ( )k h z k k Cz ka = - (25b)

T1
2( ) ( ( ), ) ( ) ( ) ( )N z N N z N S N z Ng j= - (25c)

T T1
2( ) ( ( ), ( ), ) ( ( ) ( ) ( ) ( ))k L z k v k k z k Qz k v k Rv kg = - + (25d)

3.4. Computation of multipliers

The multipliers, which are related to the Jacobian matrix of the functions f and L with respect
to �(�) and �(�), are computed from

( ) ( ) ( )z k S N z NjG = Ñ - (26a)

T

( ) ˆ( ) ( ( )) ( 1)
( )v k
fk L Rv k B p k
v k

l
æ ö¶

= - Ñ - - - +ç ÷¶è ø
(26b)

T

( ) ˆ( ) ( ( )) ( 1)
( )z k
fk L Qz k A p k
z k

b
æ ö¶

= - Ñ - - - +ç ÷¶è ø
(26c)

3.5. Iterative algorithm

From the previous sections, the derivation of equations and the formulation of the resulting
algorithm are clearly discussed. Following from these discussions, a summary on this iterative
algorithm is delivered as follows:

Data �, �, �(�), �, �, �, �, ��, ��, �0, �0, �, �1, �2, ��, ��, ��, �, �, ℎ, � . Note that A and B may be

chosen through the linearization of f, and C is obtained from the linearization of h.
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Step 0: Compute a nominal solution. Assume �1(�) = 0, � = 0, 1, ..., � − 1, �2(�) = 0, � = 0, 1, ..., �,
and �1 = �2 = 0. Calculate ��(�) and ��(�) from Eqs. (5a) and (5b), �(�),��(�), ��(�) and ��(�)
from Eqs. (6a), (6b), (6c), and (6d) for the state estimation, and solve Problem (M) defined by

Eq. (3) to obtain �(�)0, � = 0, 1, ..., � − 1, and ��(�)0, ��(�)0, �(�)0, � = 0, 1, ..., � . Then, with�1(�) = 0, � = 0, 1, ..., � − 1, �2(�) = 0, � = 0, 1, ..., �, and �1, �2 from data, calculate �(�) and�(�), respectively, from Eqs. (16b) and (16c). Set � = 0, �(�)0 = ��(�)0, �(�)0 = �(�)0 and�(�)0 = �(�)0 .
Step 1: Calculate the adjustable parameters �1(�)�, � = 0 , 1, ..., � − 1, �2(�)�, � = 0, 1,...,�, �(�)�, � = 0, 1, ..., �, from Eq. (25). This is called the parameter estimation step.

Step 2: Compute the modifiers ��, �(�)� and �(�)�, � = 0, 1, ..., � − 1, from Eq. (26). This requires

the partial derivatives of �, ℎ and L with respect to �(�)� and �(�)�.
Step 3: With the determined �1(�)�, �2(�)�, �(�)�, ��, �(�)�, �(�)�, �(�)�, and �(�)�, solve Problem

(MM) defined by Eq. (14) using the result in Theorem 3.1. This is called the system optimization
step.

a. Obtain �(�)�, � = 0, 1, ..., � by solving Eq. (16d) backward, and obtain���(�)�, � = 0, 1, ..., � − 1 by solving Eq. (16a), either backward or forward.

b. Calculate the new control �(�)�, � = 0, 1, ..., � − 1 using Eq. (15).

c. Calculate the new state ��(�)�, � = 0, 1, ..., �, using Eq. (23).

d. Calculate the new costate �(�)�, � = 0, 1, ..., �, using Eq. (18).

e. Calculate the new output ��(�)�, � = 0, 1, ..., �, using Eq. (24).

Step 4: Update the optimal smoothing solution of Problem (P) and test the convergence of the
algorithm. For regulating convergence, a mechanism, which is a simple relaxation method,
shall be provided and given by:

1 ˆ( ) ( ) ( ( ) ( ) )i i i i
z sz k z k k x k z k+ = + - (27a)

1( ) ( ) ( ( ) ( ) )i i i i
vv k v k k u k v k+ = + - (27b)

1ˆ ˆ ˆ( ) ( ) ( ( ) ( ) )i i i i
pp k p k k p k p k+ = + - (27c)
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where ��, ��, ��, range in the interval of (0, 1], are scalar gains. If �(�)� + 1 = �(�)�, � = 0, 1, ..., �,
and �(�)� + 1 = �(�)�, � = 0, 1, ..., � − 1, within a given tolerance, stop; else repeat from Step 1 by
setting � = � + 1.

