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Abstract

Information on insulin resistance/sensitivity in term-normoweight neonates is scarce.
The hypothalamus-pituitary-adrenal cortex axis and pancreas are implicated in several
aspects of foetal maturation and programming. This study aims to analyse the effects
of  a  combination  of  hyperinsulinaemia  plus  hypercortisolaemia  in  such  neonates
together with their mothers℉ gestational glucose tolerance on growth hormone (GH),
insulin-like growth factor-1 (IGF)-1, glucose, and insulin resistance/sensitivity markers
[homeostatic  model  assessment-insulin  resistance  (HOMA-IR)/quantitative  insulin
sensitivity check index (QUICKI)] at birth. Furthermore, the importance of pregnancy
diet quality on these markers is discussed. In a selected group of 187 term-normoweight
non-distressed  neonates,  about  9%  had  increased  insulin  and  cortisol  cord-blood
concentrations. In spite of normality criteria applied, the combination of hypercortiso-
laemia and hyperinsulinaemia at birth was associated with higher body weight, body
length, glucose, HOMA-IR, GH, IGF-1 and glucose/insulin ratio values than those of
neonates presenting low/normal concentrations of insulin and cortisol. Hyperinsuli-
naemia preferentially to hypercortisolaemia affected the markers studied. Impaired
glucose tolerance prevalence was higher in mothers whose neonates were hyperinsuli-
naemic  at  birth.  The  hyperinsulinaemic  plus  hypercortisolaemic  status  was  more
prevalent in neonates whose mothers had poor Mediterranean diet adherence. Results
show the importance of analysing insulin and cortisol in cord-blood even in term-
normoweight neonates.

Keywords: neonates, term, normoweight, insulin, cortisol, growth, HOMA, insulin re-
sistance/sensitivity, maternal impaired glucose tolerance
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1. Introduction

Pregnancy is a very complex period where growth, development and maturity take place. The
future body, in addition to increasing its cellular mass, progressively acquires functional
capabilities that would permit it to live and grow out of the mother’s womb [1, 2]. Two clear
periods can be distinguished during pregnancy in the future mother. During the first period,
a marked increase in insulin level and sensitivity occurs in the mother, with parallel increases
in placenta size, amniotic volume, protein content and fat stores; however, the foetus weight
gain is small in comparison with that of the mother [1–3]. During the second period, a
physiological increase in insulin resistance and insulin degradation takes place in the mother,
in parallel to the exponential foetal growth that partially or totally blocks the gain rhythm of
maternal stores. This metabolic situation assures the availability of glucose for the maternal
and foetal brains and mammary gland, reducing the uptake of glucose by other maternal
tissues [1–3]. When glucose homeostasis is not physiologically balanced, changes and adap-
tation take place during pregnancy, predisposing the individual to degenerative diseases later
in life [4–8]. In some non-diabetic women, an alteration in carbohydrate metabolism occurs
during pregnancy; thus, although fasting glycaemia is normal, after a carbohydrate load, the
glycaemia increases over normal values. This situation is rather more frequent at the end of
pregnancy and is known as gestational diabetes (GD) [1, 9].

Several homeorhetic adjustments are required to assure adequate foetal anabolism, which in
turn can also be affected by genetic and nutritional factors [1, 2, 10–15]. Maternal glucocorti-
coids, among others, clearly affect metabolites and foetal corticoids that compete with other
anabolic and growth mediators as insulin and insulin-like growth factor-1 (IGF-1) [2, 16–18].
Thus, a hormonal balance seems to be of critical importance to guarantee suitable foetal and
postnatal development [4, 5, 16–19]. Glucocorticoids are central hormones engaged in correct
foetal growth and maturation [16, 17]; however, their excess induces intrauterine growth delay,
clearly affecting glucose homeostasis and brain development and functions [20–22]. As
discussed above, palliative mechanisms are available to reduce the negative effects of excess
active corticoids [20–22].

2. Glucocorticoids: short metabolic review

Store capability of body steroid hormones is limited; thus, they are synthesized from choles-
terol, mainly in liver and endocrine glands. The placenta, although it produces steroid
hormones, is unable to synthesize cholesterol, being, thus obliged, to take it from maternal
plasma low-density and high-density lipoprotein (LDL and HDL, respectively) particles [23].

Cholesterol (27 carbons, 27C), the common precursor of all steroid hormones, is converted in
placenta to pregnenolone (27C) from which progesterone (21C) is derived. Progesterone is the
precursor of several steroid hormones: (a) adrenal cortex hormones (mineralocorticoids and
glucocorticoids); (b) male sex hormones (androgens) (19C); and (c) female sexual hormones
(oestrogens) (18C).
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The adrenal cortex contains 11-, 17- and 21-hydroxylases. When hydroxylation takes place in
C21, the 17-hydroxylase action is arrested and mineralocorticoids (e.g. aldosterone) are
synthesized in the glomerular zone. When hydroxylation takes place in C17, glucocorticoids
and sex hormones are formed in the fascicular and the reticular zones, respectively [16]. The
final step production of glucocorticoids and mineralocorticoids is catalysed by two mitochon-
drial cytochromes P450, CYP11B1 (11b-hydroxylase or P45011b) and CYP11B2 (aldosterone
synthase or P450aldo) [24]. The synthesis of steroid hormones is summarized in Figure 1.

Figure 1. Steroid hormone synthesis. Notice that role of different hydroxylases. ACTH, adrenocorticotropic hormone;
StAR, steroidogenic acute regulatory protein. *Androstenedione and *testosterone can be transformed in oestrone and
oestradiol, respectively by the aromatase action. The **Dehydroepiandrosterone sulphate produces oestradiol, while
the **17-OH-dehydroepiandrosterone, oestriol. Modified from Pascual-Leone Pascual and Goya Suárez [16] and Sibe-
rnagl and Despopoulos [25].

The fascicular zone produces cortisol (hydrocortisone) and, in much lower amounts, cortisone.
Glucocorticoid synthesis and release is controlled by hypothalamus corticotropin-releasing
hormone (CRH) and by the adrenocorticotropic hormone (ACTH) of the anterior hypophysis
lobule [16, 25] (Figures 1 and 2). ACTH induces glucocorticoids releasing (and minor amounts
of other cortical hormones), helping to maintain adrenal cortical structure and function and to
assure cholesterol availability for hormonal synthesis. ACTH production and secretion are
under negative feedback control but increased by adrenal medulla catecholamines [16, 21,
25].

Steroid hormones are fat soluble, and thus, they easily cross biological membranes, having
crucial effects on cellular differentiation and organization. Cortisol binds amply to cortisol
binding globulin (CBG), limiting the level and activity of free cortisol [16, 22, 26, 27].
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Figure 2. Steroid hormone and catecholamine location in the adrenal gland. The activating and negative feedback im-
plicated mechanisms are shown. CRH, corticotropin-releasing hormone, ACTH, adrenocorticotropic hormone. Red
lines, inhibition; Green lines, activation. Modified from Nelson and Cox [26].

System Action High concentrations

Metabolism Increases glycaemia

Increases amino acids use

Increases urea

Heart and circulation Increases heart contraction strength

Increases peripheral vasoconstriction

Induce angiotensinogen formation

Stomach Increases gastric juices Gastric ulcer

Kidneys Maintains glomerular flux

Delays water elimination

Similar effects as aldosterone

Brain Hypothalamus inhibition

Immune system Anti-allergic and anti-inflammatory

Table 1. Effects of cortisol on different systems.

