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Abstract

In this chapter, the well-known non-autonomous chaotic system, the Birkhoff-Shaw,
which exhibits the structure of beaks and wings, typically observed in chaotic neuronal
models, is used in a coupling scheme. The Birkhoff-Shaw system is a second-order non-
autonomous dynamical system with rich dynamical behaviour, which has not been
sufficiently studied. Furthermore, the master-slave (unidirectional) coupling scheme,
which is used, is designed by using the nonlinear controllers to target synchronization
states, such as complete synchronization and antisynchronization, with amplification
or attenuation in chaotic oscillators. It is the first time that the specific method has been
used in coupled non-autonomous chaotic systems. The stability of synchronization is
ensured by using Lyapunov function stability theorem in the unidirectional mode of
coupling.  The  simulation  results  from  system’s  numerical  integration  confirm  the
appearance  of  complete  synchronization  and  antisynchronization  phenomena
depending on the signs of the parameters of the error functions. Electronic circuitry that
models the coupling scheme is also reported to verify its feasibility.

Keywords: chaos, complete synchronization, antisynchronization, anidirectional cou-
pling, nonlinear controller

1. Introduction

In the past decades, the phenomenon of synchronization between coupled nonlinear systems
and especially of systems with chaotic behaviour has attracted scientists' interest from all over
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the world because it is an interesting phenomenon with a broad range of applications, such
as  in  various  complex  physical,  chemical  and  biological  systems  [1–9],  in  secure  and
broadband communication system [10, 11] and in cryptography [12, 13].

In synchronization two or more systems with chaotic behaviour can adjust a given of their
motion property to a common behaviour (equal trajectories or phase locking), due to forcing
or coupling [14]. However, having two chaotic systems being synchronized, it is a major
surprise, due to the exponential divergence of the nearby trajectories of the systems. Never-
theless, nowadays the phenomenon of synchronization of coupled chaotic oscillators is well-
studied theoretically and proven experimentally.

Synchronization theory has begun studying in the 1980s and early 1990s by Fujisaka and
Yamada [15], Pikovsky [16], Pecora and Carroll [17]. Onwards, a great number of research
works based on synchronization of nonlinear systems has risen and many synchronization
schemes depending on the nature of the coupling schemes and of the interacting systems have
been presented. Complete or full chaotic synchronization [18–23], phase synchronization [24,
25], lag synchronization [26, 27], generalized synchronization [28], antisynchronization [29,
30], anti-phase synchronization [31–36], projective synchronization [37], anticipating [38] and
inverse lag synchronization [39] are the most interesting types of synchronization, which have
been investigated numerically and experimentally by many research groups.

This chapter deals with two of the aforementioned cases: the complete synchronization and
the antisynchronization. In the case of complete synchronization, two identically coupled
chaotic systems have a perfect coincidence of their chaotic trajectories, i.e., x1(t) = x2(t) as t →
∞. In the case of antisynchronization, for initial conditions chosen from large regions in the
phase space two coupled systems x1 and x2, can be synchronized in amplitude, but with
opposite sign, that is x1(t) = –x2(t) as t → ∞.

From our knowledge, chaotic systems exhibit high sensitivity on initial conditions or system’s
parameters and if they are identical and start from almost the same initial conditions, they
follow trajectories which rapidly become uncorrelated. That is why many techniques exist to
obtain chaotic synchronization. So, many of these techniques for coupling two or more
nonlinear chaotic systems can be mainly divided into two classes: unidirectional coupling and
bidirectional or mutual coupling [40]. In the first case, only the first system, the master system,
drives the second one, the slave system, while in the second case, each system’s dynamic
behaviour influences the dynamics of the other.

Furthermore, the subject of synchronization between coupled chaotic systems, especially in
the last decade, plays a crucial role in the field of neuronal dynamics [6, 41]. Neural signals in
the brain are observed to be chaotic and it is worth considering further their possible synchro-
nization [42–46]. These signals are produced by nerve membranes exhibiting their own
nonlinear dynamics, which generate and propagate action potentials. Such nonlinear dynam-
ics in nerve membranes can produce chaos in neurons and related bifurcations.