Remarks:

a. The off‐line computation, which is mentioned in Step 0, is done for the state estimator
design, where ��(�), ��(�), � = 0, 1, ..., � − 1,��(� ), ��(�), � = 0, 1, ..., �, �(�), ��(�),� = 0, 1, ..., � − 1 are computed, and for the control law design, where�(�), � = 0, 1, ..., � − 1, �(�), � = 0, 1, ..., � are calculated. In fact, these parameters are used
for solving Problem (M) in Step 0 and for solving Problem (MM) in Step 3, respectively.

b. The variables �(�)�, �1(�)�, �2(�)�, ��, �(�)�, �(�)�, and �(�)� are initially zero in Step 0. Their

computed values, where �(�)�, �1(�)�, �2(�)� in Step 1, ��, �(�)�, �(�)� in Step 2, and �(�)� in
Step 3, would be changed from iteration to iteration.

c. The driving input ���(�) in Eq. (16a) corrects the differences between the real plant and
the model used, and it also drives the controller given in Eq. (15).

d. The state estimation without the control is done forward using the Kalman filtering, and
then it is followed by the fixed‐interval smoothing backward in order to design the
feedback control law.

e. Problem (P) is not necessary to have a cost function in quadratic criterion or to be a linear
problem.

f. The equations �(�)� + 1 = �(�)� and �(�)� + 1 = �(�)� can be definitely required to satisfy
for the converged state estimate sequence and the converged optimal control sequence.
On this point of view, the following averaged 2‐norms are computed and, then, they are
compared with a given tolerance to verify the convergence of �(�) and �(�):

1/21
1 1

2
0

1|| || || ( ) ( ) ||
1

N
i i i i

k

v v v k v k
N

-
+ +

=

æ ö
ç ÷- = -
ç ÷-è ø

å (28a)

1/2
1 1

2
0

1|| || || ( ) ( ) ||
N

i i i i

k

z z z k z k
N

+ +

=

æ ö
ç ÷- = -
ç ÷
è ø
å (28b)

g. The relaxation scalars (kv, kz, kp) are the step‐sizes in regulating the convergence mecha‐
nism. These scalars could be normally chosen as a certain value in the range of (0, 1], but
this choice may not provide the optimal number of iterations. Hence, it is important to
note that the optimal choice of these scalars kv, kz, kp ∈ (0, 1] would be problem dependent.
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As a rule of this case, the algorithm (from Step 1 to Step 4) is required to run few times.
Initially, for first run of the algorithm (from Step 1 to Step 4), these scalars are set at kv = kz
= kp = 1, and then, with different values chosen from 0.1 to 0.9, the algorithm is run again.
The value with the optimal number of iterations can be determined after that. Applying
the parameters r1 and r2 is to enhance the convexity such that the convergence of the
algorithm can be improved.

4. Convergence analysis

In this section, the convergence of the algorithm is discussed. The following assumptions are
needed:

The derivatives of �, � and h exist.

The solution (�*, �*, �*) is the optimal solution to Problem (P). That is, the optimal smoothing
solution.

The convergence result is presented in Theorem 4.1, while the accuracy of the smoothed state
in term of state error covariance is proven in Corollary 4.1.

Theorem 4.1: The converged solution of Problem (M) is the correct optimal smoothing solution
of Problem (P).