Glucocorticoids interact on receptors located on skeletal, smooth, and cardiac muscles, brain,
stomach, kidney, liver, lung, adipose and lymphatic cells. Those hormones bind to both
mineralocorticoid and glucocorticoid receptors (MR and GR, respectively), members of the
nuclear receptor’s superfamily. GR are expressed since the embryonic stage [28]. GR are
expressed in pancreas, liver, visceral adipose tissue, skeletal muscle and in brain areas such as
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hippocampus and amygdaline nuclei, where they regulate memory and behaviour [17, 22].
There are GR and MR gene polymorphisms that could explain individual response to corti-
coids [29]. Optimum glucocorticoid concentrations in blood and tissues are needed to assure
correct homeostasis. These levels are highly variable and affected by factors such as gender
and circadian cycle, thus explaining difficulties on reference value establishment. Due to space
limitations in this review, the particular effects of glucocorticoids on different systems and the
effects of high cortisol actions are summarized in Table 1.

3. Glucocorticoids and stress: the allostasis concept

During alarm reaction, catecholamines stimulate hypothalamus, which releases hormones to
guarantee adequate plasma glucose levels. These hormones become maximal 4 hours after
alarm [16, 21]. Thus, glucocorticoids also help in the alarm reaction. Nowadays, stress response
is accepted to be undoubtedly associated with allostasis, a term created by Sterling and Eyer
[30] that textually means maintaining stability through change, in the idea that stress situation is
a body adaptation to a unknown situation that must be transitory blocked or arrested. System
failure would imply suppression of several anabolic processes with energy store diminution
and immune system blocking, which can be highly deleterious to the body.

When stress becomes chronic, a high glucocorticoids release to plasma is kept. These high
levels downregulate the GR expression in hippocampus. Thus, the correct feedback exerted
by the hypophysis-pituitary axis (HPA) blocking is shunned, which results in lasting high
glucocorticoids concentrations [26, 30, 31]. There exist three known mechanisms regulating
the entrance of glucocorticoids to the brain [16]: (1) CBG, a molecule that determines the free
cortisol levels in humans, and thus cortisol which is available to bind GR [16]. In response to
very high free cortisol levels, the CBG transport capacity is saturated and the cortisol levels
increased substantially. Thus, the situation is compatible with cortisol resistance or low
response to cortisol [32]; (2) glycoprotein P carriers of blood–brain barrier limit, despite
glucocorticoid fat solubility, the entrance of cortisol to the brain; and (3) isoenzymes (dehy-
drogenases or reductases) transform cortisone in active cortisol, which is available to bind GR.
Conversely, the 11 β-hydroxysteroid dehydrogenase 2 (11 β-HSD 2) transforms in the kidneys
cortisol into inactive cortisone (Figure 1). The presence of high renal levels avoid corticoids
from interacting on MR. This enzyme is also available at high levels during development in
the brain and placenta to protect the body against deleterious effects of high cortisol levels (e.g.
cerebellar malformation [33], high HPA activity in adult life [34] and increased incidence of
diseases related to corticoids hypersensitivity [22].

4. Human foetal adrenal gland

The human foetal adrenal gland has double weight than the foetal kidneys and after delivery
its size decreases from 8 to 5 g in 5 weeks. It has three areas: foetal area, definitive area and
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medulla. The foetal area is integrated by vast cells presenting steroid synthesis characteristics.
This area occupies approximately the 80% of the total adrenal gland at the end of pregnancy.
It secretes two main substances: dehydroepiandrosterone sulphate (DHAS), synthesized in the
foetal area, and cortisol, synthesized in the definitive area [16, 21]. DHAS is synthesized from
acetate or from cholesterol (Figure 1). It can be also formed by direct conversion from other
steroid sulphates, beginning from cholesterol sulphate. The DHAS production increases as the
pregnancy goes by. Its production is kept high during the first week after delivery, and then
decreases, reflecting the foetal area’s atrophy. After delivery, at the age of 1 year, total involution
of the foetal area is observed [3, 35].

The step from DHAS to 16-α-hydroxydehydroepiandrosterone (16-α-OH-DHAS) is scarce in
the foetal adrenal gland, but it can be observed in the foetal liver. Afterwards, both substances
are used as substrates in the placenta for the oestrogens’ synthesis: DHAS produces oestradiol
and 16-α-OH-DHAS produces oestriol (see Figure 1 footnote). In the definitive area, cortisol
can be synthesized from maternal progesterone or de novo from LDL cholesterol. It is not
known what of the two pathways is the most used. It seems that the foetal adrenal gland has
small capability for progesterone secreting and there is a 3-OH steroid dehydrogenase–
isomerase complex deficiency. The cortisol synthesis grows along pregnancy: 6.9 ng/mL in 13-
week foetuses’ cord blood and 70 ng/mL at the end of gestation [16, 21].

The definitive area secretes deoxycorticosterone and aldosterone. These secretions begin at 10–
20 weeks and increase until the end of pregnancy. There is great cortisol transference from
mother to foetus through the placenta. Most of this cortisol can be found in the foetus as
corticosterone. Corticosterone levels in foetus are 5–10 times higher than in the mother’s blood.
Cortisol is also transferred from foetus to mother. Cortisol can be formed from cortisone in
foetus, as some tissues as kidney, lung, amniotic membrane and liver have the 11-hydroxys-
teroid dehydrogenase (11-HSD) [16].

5. Regulation of the secretions of the definitive and foetal areas in the
adrenal gland

Both the foetal and the definitive areas of the adrenal gland are stimulated by ACTH and α-
melanocyte stimulating hormone (MSH). Both hormones are secreted by the foetal pituitary
gland [16, 35]. As possible stimulators of the adrenal gland, angiotensin, prolactin, growth
hormone (GH) and epidermal growth factor have also been suggested. Progesterone and
deoxycorticosterone secretions decrease as pregnancy goes by, suggesting that the enzymatic
systems for their transformation into aldosterone and cortisol become active, as these hor-
mones levels increase at the end of pregnancy.

With respect to the medulla secretions, it is known that the corticosterone synthesized in situ
by the foetus is required for negative feedback suppression of the hypothalamus-pituitary-
adrenal axis and for catecholamine synthesis in adrenal medulla [36]. In addition, the maternal
catecholamines can go across the placenta [16].
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6. Carbohydrate metabolism: pancreatic hormones

Glucose is recognized as the major energy porter of human metabolism [37–39]. Glycaemia is
determined by carbohydrate intake and absorption, by the glycolysis and gluconeogenesis.
Figure 3 summarizes an integrated hormonal mechanism contributing to glycaemia balance.
When glycaemia is reduced, mechanisms are produced to avoid hypoglycaemic shock,
inducing appetite and compensatory mechanisms, as the lack of stimulation by β-cell to
produce insulin and the stimulation of glucagon by α-2 pancreatic cells. When glycaemia
increases, insulin promotes the intracellular cross of glucose through expression of receptors
and carriers. In addition, a general enzyme activity occurs in liver, skeletal muscle, adipose
tissue, etc., increasing the protein synthesis, lipogenesis and glycogenesis [25].

