
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



3

Non-monotonic Reasoning on Board a Sony 
AIBO

David Billington, Vladimir Estivill-Castro, René Hexel, and Andrew Rock 
Griffith University 

Australia

1. Introduction 

Robots are today a reality. Moreover, robots have moved from assembly lines to being 
around human beings. Mobile autonomous robots are now a common sight in Korean 
airports. Other notable examples are LEGO’s Mindstorms and Spybotics, who not only have 
a massive penetration in the toy market, but have penetrated the research and academic 
environment (Wallich, 2001). Robots are also being sold commercially as companions, or 
used as museum guides (Thrun et al., 1999), and even as the long awaited vacuum 
cleaner (Kahney, 2003). The expectation that robots would be around us inspired Isaac 
Asimov to write “I Robot” as part of a series of books and to develop the character Susan 
Calvin who enunciated the Three Laws of Robotics:  

1. A robot may not injure a human being, or, through inaction, allow a human to come 
to harm.  

2. A robot must obey orders given to him by human beings except where such orders 
would conflict with the First Law.  

3. A robot must protect its own existence as long as such protection does not conflict 
with the First or Second Law.  

To follow these rules, a robot would need to reason about actions and their potential effect. 
Reasoning is a fundamental capability of intelligent systems and much progress has been 
made (Marek & Truszczynski, 1993; Rich & Knight, 1990) (this is also illustrated by the 4 
chapters dedicated to uncertain knowledge and reasoning in (Russell & Norvig, 2002), at 
present the most widely accepted textbook in Artificial Intelligence and 57th most cited 
computer science publication ever). Most notably, for intelligent and robotic systems it is 
essential that such reasoning be capable of withdrawing some conclusion in the light of new 
evidence (including the negation of what used to be considered a fact). This is called non-
monotonic reasoning. 

This chapter will describe how a Sony AIBO performed on board non-monotonic inferences 
on two settings present on the RoboCup competition (Veloso et al., 1998). Robotic soccer is 
the most challenging endeavor from the perspective of multi-agent technology (Wooldridge, 

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m



46  Robotic Soccer 

2002). We argue that non-monotonic reasoning is useful in even the dynamic,1 inaccessible,2

adversarial and non-deterministic3 environment of robotic soccer, where reactive systems 
have received much attention. We also present an example for the RoboCup@Home setting. 
We achieve this common sense behavior by an implementation of Plausible Logic (and some 
algorithm fine-tuning) in C++. 

We will commence the discussion by applying Plausible Logic inferences to make sense of 
the sightings in the configuration of the 2005/2006 4-legged league field of play. In 
particular, we show that we can analyze the objects reported by the vision module in a 
frame (or in a sequence of frames) and determine which were phantom sightings and which 
could actually be valid sightings. This assists localization as it dynamically selects proper 
inputs (landmarks). Localization means that the software in the robot must gather 
information from its sensors and arrive at a reasonable (and accurate) conclusion about its 
location and orientation. We argue that there is a role to be played by reasoning when 
localizing, with a loose analogy to when people use previous knowledge to explore an 
environment they have some information about. Our problem is different from a pure 
SLAM problem. Here, we assume some previous knowledge of the environment, so we can 
reason about and contrast our observations with our prior knowledge. 

There are many algorithms to deal with the error in odometry as well as errors in other 
inputs for localization (vision or laser sensors). These usually fall into three main categories 
(the family of Kalman Filters (KF), the family of Markov Models (MM) and the family of 
Monte Carlo (MCL) localizers). We do not advocate their elimination. In fact, we use the 
Monte Carlo Localization approach for localizing Sony AIBO robots in the 4-legged league 
of RoboCup. However, we introduce non-monotonic reasoning as a filter before the 
localization process takes observations as inputs. 

We believe our approach offers an alternative to the problem of data fusion. For data fusion, 
probabilistic models are favored over reasoning with logic models. For example, for 
combining information from several sources, their reliability is modeled using probabilities 
and “reasoning with uncertainty” is performed using general models that include 
applications to sensor fusion (Haemmi & Hartmann, 2006, and references therein). As 
sensors become more sophisticated, and as entire modules on board a robot collect 
information about the environment, reasoning is essential to integrate and comprehend such 
sources of information (some could come from observations by teammates). Non-monotonic 
reasoning would be most effective when the information is contradictory. In fact, 
contradictory information is actually the common case. At the sensor level, an odometry 
sensor will usually be in disagreement with the distance computed by using projective 
geometry and trigonometric equations from the images of a digital camera, and these will 
also exhibit differences with an infrared-range sensor. Information from teammates has a lag 
in time. 