Proof: Consider the real plant and the output measurement of Problem (P) with the exact
optimal smoothing solution (�*, �*, �*) as given below:

* * * * *( 1) ( ( ), ( ), ) and ( ) ( ( ), )x k f x k u k k y k h x k k+ = = (29)

In Problem (M), the model used consists of

ˆ ( ) ( ) ( )( ( ) ( ))c c c
fx k x k K k y k y k= + - (30a)

1ˆ( 1) ( ) ( ) ( )c c cx k Ax k Bu k ka+ = + + (30b)

2( ) ( ) ( )c cy k Cx k ka= + (30c)

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))c c c c
s s sx k x k K k x k x k= + + - + (30d)
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ˆ ˆ( ) ( )c c
s sy k Cx k= (30e)

where ��(�), ���(�), ��(�), ��(�), ���(�), and ��(�) are, respectively, the converged sequences for

control law, smoothed state estimate, filtered state estimate, expected state estimate, smoothed
output, and expected output. Here, �(�) is the output measured from the real plant.

Applying the adjusted parameters �1(�) and �2(�), which are given by

�1(�) = �(�(�), �(�), �) − ��(�) − ��(�)and
�2(�) = ℎ(�(�), �) − ��(�),

into the model used given by Eq. (30b) and (30c), the differences between the real plant and
the model used can be measured at each iteration. Moreover, at the end of iteration, from Eqs.
(29) and (30a) – (30e) yields

ˆ ˆ( 1) ( ( ), ( ), )and ( ) ( ( ), )c c
s sx k f z k v k k y k h z k k+ = =

which �(�) = ��(�) and �(�) = ���(�) = ��(�) are satisfied. Hence, this implies that

��(�) = �*(�), ���(�) = �*(�), ���(�) = �*(�)
This completes the proof.

Corollary 4.1: The smoothed state error covariance is the smallest among the values of state
error covariance.

Proof: From Eq. (6), it is clear that the filtered state error covariance �(�) is less than the
predicted state error covariance ��(�) . That is, �(�) < ��(�) . Now, to prove ��(�) < �(�),, we

shall show that ��(� + 1) < ��(� + 1). Consider the boundary condition ��(�) = ��(�) and

taking � = � − 1, we have

( 1) ( 1) ( 1).s xP N P N M N- = - < -

For � = � − 2, it shows that

( 2) ( 2) ( 2).s xP N P N M N- < - < -
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This statement can be deduced that

( 1) ( 1) 0for 1.s xP k M k k k+ - + < = +

Thus, we conclude that

( ) ( ) ( ), 0,1,..., 2,s xP k P k M k k N< < = -

which shows the accuracy of the smoothed state estimate. This completes the proof.

5. Illustrative example

Consider a continuous stirred‐tank reactor problem [19], which consists of the state difference
equations

1
1 1 1 2

1

1 1

25 ( )( 1) ( ) 0.02( ( ) 0.25) 0.01( ( ) 0.5)exp
( ) 2

0.01( ( ) 0.25) ( ) ( )

x kx k x k x k x k
x k

x k u k kw

é ù
+ = - + + + ê ú+ë û

- + +

1
2 2 2 2

1

25 ( )( 1) 0.99 ( ) 0.005 0.01( ( ) 0.5)exp ( )
( ) 2
x kx k x k x k k

x k
w

é ù
+ = - - + +ê ú+ë û

for � = 0, ..., 77, and the output measurement �(�) = �1(�) + �(�). The initial state �(0) = �0 is a

random vector with mean and covariance given, respectively, by �1(0) = 0.05, �2(0) = 0, and�0 = 10−2�2 .
Here, �(�) = [�1(�) �2(�)]T and �(�) are Gaussian white noise sequences with their respective

covariance given by �� = 10−3�2 and �� = 10−3. The expected cost function

1
2 2 2

0 1 2
0

( ) 0.5 [( ( )) ( ( )) 0.1( ( )) ]
N

k

J u E x k x k u k
-

=

= + +å

is to be minimized over the state difference equations and the output measurement.