Figure 3. Integrative scheme of hormone response to hypoglycaemia and hyperglycaemia. ACTH, adrenocorticotropic
hormone, GH, growth hormone. Red lines, inhibition; green lines, activation; Dot white lines, no effect. Red lines bear-
ing a cross: missing the inhibitory mechanism; green lines bearing a cross: missing the stimulating mechanism. Modi-
fied from Sibernagl and Despopoulos [25] and Nelson and Cox [26].

Hypoglycaemia and a high level of amino acids are two major stimuli for glucagon release.
However, fasting, general adrenergic excitation and a decrease in the fatty acid concentrations
also lead to glucagon release. On the other hand, hyperglycaemia inhibits glucagon release.
The main role of glucagon is raising the glycaemia [24] by increasing glycogenolysis (that is
intensified by an increased lipolysis) and diminishing glycolysis. Somatostatin is secreted by
the α-cells of the pancreas and inhibits GH, thyroid-stimulating hormone (TSH), gastrin,
insulin and glucagon release. All these effects result in a hypoglycaemic action. Glycaemia is
registered by glycoreceptors inducing compensation by modifying insulin and glucagon
release. Nevertheless, this action is completed by cortisol action and the effect of catechola-
mines (Figure 3).
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7. Foetal pancreas development

The pancreas is an endocrine and exocrine gland, which plays a major role in our economy. It
contributes to the macronutrient digestion by producing enzymes while its endocrine function
is critical to glucose homeostasis [1]. In humans, it appears first in gestation at 5–6 weeks, and
at 11 weeks the islets can be observed. Insulin production is functional at week 20 [3, 40], and
at this time, four cell types can be observed: α-cells producing glucagon, β-cells producing
insulin, δ-cells producing somatostatin and PP-cells producing pancreatic polypeptide. As it
occurs in adult life, at birth the most abundant cells are the β-cells and the least the PP-cells.
The pancreas is an active organ at the end of the first trimester and plays a key role since the
fourth month of pregnancy. IGF-1 is fundamental to pancreatic cell specialization, growth, islet
maturation and thus to insulin production.

There is a pancreatic plasticity that allows pancreas response to high insulin-demand situa-
tions. β-Cell adaptation to different situations (nutrient lack or excess) depends on the
equilibrium between cell division, growth and apoptosis death [7]. The foetal β-cell area
increases during pregnancy without changing the cell size. However, there is an increase in
the number of small islets, but not of the number of β-cells in each islet [41].

8. Growth hormones

IGF-1 is a low-molecular weight peptide hormone, expressed by all the adult and foetal tissues
since early life stages. Similar to proinsulin, IGF-1 consists of one single polypeptide chain
containing three disulphide bridges inside. Both IGF-1 and proinsulin have identical hydro-
phobic areas [42]. IGF-1 and its binding proteins (IGFBPs) are powerful stimulators of cellular
division and have a very important role in the regulation of foetal growth [18]. After birth, the
liver is the main source of IGF-1 and its IGFBPs. Nutritional factors such as protein intake,
energy and micronutrients such as zinc regulate IGF-1 synthesis. Hormones such as GH, sexual
steroids, thyroid hormones and insulin regulate the expression of IGF-1 and IGFBPs [43, 44].

Hormone Placental GH Human placental lactogen

Mother circulation Liver IGF-1 production Anti-insulinaemic effect

acumulación de nutrientes

Foetal circulation Without relevant effects Stimulate liver IGF-1 and glycogenesis

Stimulate fetal growth

GH, Growth hormone; IGF-1, insulin-like growth factor-1.

Table 2. Effects of placental GH and placental lactogen in both maternal and foetal circulations.

During gestation, pituitary GH production is scarce, while IGF-1 concentration increases,
reaching the highest level at the end of pregnancy. This increment is associated with a high
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placental GH synthesis. Placental and pituitary GHs have similar structures, but different
genes codify their production [45–47]. The main regulators of IGF-1 during pregnancy are both
the placental GH and the human placental lactogen (hPL) [47]. Placental GH is secreted to
maternal circulation, stimulating the synthesis of IGF-1 in the maternal liver. hPL is the most
abundant peptide hormone secreted by the placenta. It circulates in both maternal and foetal
blood, playing different roles. Table 2 summarizes some of the major roles of both placental
hormones.

9. Biological functions of IGF-1

IGF-1 stimulates cartilage growth, DNA, RNA and protein synthesis, and anabolic processes.
IGF-1 is a key mediator of hippocampal neurogenesis. GH is expressed in the hippocampus
where a high stress regulates it [48]. During pregnancy, IGF-1 stimulates cell division, maternal
tissues’ growth and anabolic processes resulting in increasing the adipose tissue, liver glycogen
reservoir and mammary gland development. IGF-1 has effects that are similar to those of
insulin on muscle and placenta, stimulating amino acid and glucose transport and inhibiting
lipolysis in the adipose tissue. IGF-1 has also a main role in growth, as the correlation between
its concentration and child growth speed shows [49]. In fact, it is the growth factor that best
correlates with foetal growth during gestation. The protein-energetic malnutrition and
preeclampsia associated with intrauterine growth retardation (IUGR) are two pathologic
statuses where IUGR is associated with IGF-1 and IGFBP concentrations. Hypoglycaemia
promotes adrenaline release, which stimulates hypothalamus GH release and inhibits insulin
production by β-pancreatic cells (Figure 3). As indicated, placental GH induces liver IGF-1
production, palliating, at least in part, the negative effects of hypoglycaemia.

10. The Barker hypothesis: disputes and joint effects of insulin and cortisol

Hormonal equilibrium and adjustment are needed for an adequate anabolism and develop-
ment [16, 17, 19, 37, 50]. This equilibrium is under nutritional and genetic regulation [7, 50].
Maternal glucocorticoids have relevant effects on the foetal metabolites and corticoid levels.
They have opposite effects to those of other anabolic and growth mediators such as insulin or
IGF-1 [38, 44]. Glucocorticoids are key hormones for adequate foetal development and
maturation [16, 17], but at high concentrations they induce IUGR with a great affectation of
glucose homeostasis, brain development and maturation and thus, all the processes regulated
by this complex organ. Fortunately there are mechanisms regulating the concentration of active
corticoids [7, 16], palliating, at least in part, the negative effects of the excess amount of these
hormones.

Fifty years ago, it was assessed that children with marasmic malnutrition presented low
insulinaemia and a high cortisol/insulin ratio [51]. However, these children kept a normal
glucose tolerance [51] suggesting an increased insulin resistance. In animal models, the
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tissue-insulin hypersensitivity induced by protein-energy malnutrition was confirmed [52,
53]. This disagrees with the thrifty phenotype theory [4–6], which supposes less glucose
consumed by peripheral tissues because of an insulin resistance status, allowing an ade-
quate glucose transfer to the brain even in nutritional restriction conditions.

Figure 4. Insulin and lipoprotein programming during pregnancy. Foetal malnutrition influencing growth and pan-
creas capacities. Notice that the glucose and nutrient availability affect glucocorticoid concentrations and the flux of
new cells originating lower pancreatic cell growth and less insulin production. This fact is counterbalanced by increas-
ing insulin sensitivity and cholesterol synthesis. High food amount availabilities would induce adaptive mechanisms
addressing glucose intolerance, diabetes mellitus, and/or dyslipidaemia and coronary heart disease (CHD) in this
“programmed” body later in life. *Non-definitive evidence. Modified from Sánchez-Muniz et al. [1].