So, motivated by the aforementioned fact, the Birkhoff-Shaw system [45], which exhibits the
structure of beaks and wings, typically observed in chaotic neuronal models, is chosen for use
in this chapter. It is a second order non-autonomous dynamical system with rich dynamical
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behaviour, which has not been sufficiently studied. Furthermore, the unidirectional coupling
scheme, which is used, is designed by using the nonlinear controllers to target synchronization
states, such as complete synchronization and antisynchronization, with amplification or
attenuation in chaotic oscillators. The stability of synchronization is ensured by using Lyapu-
nov function stability theorem in the unidirectional mode of coupling. The simulation results
from system’s numerical integration confirm the appearance of complete synchronization and
antisynchronization phenomena depending on the signs of the parameters of the error
functions. Electronic circuitry that models the coupling scheme is also reported to verify its
feasibility.

This chapter is organized as follows. In Section 2, the features of chaotic systems and especially
of the proposed Birkhoff-Shaw system by using various tools of nonlinear theory, such as
bifurcation diagrams, phase portraits and Lyapunov exponents, are explored. The synchroni-
zation scheme, by using the nonlinear controller, as well as the unidirectional coupling scheme
is discussed in Sections 3 and 4, respectively. The simulation results of the proposed method
are presented for various cases in Section 5. Section 6 presents the circuital implementation of
the coupling scheme and the results which are obtained by using the SPICE. Finally, the
conclusive remarks and some thoughts for future works are drawn in the last section.

2. The Birkhoff-Shaw chaotic system

As it is known, chaos theory studies systems that present three very important features [46, 47]:

• its periodic orbits must be dense,

• it must be topologically mixing and

• it must be very sensitive on initial conditions.

In more details, the periodic orbits of a chaotic system have to be dense and that means that
the trajectory of a dynamical system is dense, if it comes arbitrarily close to any point in the
domain. The second feature of chaotic systems, the topological mixing, means that the chaotic
trajectory at the phase space will move over time so that each designated area of this trajectory
will eventually cover part of any particular region. Additionally, the third feature, which is the
most important feature of chaotic systems, is the sensitivity on initial conditions. When a small
variation on a system’s initial conditions exists, a totally different chaotic trajectory will be
produced.

Here, as it is mentioned above, the well-known non-autonomous chaotic system of Birkhoff-
Shaw, which has been proposed by Shaw in 1981 [45], is used. The Birkhoff-Shaw system is
described by the 2-D system of differential equations:

2

( )
x ay x cxy
y x Bcos dt

ì = + -ï
í

= - -ïî

&
& (1)
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where x and y are the states variables and a, B, c and d are positive parameters.

Figure 1. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 1.

Figure 2. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 1.

In this section, the system’s dynamic behaviour is investigated numerically by employing a
fourth order Runge-Kutta algorithm. As a first step in this approach, the bifurcation diagram
and the Lyapunov exponents, which are very useful tools from nonlinear theory, are used. In
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Figures 1–8, two sets of bifurcation diagrams of the variable x versus the parameter B, for c =
0.1 and c = 0.2 and for various values of the parameter d, are displayed. The above bifurcation
diagrams show the richness of system’s dynamical behaviour. Apart from limit cycles, system
(1) has quasiperiodicity and chaos, which makes the system’s control a difficult target in
practical applications where a particular dynamic is desired.

Figure 3. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 1.5.

Figure 4. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 1.5.
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Figure 5. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 2.

Figure 6. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 2.
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Figure 7. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 3.

Figure 8. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 3.
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In greater detail, having small values of the parameter d (i.e. d = 1) the system begins from a
quasiperiodic state and as the amplitude B of the external force increases, the system passes
to a stable periodic behaviour of period-1 (Figures 1 and 2). For example, in the case of a = 1,
c = 0.1 and d = 1, the Lyapunov exponents (LEs) for two respective values of B in the regions of
quasiperiodic and periodic regions are:

• for B = 0.1 (quasiperiodic state): LE1 = 0.000, LE2 = 0.000, LE3 = -1.516

• for B = 2 (periodic state): LE1 = 0.000, LE2 = -0.996, LE3 = -80.998

According to the nonlinear theory, if the number of zeros of LEs is one or two then the system
is in periodic or quasiperiodic behaviour, respectively. So, the calculation of Lyapunov
exponents plays a crucial role to the estimation of the dynamic behaviour of the proposed
system.