This problem is referred to as Problem (P).
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To obtain the optimal smoothing solution of Problem (P), we simplify the plant dynamics of
Problem (P) and refer it as Problem (M), given by

1
2 2

( )
0

1 ˆmin ( ) [( ( )) 0.1( ( )) 2 ( )]
2

N

m s
u k

k

J u x k u k kg
-

=

= + +å

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( )s sy k Cx k=

with

ˆ( ) ( ) ( )( ( ) ( ))fx k x k K k y k y k= + -

1 111

2 122

ˆ( 1) ( )1.0895 0.0184 ( ) 0.003
( )

ˆ( 1) ( )0.1095 0.9716 ( ) 0.000
x k kx k

u k
x k kx k

a
a

+ -é ùé ù é ùé ù é ù
= + +ê úê ú ê úê ú ê ú+ -ë û ë ûë û ë ûë û

1 2( ) ( ) ( )y k x k ka= +

with the initial condition �(0) = �0 and the boundary value ��(�) = �(�) . Here, �(�), �2(�) and�1(�) = [�11(�) �12(�)]T are the adjusted parameters.

Model Iteration number Elapsed time Initial cost Final cost Output residual

Filtering 6 0.782772 3.7910 0.021271 0.034731

Smoothing 8 1.026919 3.5095 0.000734 0.018294

Table 1. Iteration result.

The iteration results, both for filtering and smoothing models, are shown in Table 1. The final
cost of the smoothing model is the least compared to the final cost of the filtering model. When
the trace matrix terms are considered in the cost function, the total final cost of the smoothing
model is 0.019188 unit, while the total final cost of the filtering model is 0.039725 unit. The
value of the trace matrix terms is 0.0185 unit. It is noticed that the output residual could be
dropped to almost 52% from the filtering output residual by using the approach proposed in
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this chapter. This statement is valid since the output residual of smoothing model is least than
the output residual of filtering model.

Figure 2. Filtering trajectory for final control.

Figure 3. Filtering trajectory for final state.

To identify the accuracy of the resulting algorithm, the norms of the differences between the
real plant and the model used at the end of iteration, which are 0.0128 unit for filtering model
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and 0.0099 unit for smoothing model, are calculated. These values show that the smoothing
model can approximate closely to the correct optimal solution of the original optimal control
problem rather than the filtering model. Hence, the accuracy of the smoothing model is proven.

Figure 4. Filtering trajectory for final output and real output.

Figure 5. Smoothing trajectory for final control.
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Figure 6. Smoothing trajectory for final state.

Figure 7. Smoothing trajectory for final output and real output.
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The trajectories of final control, final state and final output for filtering, and smoothing mod‐
els are shown in Figures 2–7. With the smallest output residual, the output, which is associ‐
ated with the smoothed state estimate, is definitely applicable to measure the real output
trajectory.

6. Concluding remarks

A fixed‐interval smoothing scheme was modified in this chapter for solving the discrete‐time
nonlinear stochastic optimal control problem. The state estimation procedure, which is using
the Kalman filtering theory and is followed by the fixed‐interval smoothing, is applied to
estimate the system dynamics. Then, the smoothed state estimate is used in designing the
feedback optimal control law. By employing this smoothed state estimate, system optimization
and parameter estimation are integrated. During the computation procedure, the differences
between the real plant and the model used are calculated iteratively. On the other hand, the
output measured from the real plant is fed back into the model used, in turn, updates the
iterative solution. Once the convergence is achieved, the iterative solution approaches to the
correct optimal solution of the original optimal control problem, in spite of model‐reality
differences. The illustrative example on the optimal control of the continuous stirred‐tank
reactor problem was studied. The results obtained demonstrated the applicable of the ap‐
proach proposed, and the efficiency of the approach proposed is highly presented.

Acknowledgements

The authors like to thank the Universiti Tun Hussein Onn Malaysia (UTHM) for financial
supporting to this study under Incentive Grant Scheme for Publication (IGSP) VOT. U417.

Author details

Sie Long Kek1*, Kok Lay Teo2 and Mohd Ismail Abd Aziz3

*Address all correspondence to: slkek@uthm.edu.my

1 Center for Research in Computational Mathematics, Universiti Tun Hussein Onn Malaysia,
Parit Raja, Malaysia

2 Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA,
Australia

3 Department of Mathematical Sciences, Universiti Teknologi Malaysia, UTM, Skudai, Ma‐
laysia

Smoothing Solution for Discrete-Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences
http://dx.doi.org/10.5772/64564

83



References

[1] Kalman R. E. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering. 1960; 82(1):35–45.