Inadequate nutrition in human foetuses negatively affects pancreatic development, leading to
a smaller β-cell population [54] or a decreased ability for insulin production [55]. This situation
makes pancreas unable to adequately respond to some metabolic and stress conditions in adult
life. Foetal effects of this programming are less known, but it seems that malnutrition, placental
insufficiency and GD alter the islets development in the perinatal period, increasing the risk
of suffering diabetes in the future (Figure 4). There is no agreement on the results obtained as
malnutrition effects on insulin secretion ability have been associated with alterations in the
secretion mechanism or hormone biosynthesis, or other factors such as the amount of hormone
in each islet and the insulin availability by modifying the expression of the insulin production
and translation genes [56].

It is well known that pancreatic β-cells release adequate amounts of insulin as a response to
nutrients, hormones and nervous stimuli in order to keep glucose levels in a narrow range and
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assure optimum tissue functioning [38, 39, 57]. Glycaemia is the main insulin-secretion
regulator [38, 39, 57] (Figure 3). In the foetus, insulin synthesis is regulated by glucose, and it
has been described a slight foetal β-cell immaturity in the face of glucose. This seems para-
doxical as glucose is the main metabolic substrate in the foetus [38, 58]. The “thrifty phenotype”
hypothesis proposed by Hales and Barker [5] suggests that type 2 diabetes is due to the action
of unknown factors that reduce foetal growth, islet β cell ontogeny and insulin sensitivity
during the prenatal period. This hypothesis supposes a foetal programming where the HPA
axis is involved under hormonal and nutritional regulation. This programming is induced as
an adaptation mechanism of the future being to its limited environment in order to guarantee
its own survival and is more prevalent in low birthweight individuals [7].

However, there are different studies in neonates showing that even in adequate intra utero
growth situations, there is a wide dispersion in the hormonal results [59], suggesting that more
factors than malnutrition may be involved. Moreover, our group has found that normoweight
neonates whose mothers had an adequate adherence to the Mediterranean diet (MDA) during
pregnancy showed insulin resistance markers lower than those whose mothers followed a diet
far from the Mediterranean pattern [12, 13].

The hormonal imbalance associated with hypercortisolaemia, hyperinsulinaemia and reduced
levels of GH and testosterone is a typical fact of the metabolic syndrome [40, 60]. However,
this association has never been suggested in neonates and thus studied by our research group.

11. Reference values in neonates: insulin resistance/sensitivity markers

Our group has defined reference values for insulin resistance/sensitivity markers in neonates
[59]. These ranges were obtained considering strict criteria at birth, as only term, normoweight,
appropriate for gestational age, and without foetal distress (Apgar test evaluation) neonates
whose mothers had normal glucose tolerance (O’Sullivan test evaluation) were studied [61].
The insulin resistance/sensitivity was calculated by the following indexes: quantitative insulin
sensitivity check index (QUICKI), using the formula: 1/[(log Insulin)(μUI/mL) + (log Glucose)
(mg/dL)]; homeostatic model assessment-insulin resistance (HOMA-IR), calculated as:
Glucose (mmol/L) × Insulin (μUI/mL)/22.5.

Taking these criteria into account, the following hypothesis was assessed: Term, normoweight,
without foetal-distress neonates, presenting high cortisol and insulin levels have altered
insulin sensitivity and other hormonal markers (GH, IGF-1). These effects can be modified by
maternal glucose tolerance during gestation.

The following aims were established: (i) to define the anthropometric, hormonal and insulin
sensitivity/resistance markers in a wide cohort of term, normoweight, without foetal-distress
neonates; (ii) to know the normality of these parameters with respect to the reference ones; (iii)
to define the prevalence of insulin resistance in these neonates; (iv) to know whether the
association of high insulin and cortisol levels can explain the insulin resistance/sensitivity in
these neonates; (v) to study the effect of maternal glucose tolerance during pregnancy on the
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anthropometric and insulin resistance markers of those neonates; and (vi) to know how the
maternal diet quality during gestation can affect the parameters studied in these neonates.

The main reason that led us to perform this study was the current increase in obesity and type
2 diabetes mellitus, especially in young populations. The early diagnosis of the insulin
sensitivity affection will allow us to apply corrective and therapeutic measures in order to
reduce the chronicity of the insulin resistance and its clinical posterior manifestations.

Taking into account the reference values for neonates [59], the cut-off point for high insulin
concentrations (percentile 75, P75) was set up at 6.4 μUI/mL for females and at 4.8 μUI/mL for
males. In the case of cortisol, the cut-off point for high levels (percentile 75, P75) was set up at
9.7 μg/dL for females and 9.4 μg/dL for males.

12. General data of neonates from Merida study

Table 3 shows the general characteristics of the studied population.

Minimum  Maximum
Mothers
Age (years) 30.33 ± 5.24 16   40
Glucose (mg/dL) 83.63 ± 6.72 64.0   101.0
Neonates
Gestational age (weeks) 39.85 ± 1.10 37   42
Weight (g) 3301 ± 331 2520   3990
Length (cm) 50.0 ± 1.38 44.0   53.0
BMI (kg/m2) 13.19 ± 1.12 10.08   15.80
Ponderal index (kg/m3) 26.41 ± 2.39 20.16   33.22
Cephalic perimeter (cm) 34.19 ± 1.35 30.0   37.0
Thoracic perimeter (cm) 33.66 ± 1.43 30.0   39.0
Apgar 1 8.99 ± 0.72 7   10
Apgar 2 9.95 ± 0.29 9   10
Glucose (mg/dL) 78.23 ± 38.39 18   233
Insulin (μIU/mL) 6.57 ± 8.58 0.2   67.50
Cortisol (μg/dL) 7.54 ± 3.55 2.78   24.15
GH (ng/mL) 15.84 ± 10.19 0.6   73.1
IGF-1 (ng/mL) 57.7 ± 26.31 5.0   232.5
QUICKI 0.43 ± 0.12 0.26   1.18
HOMA-IR 1.53 ± 2.78 0.02   16.73
Glucose/insulin 29.26 ± 43.90 0.79   370.0
Insulin/cortisol 0.99 ± 1.40 0.02   11.05

Data are means ± standard deviations; BMI, body mass index; GH, growth hormone; IGF-1, insulin-like growth factor
1; QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostatic model assessment-insulin resistance.

Table 3. Characteristics of the studied population: term, normoweight neonates without foetal distress.
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Of the 178 neonates studied, 98 were females and 80 males. All of them were Caucasic,
singleton, term, normoweight and without foetal distress. The study was performed in
accordance with the Declaration of Helsinki and approved by the Management and Ethical
Committee of the Merida Hospital. From the 178 mothers, 156 were screened for GD by the
O’Sullivan test [61] between weeks 24 and 28 of pregnancy, and 33% had impaired glucose
tolerance (IGT). There were 22 mothers who could not be screened.