However, as the value of the parameter d increases the system’s complexity is also in-
creased. For d = 1.5 (Figures 3 and 4) in both cases of c = 0.1 and c = 0.2, the range of quasi-
periodic region has been significantly enlarged, as compared to the previous case (d = 1).
Nevertheless, with the end of this region, system’s behaviour alternates between periodic
and chaotic ones. The chaotic regions are detected by finding one positive Lypaunov expo-
nent (i.e. for a = 1, B = 2.8, c = 0.1 and d = 1.5, the Lypaunov exponents are: LE1 = 0.157, LE2

= 0.000, LE3 = -1.626). Finally, the system passes from a quasiperiodic state to a stable peri-
odic (period-1) one again.

System’s behaviour remains almost the same as the value of parameter d (i.e. d = 2) increases
(Figures 5 and 6). However, two important conclusions could be drawn. The first is that the
chaotic regions have been enlarged, while the second is that the quasiperiodic region, before
the final system’s periodic state, has been significantly decreased.

Finally, if the value of parameter d has been further increased(i.e. d = 3) then the chaotic regions
have also been increased while the respective periodic regions have been significantly
decreased. Also, the system suddenly passes from chaotic to the final periodic behaviour, as
it is shown in the bifurcation diagram of Figures 7 and 8.

In these diagrams, the region of period-3 dominates, which is characteristic of system’s chaotic
behaviour. Also, this region reveals two more important phenomena from nonlinear theory.
Firstly, this window of period-3 begins with a sudden transition from a chaotic to periodic
behaviour, which in this case is known as Intermittency [48] and ends with an Interior Crisis [49,
50] that causes intermittency induced from crisis.

In Figures 9–12, the phase portraits for various values of the parameter B, in the case of a =
1, c = 0.2 and d = 3, are presented. In more details, Figure 9 shows the quasiperiodic attrac-
tor, that the system is in for low values of the amplitude B (B = 0.5) of the external sinusoi-
dal source, while Figures 10 and 12 display the system’s periodic attractors of period-3 (B =
3) and period-1 (B = 9), respectively. Finally, in Figure 11 the system’s chaotic attractor for B
= 7 is presented.
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Figure 9. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 0.5 (quasiperiodic behaviour).

Figure 10. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 3 (periodic behaviour).
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Figure 11. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 7 (chaotic behaviour).

Figure 12. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 9 (periodic behaviour).
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3. The proposed coupling scheme

Two identical unidirectionally coupled chaotic systems can be described by the following
system of differential equations:

( )
( )

X

Y

x f x U
y f y U

ì
í
î

= +
= +
&
& (2)

where (f(x), f(y)) ∈ Rn are the flows of the systems. Nonlinear controllers (NCs), UX and UY,
define the coupling of the systems, while the error function is given by e = ky - lx, where k and
l are constants [51, 52]. If the Lyapunov function stability (LFS) technique is applied, a stable
synchronization state will be obtained when the error function of the coupled system follows
the limit:

lim ( ) 0
t

e t
®¥

® (3)

so that lx = ky.

The design process of the coupling scheme, is based on the Lyapunov function:

1( )
2

TV e e e= (4)

where T is a transpose of a matrix and V(e). The Lyapunov function (4) is a positive definite
function. Also, for known system’s parameters and with the appropriate choice of the con-
trollers UX and UY, the coupled system has V(e) < 0. This ensures the asymptotic global stability
of synchronization and thereby realizes any desired synchronization state [51, 52].

By using the appropriate NCs functions UX, UY and error function’s parameters k, l, a bidirec-
tional (mutual) or unidirectional coupling scheme can be implemented. Analytically, while if
UX,Y ≠ 0 and k, l ≠ 0, a bidirectional coupling scheme is realized, while if (UX = 0, k = 1) or (UY =
0, l = 1), a unidirectional coupling scheme is realized, respectively. The signs of the constants
k, l play a crucial role to the synchronization case (complete synchronization or antisynchro-
nization), which is observed in this work. However, the ratio of k over l decides the amplifi-
cation of one oscillator relative to another one.