[2] Bryson A. E. and Ho Y. C. Applied Optimal Control. Washington: Hemisphere; 1975.

[3] Bertsekas D. P. Dynamic Programming and Optimal Control (Vol. 1, No. 2). Belmont:
Athena Scientific; 1995.

[4] Lewis F. L. and Syrmos V. L. Optimal Control. 2nd ed. USA: John Wiley & Sons; 1995.

[5] Feng Z.G. and Teo K. L. Optimal feedback control for stochastic impulsive linear
systems subject to Poisson processes. In: Optimization and Optimal Control. New York:
Springer; 2010. p. 241–258.

[6] Misiran M., Wu C., Lu Z. and Teo K.L. Optimal filtering of linear system driven by
fractional Brownian motion. Dynamic Systems and Applications. 2010; 19(3):495–514.

[7] Loxton R., Lin Q. and Teo K. L. A stochastic fleet composition problem. Computers &
Operations Research. 2012; 39(12):3177–3183. DOI: 10.1016/j.cor.2012.04.004.

[8] Liu C. M., Feng Z. G. and Teo K. L. On a class of stochastic impulsive optimal parameter
selection problems. International Journal of Innovation, Computer and Information
Control. 2009; 5:1043–1054.

[9] Yin Y., Shi P., Liu F. and Teo K. L. Robust L2 – L∞ filtering for a class of dynamical systems
with nonhomogeneous Markov jump process. International Journal of Systems Science.
2015; 46(4):599–608. DOI: 10.1080/00207721.2013.792976.

[10] Moura S. J., Fathy H. K., Callaway D. S. and Stein J. L. A stochastic optimal control
approach for power management in plug‐in hybrid electric vehicles. IEEE Transactions
on Control Systems Technology. 2011; 19(3):545–555. DOI: 10.1109/TCST.2010.2043736.

[11] Wiegerinck W. Broek B. V. D. and Kappen H. Stochastic optimal control in continuous
space‐time multi‐agent systems. Proceedings of the 22nd Conference on Uncertainty
in Artificial Intelligence (UAI’06), Arlington, Virginia. 2006; 528–535.

[12] Zhu Y. Uncertain optimal control with application to portfolio selection model.
International Journal of Cybernetics and Systems. 2010; 41(7):535–547. DOI:
10.1080/01969722.2010.511552.

[13] Hać A. Suspension optimization of a 2‐DOF vehicle model using a stochastic optimal
control technique. Journal of Sound and Vibration. 1985; 100(3):343–357. DOI:
10.1016/0022‐460X(85)90291‐3.

[14] Todorov E. Stochastic optimal control and estimation methods adapted to the noise
characteristics of the sensorimotor system. Neural Computation. 2005; 17(5):1084–1108.

Nonlinear Systems - Design, Analysis, Estimation and Control84



[15] Sethi S. P. Deterministic and stochastic optimization of a dynamic advertising model.
Optimal Control Applications and Methods. 1983; 4(2):179–184. DOI: 10.1002/oca.
4660040207.

[16] Kek S. L., Teo K. L. and Mohd Ismail A. A. An integrated optimal control algorithm for
discrete‐time nonlinear stochastic system. International Journal of Control. 2010;
83:2536–2545. DOI: 10.1080/00207179.2010.531766.

[17] Kek S. L., Teo K. L. and Mohd Ismail A. A. Filtering solution of nonlinear stochastic
optimal control problem in discrete‐time with model‐reality differences. Numerical
Algebra, Control and Optimization. 2012; 2(1):207–222. DOI: 10.3934/naco.2012.2.207.

[18] Kek S. L., Mohd Ismail A. A., Teo K. L. and Ahmad R. An iterative algorithm based on
model‐reality differences for discrete‐time nonlinear stochastic optimal control
problems. Numerical Algebra, Control and Optimization. 2013; 3(1):109–125. DOI:
10.3934/naco.2013.3.109.

[19] Kirk D. E. Optimal Control Theory: An Introduction. Mineola, New York: Dover
Publications; 2004.

Smoothing Solution for Discrete-Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences
http://dx.doi.org/10.5772/64564

85