Insulin <P75
(N = 120)

Insulin ≥P75
(N = 58)

Significance

Mothers

Age (years) 30.16 ± 5.25 31.14 ± 5.12 NS

Glucose (mg/dL) 83.20 ± 6.47 84.13 ± 7.10 NS

Neonates

Gestational age (weeks) 39.47 ± 1.16 39.47 ± 1.17 NS

Birthweight (g) 3328 ± 290 3372 ± 297 NS

Length (cm) 50.09 ± 1.31 50.19 ± 1.35 NS

BMI (kg/m2) 13.27 ± 1.06 13.38 ± 0.94 NS

Ponderal index (kg/m3) 26.51 ± 2.37 26.67 ± 2.05 NS

Cephalic perimeter (cm) 34.47 ± 1.23 34.13 ± 1.21 NS

Thoracic perimeter (cm) 33.80 ± 1.32 33.69 ± 1.38 NS

Apgar 1 8.96 ± 0.83 9.03 ± 0.56 NS

Apgar 2 9.93 ± 0.35 9.97 ± 0.18 NS

Glucose (mg/dL) 68.40 ± 28.62 99.09 ± 48.50 <0.001

Insulin (μIU/mL) 2.84 ± 1.48 14.61 ± 11.62 ND

Cortisol (μg/dL) 7.39 ± 3.38 7.98 ± 3.91 NS

GH (ng/mL) 16.76 ± 10.41 13.28 ± 9.07 0.027

IGF-1 (ng/mL) 55.71 ± 22.85 63.64 ± 32.05 NS

QUICKI 0.47 ± 0.13 0.36 ± 0.08 <0.001

HOMA-IR 0.49 ± 0.33 3.99 ± 4.17 <0.001

Glucose/insulin 37.37 ± 37.02 8.61 ± 4.39 <0.001

Insulin/cortisol 0.47 ± 0.34 2.22 ± 2.08 <0.001

Data are means ± standard deviations; BMI, body mass index; GH, growth hormone; IGF-1, insulin-like growth
factor-1; QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostatic model assessment-IR; P:
percentile; NS, not significant; ND, not determined.

Table 4. Characteristics of the studied population according to the insulin concentration.

The general anthropometric data found were quite similar to those shown in previous studies
[62, 63] with mean values of normality, clearly suggesting the absence of maternal-placental
malnutrition. The mean values found in hormonal markers agree with those used as reference
values in neonates [59]. Glycaemia in neonates is quite variable even in populations where
distress and other factors are well controlled [59, 64]. HOMA-IR and QUICKI are usually
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studied in adults [65, 66], but this occurred sparingly in neonates [59, 67] and more often in
low birthweight populations [68]. The data obtained in this study show that HOMA-IR values
are lower than those found in low birthweight neonates [68] suggesting less insulin resistance.
In addition, QUICKI was much lower and HOMA-IR much higher than those found in youths
suffering or not suffering from obesity and/or metabolic syndrome [66].

12.1. Anthropometric and insulin sensitivity/resistance markers in neonates classified
according to insulin values at birth

Non-significant differences were found between anthropometric characteristics of neonates
belonging to both insulin levels (Table 4).

Cortisol <P75
(N = 137)

Cortisol ≥P75
(N = 41)

Significance

Mothers

Age (years) 30.6 ± 5.24 30.10 ± 5.18 NS

Glucose (mg/dL) 83.74 ± 6.85 82.78 ± 6.12 NS

Neonates

Gestational age (weeks) 39.4 ± 1.16 39.80 ± 1.12 0.067

Birthweight (g) 3338 ± 287 3358 ± 312 NS

Length (cm) 50.07 ± 1.37 50.28 ± 1.13 NS

BMI (kg/m2) 13.31 ± 1.04 13.27 ± 0.97 NS

Ponderal index (kg/m3) 26.62 ± 2.36 26.40 ± 1.93 NS

Cephalic perimeter (cm) 34.36 ± 1.15 34.31 ± 1.45 NS

Thoracic perimeter (cm) 33.75 ± 1.25 33.79 ± 1.55 NS

Apgar 1 8.99 ± 0.76 8.98 ± 0.76 NS

Apgar 2 9.94 ± 0.32 9.93 ± 0.26 NS

Glucose (mg/dL) 75.33 ± 36.69 88.66 ± 44.63 0.087

Insulin (μIU/mL) 6.39 ± 8.49 7.62 ± 9.38 NS

Cortisol (μg/dL) 6.04 ± 1.67 12.74 ± 3.33 ND

GH (ng/mL) 16.92 ± 10.26 11.43 ± 8.41 0.001

IGF-1 (ng/mL) 58.27 ± 24.32 58.24 ± 32.73 NS

QUICKI 0.44 ± 0.11 0.43 ± 0.15 NS

HOMA-IR 1.55 ± 2.87 1.89 ± 3.01 NS

Glucose/insulin 25.46 ± 26.58 36.49 ± 42.63 NS

Insulin/cortisol 1.16 ± 1.58 0.65 ± 0.91 0.011

Data are means ± standard deviations; BMI, body mass index; GH, growth hormone; IGF-1, insulin-like growth
factor-1; QUICKI, quantitative insulin sensitivity check index; HOMA-IR,: homeostatic model assessment-insulin
resistance; P, percentile; NS, not significant; ND, not determined.

Table 5. Characteristics of the studied population according to cortisol concentrations.
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Of the 178 neonates studied, 58 (30 females and 28 males) were hyperinsulinaemic (insulin
concentrations >P75). From these 58 hyperinsulinaemic neonates, 86% showed HOMA-IR
values ≥P75 taking in account the reference values for neonatal population [63]. As indicated
by Gesteiro et al. [67], the increased neonatal insulinaemia was not able to normalize neonatal
glycaemia in the >P75 neonates as those newborns presented significantly higher cord-blood
insulin levels. Despite the fact that all studied infants were full-term normoweights, about one-
third show very high insulin levels (≥15 μIU/mL). No clear reasons are available; however,
foetal insulin levels increase under hyperglycaemia and GD [69]. Furthermore, of the 58
hyperinsulinaemic neonates, 25 (43%) were born from mothers presenting IGT and 28 (48%)
from mothers without IGT. Thus, neonatal insulin sensitivity/resistance markers could be
clearly affected by maternal IGT. This factor effect will be discussed later in this review.

12.2. Anthropometric and insulin sensitivity/resistance markers in neonates classified
according to cortisol values at birth

Table 5 shows the characteristics of the studied population according to their cortisol levels.
In the case of cortisol, from the 178 neonates studied, 20 females and 21 males were hypercor-
tisolaemics as presented cortisol levels ≥ P75.

Figure 5. Potential mechanisms implicated in glucocorticoid hormone regulation. Three possibilities are suggested.
Note that glucocorticoid sensitivity in the HPA axis and tissues can be independently regulated and the former deter-
mines the serum free cortisol levels. Combination of their directions influences net peripheral action of this hormone.
The glucocorticoid resistance would be a consequence of glucocorticoid receptors saturation. Modified from Chrousos
and Kino [32].
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There is a lot of available information about foetal programming and glucocorticoids in low
birthweight newborns [16, 17]. However, the present study was done in control neonates
where scarce information is available. Cortisol levels at birth were not affected by foetal
distress as all of them had a high score in the Apgar test (>7 at the first minute and >9 at the
fifth minute). Cortisol levels are highly dependent on stress and type of delivery [70, 71]. As
our neonates were strictly selected, other factors, such as low cortisol sensitivity which is
different from these factors, should be considered. Figure 5 shows a model comparison where
cortisol and other hormone levels appear clearly related to cortisol resistance. Thus, it can be
accepted that high cortisol level at birth would be also associated with low response control
of cortisol.