Next, the simulation results in the unidirectional coupling scheme and for various values of
parameters k and l are presented in details.
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4. Unidirectional coupling

In this section, the unidirectional coupling scheme for UX = 0, in the case of coupled systems
of Eq. (1), is presented. The coupled system is described by the following systems of Eqs. (5)
and (6).

Master system:

2
1 2 1 1 2

2 1 ( )
x ax x cx x
x x Bcos dt

ì = + -ï
í

= - -ïî

&
& (5)

Slave system:

2
1 2 1 1 2 1

2 1 2( ) +
Y

Y

y ay y cy y U
y y Bcos dt U

ì = + - +ï
í

= - -ïî

&
& (6)

where UY = [UY1, UY2]T is the Nonlinear Controller (NC). The error function is defined by e = ky
- lx, with e = [e1, e2]T, x = [x1, x2]T and y = [y1, y2]T. So, the error dynamics, by taking the difference
of Eqs. (5) and (6), are written as:

2 2
1 2 1 1 2 1 2 1

2 1 2( )cos( )
Y

Y

e ae e lcx x kcy y kU
e e B k l dt kU
ì = + + - +ï
í

= - - - +ïî

&
& (7)

For stable synchronization, e → 0 as t → ∞. By substituting the conditions in Eq. (7) and taking
the time derivative of Lyapunov function

( ) ( )
1 1 2 2

2 2
1 2 1 1 2 1 2 1 2 1 2

( ) =

( ) ( )Y Y

V e e e e e

= e ae e lcx x kcy y kU e e B k l cos dt kU

+ =

+ + - + + - - - +

& & &
(8)

We consider the following NC controllers:

( )

2 2
1 2 1 1 2 1 2

2 1 2

1 ( 2 )

1 ( )cos( )

Y

Y

U ae e lcx x kcy y
k

U e B k l dt e
k

ì = - + + -ïï
í
ï = - - - - +
ïî

(9)

such that
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2 2
1 2( ) = 0V e e e- - <& (10)

Eq. (10) ensures the asymptotic global stability of synchronization.

5. Simulation results

In this section, the simulation results, with the unidirectional coupling scheme, in three
different cases are presented.

Figure 13. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

5.1. The case for k = l = 1

As it is mentioned, the phenomenon of complete synchronization is achieved for every value
of k, l. Especially for k = -l = 1, the two coupled systems are in the chaotic state, due to the chosen
values of system’s parameters (a = 1, B = 7, c = 0.2 and d = 3) and initial conditions (x1, x2, y1, y2)
= (3, 2, –1, –5). The goal of complete synchronization is achieved as it is shown from the plots
of y1 versus x1, the time-series of x2, y2 and the errors ei in Figures 13–15.
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Figure 14. The time-series of x2, y2, in regards to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 15. The time-series of errors e1, e2, with k = l = 1, for a = 1, B = 7, c = 0.2 and d = 3.

5.2. The case for k = l = 1

In the second case, by using opposing values for the parameters k = –l = 1 and for the same
values of system’s parameters (a = 1, B = 7, c = 0.2 and d = 3), the phenomenon of antisynchro-
nization is achieved. This conclusion is derived from the phase portrait of y1 versus x1
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(Figure 16), as well as from the time series of x2, y2 (Figure 17). Also, the plot of errors ei = yi +
xi in Figure 18 confirms the antisynchronization of the coupled system.

Figure 16. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 17. The time-series of -x2, y2, in regard to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.
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Figure 18. The time-series of errors e1, e2, with k = l = 1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 19. The phase portraits of x2 versus x1(black colour) and y2 versus y1 (red colour), for a = 1, B = 7, c = 0.2 and d = 3.

5.3. The case for k = 1, l = 2

In this case, the parameters of the error functions are chosen as k = 1 and l = 2. By choosing the
systems' parameters as a = 1, B = 7, c = 0.2 and d = 3 the chaotic attractor of the second system
is enlarged by two times, as it is shown with red colour in Figure 19, as well as by the time-
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series of signals x2 and y2 (Figure 21). The y1 versus x1 plot in Figure 20 confirms that the coupled
system is in complete synchronization state independently of the values of the error’s param-
eters k, l. The error plot ei = yi - 2xi (i = 1, 2) in Figure 22 shows the exponential convergence to
zero that confirms the realization of system’s complete synchronization state.