We also find that neonates presenting high cortisolaemia had lower GH (P = 0.001) and an
insulin/cortisol ratio (P < 0.05) than those neonates with low–normal cortisol levels.

12.3. Anthropometric and insulin sensitivity/resistance markers in neonates presenting
high cortisol and high insulin levels at birth

This study finds for the first time in the bibliography that the conjunction of high levels of
insulin and cortisol together was present in nearly 9% of term, normoweight without foetal-
distress neonates, and was associated with low GH concentrations, impaired neonatal insulin
sensitivity and high glycaemia at birth.

Table 6 resumes the anthropometric, hormonal and insulin resistance/sensitivity in neonates
attending to their insulin and cortisol levels together. It can be observed that neonates pre-
senting both high insulin and cortisol concentrations showed a slightly higher birthweight
without differences in length, body mass index (BMI), ponderal index, cephalic or thoracic
perimeters. Although fat was not analysed in these neonates, it can be speculated that as
variation in length was lower than in weight, neonates presenting higher levels of both cortisol
and insulin tended to accumulate more fat, as it is known that in adults, the troncular fat
accumulation is associated with plasma lipids increase [72] and insulin resistance severity in
adults [72, 73]. Nonetheless, data in adolescents are controversial and limited [74].

Values of GH (ANOVA, P = 0.009), glucose, insulin, cortisol, QUICKI, HOMA-IR and the
glucose/insulin and insulin/cortisol ratios (all P < 0.001) were significantly different between
the four groups. When insulin was elevated regardless of cortisol levels, neonates showed
higher glucose, IGF-1, HOMA-IR and insulin/cortisol index, but lower QUICKI and glucose/
insulin ratio (at least P < 0.05). Neonates with hypercortisolaemia but not hyperinsulinaemia
showed lower values of GH (at least P < 0.05) than those with non-elevated levels of both
hormones.

In agreement with our results, where higher IGF-1 correspond to higher birthweight, other
groups have found that IGF-1 levels are related to higher birthweight, supporting the premise
that IGF-1 plays a major role in promoting the foetal growth [75], but also in keeping the
hormonal balance.
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Insulin and cortisol
<P75 (N = 95)

Insulin >P75 and
cortisol <P75
(N = 42)

Insulin <P75 and
cortisol ≥P75
(N = 24)

Insulin and
cortisol ≥P75
(N = 17)

 ANOVA

Mothers 

Age (years)  30.09 ± 5.13  31.71 ± 5.35  30.63 ± 5.77  29.35 ± 4.26  0.16 

Glucose (mg/dL)  83.48 ± 6.61  84.32 ± 7.41  82.05 ± 6.09  83.75 ± 6.22  0.57 

Neonates 

Gestational age
(weeks) 

39.41 ± 1.10  39.26 ± 1.29  39.79 ± 1.29  39.82 ± 0.88  0.15 

Birthweight (g)  3332 ± 296  3350 ± 269  3303 ± 275  3437 ± 353  0.15 

Length (cm)  50.07 ± 1.39  50.08 ± 1.37  50.15 ± 1.04  50.47 ± 1.27  0.35 

BMI (kg/m2)  13.29 ± 1.09  13.36 ± 0.93  13.13 ± 0.96  13.47 ± 0.99  0.56 

Ponderal Index
(kg/m3) 

26.59 ± 2.47  26.70 ± 2.13  26.20 ± 2.02  26.68 ± 1.83  0.89 

Cephalic perimeter
(cm) 

34.45 ± 1.09  34.09 ± 1.26  34.39 ± 1.69  34.21 ± 1.18  0.88 

Thoracic perimeter
(cm) 

33.80 ± 1.20  33.66 ± 1.38  33.82 ± 1.71  33.75 ± 1.42  0.93 

Apgar 1  8.96 ± 0.87  9.05 ± 0.38  8.96 ± 0.69  9.00 ± 0.87  0.84 

Apgar 2  9.93 ± 0.36  9.98 ± 0.15  9.92 ± 0.28  9.94 ± 0.24  0.88 

Glucose (mg/dL)  64.06 ± 19.08a  100.81 ± 51.81b  85.67 ± 48.59c  92.88 ± 39.42bc  <0.001 

Insulin (μIU/mL)  2.92 ± 1.45a  14.26 ± 11.96b  2.41 ± 1.45a  14.98 ± 10.90b  <0.001 

Cortisol (<g/dL)  5.99 ± 1.66a  6.15 ± 1.73a  12.61 ± 2.95b  12.92 ± 3.89b  <0.001 

GH (ng/mL)  17.61 ± 10.65a  15.32 ± 9.23 ab  12.67 ± 7.89b  9.56 ± 9.06b  0.009 

IGF-1 (ng/mL)  56.60 ± 24.19a  62.10 ± 24.48ab  50.41 ± 14.23a  69.49 ± 46.77b  0.083 

QUICKI  0.46 ± 0.12a  0.37 ± 0.08 b  0.48 ± 0.17 a  0.35 ± 0.06 b  <0.001 

HOMA-IR  0.47 ± 0.29 a  4.00 ± 4.28b  0.54 ± 0.46 a  3.80 ± 3.97b  <0.001 

Glucose/insulin  32.79 ± 41.83 a  8.87 ± 4.49b  56.60 ± 61.54c  8.10 ± 4.10 b  <0.001 

Insulin/cortisol  0.54 ± 0.34a  2.55 ± 2.26b  0.19 ± 0.11a  1.30 ± 1.13c  <0.001 

Data are means ± standard deviations; Different letters for the same parameter are significantly different. BMI, body
mass index; GH, growth hormone; IGF-1, insulin-like growth factor-1; QUICKI, quantitative insulin sensitivity check
index; HOMA-IR, homeostatic model assessment-insulin resistance.

Table 6. Comparison of the different groups of neonates according to their insulin and cortisol levels.

Pancreatic β-cells are very sensitive to substrate and hormone changes during the foetal stage.
An inadequate environment intra utero would affect the expression of transcription factors and
these in turn, the correct β-cell development [1, 7]. Álvarez Escolá and Escrivá Pons [7] observed
that impaired intrauterine development due to maternal malnutrition, uterus-placental
restriction or GD is related to low IGF-1 concentrations in term rat foetuses. Corticosteriods
diminish IGF-2, IGF-1 receptor and transcription factors necessary for β-cell expression at the
foetal stage [7, 76]. Although it seems that insulin and cortisol have opposite effects on IGF-1
levels, when hypercortisolaemia and hyperinsulinaemia occurred together, IGF-1 levels were
not lower than those of neonates presenting only high insulin levels. Hypercortisolaemia has
been related to insulin resistance in adults [17] and low levels of GH in girls aged 3–18 years
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in increased insulin resistance and hypercortisolaemia situations [77, 78]. Neonates showing
high concentrations of insulin and cortisol together showed the lowest concentration of GH
and the highest of IGF-1. Although the precise mechanism is unknown, it can be speculated
that the inverse relationship between GH and IGF-1 involved in insulin sensitivity [79] could
be modulated by cortisol levels. In such a way, high cortisolaemia in neonates with previous
impaired insulin sensitivity would tend to reduce GH and increase IGF-1 concentrations. In
fact, the mean values of IGF-1 rise up over P75 and GH ones fall under P25 found in the
reference population [59]. Thus, paradoxically, the hypercortisolaemia seems to diminish, at
least partially, the negative effects ascribed to the hyperinsulinaemia. Circulating IGF-1 plays
an important role in maintaining the hormonal balance between GH and insulin and control-
ling glucose homeostasis. GH antagonizes the action of insulin in liver and peripheral tissues
and leads to insulin insensitivity (Figure 6).

Figure 6. Regulation of insulin secretion by IGF-1 and GH. Notice the inverse relationship between IGF-1 and GH.
IGF-1, insulin-like growth factor-1; GH, growth hormone. Modified from Yakar et al. [79].

Neonates presenting hyperinsulinaemia together with hypercortisolaemeia showed low
insulin sensitivity and high insuline resistance according to their QUICKY and HOMA-IR
values, while neonates with no elevation of both hormones showed QUICKI and HOMA-IR
values >P50 and <P50 of the reference population, respectively [59]. Nevertheless, the con-
junction of high levels of both hormones does not significantly affect QUICKI and HOMA-IR
values with respect to those shown by the neonates presenting only high insulin concentra-
tions. The ROC curve (Figure 7) shows that the conjunction of both high insulin and cortisol
is a strong predictor for neonates presenting high HOMA-IR and low QUICKI values.
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Figure 7. ROC curves. Predictive value of both high insulin and cortisol concentrations. GH, growth hormone;
QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostatic model assessment-insulin resistance;
IGF-1, insulin-like growth factor-1. Area under curve: GH = 0.207, QUICKI = 0.205, HOMA-IR = 0.882 (all P < 0.001).

12.4. The effect of maternal impaired glucose tolerance on anthropometric and insulin
sensitivity/resistance markers in neonates presenting high cortisol and high insulin levels
at birth

Table 7 shows neonatal results after considering two factors: the association of high cortisol-
high insulin levels and the presence of IGT during pregnancy. The gestational age did not
differ in neonates with high cortisol-high insulin levels whose mother presented or not IGT
with respect to those described in a neonatal control population [59].

Neonatal weight and length were significantly affected (P = 0.006 and 0.016, respectively) by
the joint effect of high cortisol–high insulin levels but not by IGT. BMI, ponderal index, cephalic
and thoracic perimeters, and the Apgar at 1 and 5 min did not change by any of the two studied
factors or by their interaction. The maternal glycaemia appeared higher in IGT mothers (P <
0.001) (Table 7).

Neonatal cortisolaemia and insulinaemia were significantly affected by maternal IGT and by
the interaction of IGT and high cortisol-high insulin levels (all P < 0.001). Neonatal glycaemia
increased while GH decreased in children with high insulin–cortisol at birth (P < 0001), but
was not affected by IGT presence. IGF-1 was affected by the cortisol–insulin joint (P = 0.031)
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and by IGT (P = 0.037). The insulin/cortisol ratio was significantly modified by the joint effect
of high cortisol–high insulin (P < 0.001), maternal IGT (P = 0.012), as well as the interaction of
the two factors (P < 0.001) (Table 7).

Insulin and cortisol <P75 Insulin and cortisol ≥P75 Two-way ANOVA (significance)
No IGT
(N = 96)

IGT
(N = 45)

No IGT
(N = 9)

IGT
(N = 6)

Interaction IGT High insulin–
high cortisol

Mothers

Age (years) 29.86 ± 4.95 32.22 ± 5.09 28.44 ± 3.09 30.33 ± 5.24 0.76 0.160 0.54

Glucose (mg/dL) 81.97 ± 6.04 86.84 ± 7.03 80.22 ± 4.44 88.83 ± 5.56 0.28 <0.001 0.80

Neonates

Gestational age (weeks) 39.49 ± 1.14 39.24 ± 1.30 40.11 ± 0.60 40.00 ± 0.00 0.93 0.66 0.17

Birthweight (g) 3336 ± 286 3297 ± 272 3432 ± 402 3488 ± 329 0.26 0.88 0.006

Length (cm) 50.16 ± 1.37 49.82 ± 1.29 50.39 ± 0.99 50.83 ± 1.72 0.17 0.86 0.016

BMI (kg/m2) 13.26 ± 1.02 13.29 ± 1.05 13.49 ± 1.26 13.47 ± 0.66 0.70 0.99 0.14

Ponderal index (kg/m3) 26.47 ± 2.30 26.70 ± 2.40 26.77 ± 2.32 26.52 ± 1.35 0.98 0.97 0.54

Cephalic perimeter (cm) 34.30 ± 1.35 34.44 ± 1.13 34.42 ± 1.28 34.20 ± 1.15 0.39 0.51 0.51

Thoracic perimeter(cm) 33.75 ± 1.36 33.85 ± 1.25 34.00 ± 1.90 33.40 ± 0.89 0.78 0.33 0.77

Apgar1 8.84 ± 0.89 9.22 ± 0.42 8.78 ± 1.09 9.33 ± 0.52 0.76 0.082 0.93

Apgar2 9.90 ± 0.40 10.0 ± 0.0 9.89 ± 0.33 10.0 ± 0.0 0.99 0.29 0.99

Glucose (mg/dL) 73.92 ± 37.33 79.98 ± 37.77 100.89 ± 48.60 78.33 ± 18.01 0.20 0.065 <0.001

Insulin (μIU/mL) 4.62 ± 5.81 8.96 ± 11.82 18.03 ± 13.95 11.32 ± 4.19 0.012 0.029 <0.001

Cortisol (μg/dL) 7.03 ± 2.89 7.22 ± 3.49 10.35 ± 0.41 16.35 ± 4.62 <0.001 <0.001 <0.001

GH (ng/mL) 17.09 ± 9.40 14.89 ± 12.32 8.44 ± 6.81 8.20 ± 5.04 0.82 0.78 0.020

IGF-1 (ng/mL) 55.87 ± 23.49 58.76 ± 23.32 55.06 ± 16.31 88.58 ± 72.03 0.14 0.037 0.031

QUICKI 0.46 ± 0.14 0.40 ± 0.09 0.35 ± 0.07 0.36 ± 0.06 0.52 0.73 0.001

HOMA-IR 1.12 ± 2.44 2.17 ± 3.42 5.00 ± 5.08 2.10 ± 0.68 0.002 0.003 <0.001

Glucose/insulin 35.80 ± 42.38 18.39 ± 14.29 7.97 ± 4.81 7.93 ± 3.86 0.58 0.54 0.032

Insulin/cortisol 0.80 ± 1.19 1.57 ± 2.11 1.75 ± 1.37 0.76 ± 0.46 0.001 0.012 <0.001

Data are means ± standard deviations; BMI, body mass index; GH, growth hormone; IGF-1, insulin-like growth
factor-1; QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostatic model assessment-insulin
resistance.

Table 7. Effects of high insulin and cortisol levels in neonates and impaired glucose tolerance (IGT) in mothers on
anthropometric, foetal distress and insulin sensitivity/resistance markers.