Figure 20. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 21. The time-series of 2x2, y2, in regard to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.
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Figure 22. The time-series of errors e1, e2, with k = 1, l = 2, for a = 1, B = 7, c = 0.2 and d = 3.

6. Circuit’s implementation of the coupling scheme

The circuit implementation of the proposed synchronization coupling scheme, with the
electronic simulation package Cadense OrCAD, for k = l = 1, is presented in this section, in
order to prove the feasibility of the proposed method. The coupling system’s circuitry design
consists of three sub-circuits, which are the master circuit, the coupling circuit and the slave
circuit. Also, the circuit is realized by using common electronic components.

Figure 23 shows the schematic of the master circuit, which has two integrators (U1 and U2) and
one differential amplifier (U3), which are implemented with the TL084, as well as two signals
multipliers (U4, U5) by using the AD633. By applying Kirchhoff’s circuit laws, the correspond-
ing circuital equations of designed master circuit can be written as:

( )

2
1 2 1 1 2

1

2 1 0

1
100

1 cos( )

Rx x x x x
RC R

x x V t
RC

ì æ ö
= + -ï ç ÷ï è øí

ï = - -ïî

&

& w

(11)
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Figure 23. The schematic representation of the master circuit.

where xi (i = 1, 2) are the voltages in the outputs of the operational amplifiers U3 and U2.
Normalizing the differential equations of system (18) by using τ = T/RC we could see that this
system is equivalent to the system (12). The circuit components have been selected as: R = 10
kΩ, R1 = 500 Ω, C = 10 nF, V0 = 7 V and f = 4777 Hz, while the power supplies of all active devices
are ±17 VDC. For the chosen set of components the master system’s parameters are: a = 1, B = 7,
c = 0.2 and d = 3. In Figure 24, the chaotic attractor, which is obtained from Cadence OrCAD
in (x1, x2) phase plane, is proved to be in a very good agreement with the respective phase
portrait from system’s numerical simulation process (Figure 11). So, the proposed circuit
emulates very well the master system.

Figure 24. The chaotic attractor produced by the designed master circuit, obtained from Cadence OrCAD in the (x1, x2)
phase plane.
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In Figure 25, the schematic of the slave circuit, which is similar to the master circuit, is shown.
The difference of this circuit in comparison to the previous one are the signals u1 and mu2,
where u1 is the control signal UY1 and mu2 is the opposite, due to the integrator, of the signal
UY2, of system (6). So, for k = l = 1, the signal mu2 is given as

2 1 2mu e e= - + (12)

Figure 25. The schematic representation of the slave circuit.

The dynamics of the slave circuit is described by the following set of differential equations.

( )

2
1 2 1 1 2 1

1

2 1 0 2

1
100

1 cos( )

Ry y y y y u
RC R

y y V t mu
RC

ì æ ö
= + - +ï ç ÷ï è øí

ï = - - -ïî

&

& w
(13)

Finally, the units from which the coupling circuit is consisted, are shown in the schematic of
Figure 26, in which ei, (i = 1, 2) are the difference signals (ei = kyi - lxi, i = 1, 2), with k = l = 1 and
me2 is the opposite of e2. Also, the resistors R2 = 5 kΩ and R3 = 50 kΩ have been used for achieving
the desired values of system’s parameters.
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Figure 26. The schematic representation of the coupling circuit.

Figure 27. The phase portrait of y1 vs. x1, for a = 1, B = 7, c = 0.2 and d = 3, obtained from Cadence OrCAD.
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Figures 27 and 28 depict the phase portraits in (xi, yi) phase planes, with i = 1, 2, for a = 1, B =
7, c = 0.2 and d = 3, obtained from Cadence OrCAD. These figures confirm the achievement of
complete synchronization in the case of unidirectionally coupled circuits with the proposed
method.