With respect to insulin resistance/sensitivity markers, the glucose/insulin ratio and the QUICKI
were not affected by IGT but appeared lower in neonates with high cortisol-high insulin levels
(P = 0.032 and <0.001, respectively). HOMA-IR was higher in neonates with high cortisol-high
insulin (P < 0.001) and affected by maternal IGT (P = 0.003) and by the interaction of two factors
(P = 0.002).
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With respect to maternal IGT prevalence, we found that one of two mothers of hyperinsuli-
naemic children suffered from IGT, while one out of four mothers showed IGT in those groups
with insulin below P75. According to Herrera and Ramos Álvarez [19] during the last third of
gestation, maternal levels of hPL, oestrogens and progesterone, increase in parallel to the
placental mass. These hormones show anti-insulinaemic action, which together with the
placenta availability to degrade insulin increases the maternal insulin needs. In fact, during
late gestation an increase in the pancreatic β-cell sensibility to the insulintropic stimuli, and
also an accelerated insulin turnover have been described. Maternal insulin level effects were
partially arrested by insulin resistance. The increased insulinaemia capacitates the future
mother to efficiently balance the intense metabolite extraction by the foetus–placenta unity,
despite the tendency of insulin resistance occurring in the mother [2, 19].

GD is responsible for very high glycaemia that can induce important alterations in foetus size,
glucose and insulin production [1, 9]. These premises encouraged us to study whether
maternal pregnancy IGT presence could affect the values of insulin resistance (HOMA-IR) or
insulin sensitivity (QUICKI) markers in neonates already showing high insulin and high
cortisol levels at birth.

Results suggest that neonatal insulin-cortisol levels influence the anthropometric parameters
and the insulin resistance/sensitivity markers more than IGT presence. Nonetheless, the effect
of IGT on insulin was different in the two study groups, as the level of this hormone decreased
remarkably in neonates with high cortisol-high insulin levels. It can be hypothesized that
mothers presenting IGT should have high glucose concentrations. This increase would induce,
in turn, a neonatal insulin increase in order to avoid the negative effects of glucose excess [1, 9].

It seems interesting to notice that neonates presenting high cortisol-high insulin at birth, whose
mothers were presenting IGT showed higher weight and length but the lowest GH and the
highest IGF-1 values. Again, the inverse relationship between IGF-1 and GH seems a palliative
mechanism against insulin resistance, a highly negative fact for the foetus physiology. Thus,
in addition to its role in foetal growth [75], IGF-1 seems crucial in keeping hormonal balance
[79]. It also seems relevant that the presence of maternal IGT and high insulin–high cortisol
levels at birth reduced the negative effects on glucose, insulin and HOMA-IR but increased
cortisol and IGF-1 levels with respect to their non-IGT but high insulin–high cortisol level
counterparts. These findings seem paradoxical, as they suggest that the increased maternal
glycaemic response to carbohydrate intake would allow the mitigation of the negative effects
of reduced GH and increased cortisol levels in the neonates. More studies are needed to
understand this interesting metabolic maternal-neonatal interaction.

13. Pregnancy diet influences on cortisol and insulin levels at birth

Unfortunatly complete information of the diet consumed through the whole pregnancy was
available in only 31 mothers whose neonates fulfil the selection criteria. Nonetheless, some
relevant results were observed when comparing results from neonates whose mothers
followed an adequate or unadequate diet according to the MDA (Table 8).
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MDA <7
(N = 11)

MDA ≥7
(N = 20)

Significance

Mothers

Age (years) 28.18 ± 5.42 31.90 ± 5.17 0.078

Glucose (mg/dL) 80.44 ± 6.46 84.24 ± 7.36 NS

Neonates

Weight (g) 3140 ± 419 3309 ± 275 NS

Length (cm) 49.68 ± 0.46 50.20 ± 1.27 NS

BMI (kg/m2) 12.72 ± 1.66 13.13 ± 1.02 NS

Ponderal index (kg/m3) 25.61 ± 3.33 26.18 ± 2.26 NS

Glucose (mg/dL) 93.91 ± 31.28 70.70 ± 14.84 0.044

Insulin (μIU/mL) 12.46 ± 10.69 3.98 ± 3.24 0.040

Cortisol (μg/dL) 8.93 ± 3.46 7.14 ± 2.56 NS

GH (ng/mL) 17.20 ± 13.01 17.49 ± 9.25 NS

IGF-1 (ng/mL) 58.41 ± 32.02 57.55 ± 28.11 NS

HOMA-IR 3.69 ± 5.25 0.73 ± 0.67 0.038

QUICKI 0.39 ± 0.07 0.45 ± 0.14 NS

Glucose/insulin 17.49 ± 10.61 40.30 ± 41.71 NS

Insulin/cortisol 1.94 ± 2.98 0.60 ± 0.47 0.057

Data are means ± standard deviations; BMI, body mass index; GH, growth hormone; IGF-1: insulin-like growth
factor-1; QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostatic model assessment-insulin
resistance; NS, not significant.

Table 8. Effects of maternal adherence to mediterranean diet (MDA) during pregnancy on different neonatal
parameters.

Thus, the conjoint presence of high cortisolaemia–high insulinaemia at birth was clearly
associated with pregnancy diet characteristics. In no case, neonatal hyperinsulinaemia or
neonatal hyperinsulinaemia plus hypercortisolaemia was found in children whose mothers’
diets had a MDA ≥7 over 13. Thus, those findings suggest a clear relationship between
pregnancy diet quality and high neonatal insulinaemia. Almost 50% of neonates, whose
mothers’ diets were inadequate, according to the MDA score, presented hyperinsulinaemia
plus hypercortisolaemia at birth. Previously we reported that a relatively high pregnancy MDA
was a guarantee for glucose, insulin, HOMA-IR and QUICKI normal values, while mothers
with a poor MDA score delivered neonates whose plasma insulin sensitivity/resistance
markers were conceptually those of prediabetes [12, 13].

Thus, in the absence of known factors (reduced gestational age, reduced neonatal body weight,
foetal distress) that would suggest limited and stressed gestation, pregnancy diet characteris-
tics (MDA) clearly affect glycaemic hormone balance, and thus insulin sensitivity/resistance
at birth.
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14. Conclusion

The results of this chapter show the importance of analysing insulin and cortisol cord-blood
concentrations even in term, normoweight neonates. Results show for the first time on the
international bibliography that about 9% of term, normoweight, without foetal-distress
neonates, showed increased values (≥P75 of reference values) for both cord-blood insulin and
cortisol.

The insulinaemia affected the insulin sensitivity/resistance markers more than cortisolaemia
in the different neonate groups classified according to cortisol and insulin levels. In those
neonates, GH values appear decreased, a fact that in addition to the join presence of high
cortisol-high insulin induces decreases in insulin sensitivity in those neonates without
affecting body weight as they were normoweight. IGT was more prevalent in mothers whose
neonates were hyperinsulinaemic at birth. In addition, a follow-up study of this neonatal
population is needed in order to assess the importance of the present findings. Mothers with
adequate MDA score diet delivered newborns presenting healthier insulin and cortisol
profiles. This finding suggests the benefits of following an adequate diet through gestation. It
will allow the design of future interventions aimed to decrease the metabolic syndrome risk
later in life.
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