Figure 28. The phase portrait of y2 versus x2, for a = 1, B = 7, c = 0.2 and d = 3, obtained from Cadence OrCAD.

7. Conclusion

In this chapter, the case of unidirectional coupling scheme of two chaotic non-autonomous
dynamical systems was studied. The proposed system is the second order Birkhoff-Shaw
system, which is simple but very interesting from the perspective of nonlinear analysis.
Furthermore, the coupling method was based on a recently new proposed scheme based on
the nonlinear controller, which is applied for the first time in non-autonomous systems.

The Birkhoff-Shaw system is one of the simplest 2-D nonlinear systems exhibiting a rich
dynamical behaviour. Besides limit cycles, Birkhoff-Shaw system presents quasiperiodicity
and chaos, which can make the control of the system a difficult target in practical applications,
where a particular dynamic is desired. Also, two well-known phenomena of nonlinear theory,
the Intermittency and the Interior Crisis have been observed. However, the main drawback of
this system is the fact that this system is a non-autonomous dynamical system, which makes
the coupling method weak, especially if it is used in secure communication schemes.

In agreement to the simulation results, the circuital implementation of the proposed system in
SPICE, in the case of unidirectional coupling, confirms the appearance of complete synchro-
nization and antisynchronization, depending on the signs of the parameters of the error
functions, in various cases. With this method, by choosing an appropriate sign for the error
functions, the coupling system can be driven either to complete synchronization or antisynch-
ronization behaviour.
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From our knowledge, the complex behaviour of chaotic systems, like the ones that mentioned
above, makes the synchronization difficult in practical applications where a particular dynamic
is desired. For this reason, the synchronization of chaotic systems has attracted considerable
attention due to its great potential applications, in secure communication, chemical reactions
and biological systems. Especially, the synchronization in coupled neurons is a subject of a
growing interest in the research community. So, due to the fact that Birkhoff-Shaw chaotic
attractor exhibits the structure of beaks and wings, typically observed in chaotic neuronal
models, the proposed coupling scheme showed an interesting research result of achieving the
synchronization or antisynchronization in the case of coupled neuronal models.

As a next step in this direction is the application of the proposed method in non-identical
Birkhoff-Shaw coupled systems in order to satisfy the goal of control of systems, which are in
totally different dynamical behaviours. Also, the case of bidirectional coupling as well as the
case of generalized synchronization, with the proposed scheme, could be examined.

Author details

Christos K. Volos1, Hector E. Nistazakis2*, Ioannis M. Kyprianidis1, Ioannis N. Stouboulos1 and
George S. Tombras2

*Address all correspondence to: enistaz@phys.uoa.gr

1 Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

2 Department of Electronics, Computers, Telecommunications and Control, Faculty of Phys-
ics, National and Kapodistrian University of Athens, Athens, Greece

References

[1] Holstein-Rathlou NH, Yip KP, Sosnovtseva OV, Mosekilde E. Synchronization phe-
nomena in nephron-nephron interaction. Chaos. 2001;11:417–426.

[2] Mosekilde E, Maistrenko Y, Postnov D, editors. Chaotic synchronization: applications
to living systems. Singapore: World Scientific; 2002. 440 p.

[3] Pikovsky AS, Rosenblum M, Kurths J, editors. Synchronization: a universal concept in
nonlinear sciences. Cambridge: Cambridge University Press; 2003. 433 p.

[4] Szatmári I, Chua LO. Awakening dynamics via passive coupling and synchronization
mechanism in oscillatory cellular neural/nonlinear networks. Int. J. Circ. Theor. Appl.
2008;36:525–553.

Synchronization Phenomena in Coupled Birkhoff-Shaw Chaotic Systems Using Nonlinear Controllers
http://dx.doi.org/10.5772/64811

315



[5] Tognoli E, Kelso JAS. Brain coordination dynamics: true and false faces of phase
synchrony and metastability. Prog. Neurobiol. 2009;87:31–40.

[6] Wang J, Che YQ, Zhou SS, Deng B. Unidirectional synchronization of Hodgkin-Huxley
neurons exposed to ELF electric field. Chaos Solit. Fract. 2009;39:1335–1345.

[7] Gerodimos NA, Daltzis PA, Hanias MP, Nistazakis HE, Tombras GS. Unimodal 1-D
maps cousins in nature. New research trends in nonlinear circuits: design, chaotic
phenomena and applications. ISBN: 978–1–3321–406–4, New York: Nova Publishers;
2014.

[8] Liu X, Chen T. Synchronization of identical neural networks and other systems with an
adaptive coupling strength. Int. J. Circ. Theor. Appl. 2010;38:631–648.

[9] Hanias MP, Nistazakis HE, Tombras GS. Optoelectronic chaotic circuits. Optoelectronic
devices and properties. Croatia: Intech Publishers; 2013. ISBN: 978–953–307–204–3.

[10] Jafari S, Haeri M, Tavazoei MS. Experimental study of a chaos-based communication
system in the presence of unknown transmission delay. Int. J. Circ. Theor. Appl.
2010;38:1013–1025.

[11] Dimitriev AS, Kletsovi AV, Laktushkin AM, Panas AI, Starkov SO. Ultrawideband
wireless communications based on dynamic chaos. J. Commun. Technol. Electron.
2006;51:1126–1140.

[12] Grassi G, Mascolo S. Synchronization of high-order oscillators by observer design with
application to hyperchaos-based cryptography. Int. J. Circ. Theor. Appl. 1999;27:543–
553.

[13] Volos CK, Kyprianidis, IM, Stouboulos IN. Experimental demonstration of a chaotic
cryptographic scheme. WSEAS Trans. Circ. Syst. 2006;5:1654–1661.

[14] Luo ACJ, editor. Dynamical system synchronization. New York: Springer; 2013. 239 p.

[15] Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator
systems. Prog. Theor. Phys. 1983;69:32–47.

[16] Pikovsky AS. On the interaction of strange attractors. Z. Phys. B: Condensed Matter.
1984;55:149–154.

[17] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64:521–
524.

[18] Maritan A, Banavar J. Chaos noise and synchronization. Phys. Rev. Lett. 1994;72:1451–
1454.

[19] Kyprianidis IM, Stouboulos IN. Synchronization of two resistively coupled nonauton-
omous and hyperchaotic oscillators. Chaos Solit. Fract. 2003;17:314–325.

[20] Kyprianidis IM, Stouboulos IN. Synchronization of three coupled oscillators with ring
connection. Chaos Solit. Fract. 2003;17:327–336.

Nonlinear Systems - Design, Analysis, Estimation and Control316



[21] Woafo P, Enjieu Kadji HG. Synchronized states in a ring of mutually coupled self-
sustained electrical oscillators. Phys. Rev. E. 2004;69:046206.

[22] Kyprianidis IM, Volos CK, Stouboulos IN, Hadjidemetriou J. Dynamics of two resis-
tively coupled Duffing-type electrical oscillators. Int. J. Bifurcat. Chaos. 2006;16:1765–
1775.

[23] Kyprianidis IM, Volos CK, Stouboulos IN. Experimental synchronization of two
resistively coupled Duffing-type circuits. Nonlin. Phenom. Complex Syst.
2008;11:187–192.

[24] Dykman GI, Landa PS, Neymark YI. Synchronizing the chaotic oscillations by external
force. Chaos Solit. Fract. 1991;1:339–353.

[25] Parlitz U, Junge L, Lauterborn W, Kocarev L. Experimental observation of phase
synchronization. Phys. Rev. E. 1996;54:2115–2217.

[26] Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled
chaotic oscillators. Phys. Rev. Lett. 1997;78:4193–4196.

[27] Taherion S, Lai YC. Observability of lag synchronization of coupled chaotic oscillators.
Phys. Rev. E. 1999;59:R6247–R6250.

[28] Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization
of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51:980–994.

[29] Kim CM, Rim S, Kye WH, Rye JW, Park YJ. Anti-synchronization of chaotic oscillators.
Phys. Lett. A. 2003;320:39–46.

[30] Liu W, Qian X, Yang J, Xiao J. Antisynchronization in coupled chaotic oscillators. Phys.
Lett. A. 2006;354:119–125.

[31] Cao LY, Lai YC. Antiphase synchronism in chaotic system. Phys. Rev. 1998;58:382–386.

[32] Astakhov V, Shabunin A, Anishchenko V. Antiphase synchronization in symmetrically
coupled self-oscillators. Int. J. Bifurcat. Chaos. 2000;10:849–857.

[33] Zhong GQ, Man KF, Ko KT. Uncertainty in chaos synchronization. Int. J. Bifurcat.
Chaos. 2001;11:1723–1735.

[34] Blazejczuk-Okolewska B, Brindley J, Czolczynski K, Kapitaniak T. Antiphase synchro-
nization of chaos by noncontinuous coupling: two impacting oscillators. Chaos Solit.
Fract. 2001;12:1823–1826.

[35] Kyprianidis IM, Bogiatzi AN, Papadopoulou M, Stouboulos IN, Bogiatzis GN, Bountis
T. Synchronizing chaotic attractors of Chua’s canonical circuit. The case of uncertainty
in chaos synchronization. Int. J. Bifurcat. Chaos. 2006;16:1961–1976.

[36] Tsuji S, Ueta T, Kawakami H. Bifurcation analysis of current coupled BVP oscillators.
Int. J. Bifurcat. Chaos. 2007;17:837–850.

Synchronization Phenomena in Coupled Birkhoff-Shaw Chaotic Systems Using Nonlinear Controllers
http://dx.doi.org/10.5772/64811

317



[37] Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic system.
Phys. Rev. Lett. 1999;82:3042–3045.

[38] Voss HU. Anticipating chaotic synchronization. Phys. Rev. E. 2000;61:5115–5119.

[39] Li GH. Inverse lag synchronization in chaotic systems. Chaos Solit. Fract. 2009;40:1076–
1080.

[40] Gonzalez-Miranda JM. Synchronization and control of chaos. London: Imperial
College Press; 2004. 212 p.

[41] Zhan M, Hu G, Yang J. Synchronization of chaos in coupled systems. Phys. Rev. E.
2000;62:2963–2966.

[42] Wang J, Che YQ, Zhou SS, Deng B. Unidirectional synchronization of Hodgkin-Huxley
neurons exposed to ELF electric field. Chaos Solit. Fract. 2009;39:1335–1345.

[43] Tass P, Rosemblum MG, Weule MG, Kurths J, Pikovsky A, Volkmann J, Schnitzler A,
Freund HJ. Detection of n:m phase locking from noise data: Application to magneto-
encephalography. Phys. Rev. Lett. 1998;81:3291–3294.

[44] Tognoli E, Kelso JAS. Brain coordination dynamics: True and false faces of phase
synchrony and metastability. Prog. Neurobiol. 2009;87:31–40.

[45] Shaw R. Strange attractors, chaotic behavior, and information flow. Z. Nat. 1981;361:80–
112.

[46] Hasselblatt B, Katok A. A first course in dynamics: with a panorama of recent devel-
opments. Cambridge: University Press; 2003. 419 p.

[47] Tacha OI, Volos ChK, Kyprianidis IM, Stouboulos IN, Vaidyanathan S, Pham V-T.
Analysis, adaptive control and circuit simulation of a novel nonlinear finance system.
Appl Math Comput. 2016;276:200–217.

[48] Manneville P, Pomeau Y. Intermittency and the Lorenz model. Phys Lett. 1979;75A:1–
2.

[49] Grebogi C, Ott E, Yorke JA. Crises, sudden changes in chaotic attractors and chaotic
transients. Phys. D. 1983;7:181–200.

[50] Rollins RW, Hunt ER. Intermittent transient chaos at interior crisis in the diode
resonator. Phys Rev A. 1984;29:3327.

[51] Padmanaban E, Hens C, Dana K. Engineering synchronization of chaotic oscillator
using controller based coupling design. Chaos. 2011;21:013110.

[52] Volos CK, Pham V-T, Vaidyanathan S, Kyprianidis IM, Stouboulos IN. Synchronization
phenomena in coupled hyperchaotic oscillators with hidden attractors using a nonlin-
ear open loop controller. In: Advances and applications in chaotic systems. Switzerland:
Springer International Publishing; 2016. p. 1–38.

Nonlinear Systems - Design, Analysis, Estimation and Control318