                                                                
1The environment is dynamic if it will evolve in the time gap between the sensors collecting 
information and the agent performing an action (Wooldridge, 2002). 
2Information about the entire environment may not be possible to collect (Wooldridge, 
2002).
3An environment is non-deterministic if an action may not have the expected 
outcome (Wooldridge, 2002), like a skid because the surface is smoother than anticipated. 



Non-monotonic Reasoning on Board a Sony AIBO  47 

We propose to use non-monotonic reasoning to accept the inconsistent information and 
resolve it to obtain the most plausible interpretation of the state of a robot and its 
environment. Identifying this state is clearly a crucial initial step towards making a decision 
and then acting. We also want some assessment of the likelihood of that state for the 
decision making process. The influential works by Brooks (Brooks, 1991) have lessened the 
interest in using symbolic/logic approaches. We argue here that a computable non-
monotonic logic has a role to play. 

Our systems have been implemented and operated by the Mi-PAL team in RoboCup (2005, 
2006, and 2007). The current robotic platform is the Sony AIBO robot. 

2. Background on Plausible Logic 

Non-monotonic reasoning (Antoniou, 1997) is the capacity to make inferences from a 
database of beliefs and to correct those as new information arrives that make previous 
conclusions invalid. Although several non-monotonic formalisms have been 
proposed (Antoniou, 1997), Plausible Logic (PL) (Billington & Rock, 2001; Rock & Billington, 
2000) is currently the only one with an efficient non-looping algorithm (Billington, 2005). 
Another very important aspect of PL is that it distinguishes between formulas proved using 
only factual information and those using plausible information. PL allows formulas to be 
proved using a variety of algorithms, each providing a certain degree of trust in the 
conclusion. Because PL uses different algorithms, it can handle a closed world assumption 
(where not telling a fact implies the fact is false) as well as the open world assumption in 

which not being told a fact means that nothing is known about that fact. The β algorithm for 

PL uses the closed world assumption while the π algorithm uses the open world 
assumption. 

If only factual information is used, PL essentially becomes classical propositional logic. 
However, when determining the provability4 of a formula, the algorithms in PL can deliver 
three values (that is, it is a three-valued logic). The proving algorithms terminate assigning 
the value +1 to a formula that has been proved and -1 to a formula that has been disproved. 
It assigns the value 0 when the formula cannot be proved and attempting so would cause 
infinite recursive looping. 

In PL all information is represented by three kinds of rules and a priority relation between 
those rules. Strict rules, denoted by the strict arrow  and used to model facts that are 
certain. For a rule A l we should understand that if all literals in A are proved then we can 
deduce l (this is simply ordinary implication). A situation like Humans are mammals will be 
encoded as human(x) mammal(x).

Plausible rules A l use the plausible arrow  to represent a plausible situation. If we have 
no evidence against l, then A is sufficient evidence for concluding l. For example, we write 

Birds usually fly as bird(x) fly(x). The intent is to record that when we find a bird we may 
conclude that it flies unless there is evidence that it may not fly (like knowing it is a 
penguin). 

Defeater rules A~>¬l mean that if A is not disproved, then it is too risky to conclude l. An 
example is Sick birds might not fly which is encoded as {sick(x),bird(x)} ~> ¬fly(x). Defeater 

                                                                
4Provability here means determining if the formula can be verified/proved. 



48  Robotic Soccer 

rules prevent conclusions that would otherwise be too risky. This could happen in a chain of 
conclusions from plausible rules. 

Finally, a priority relation > between rules R1>R2 indicates that R1 should be used instead of 
R2. In this chapter we actually demonstrate the expressive power of this aspect of the 
formalism. For example from 

{} quail(Quin) Quin is a quail

quail(x) bird(x) Quails are birds

R
1
:bird(x) fly(x) Birds usually fly

one would logically accept that Quin usually flies. From the knowledge base 

{} quail(Quin) Quin is a quail

quail(x) bird(x) Quails are birds

R
2
:quail(x) ¬fly(x) Quails usually do not fly

we would reach the correct conclusion that Quin usually does not fly. But what if both 
knowledge bases are correct, that is both rules R1 and R2 are valid. We see that R2 is more 
specific than R1 and so we add R1>R2 to a knowledge base representing the beliefs of a robot 
that knows both. Then PL allows the agent to reach the proper conclusion that Quin usually 
does not fly, while if it finds another bird that is not a quail, the agent would accept that it 
flies. 

Note that the Three Laws of Robotics are an example of how humans describe a model. 
They define a general rule, and the next rule is a refinement. Further rules down the list 
continue to polish the description. This style of development is not only natural, but allows 
incremental refinement. Indeed, the knowledge elicitation mechanism known as Ripple 
Down Rules (Compton & Jansen, 1990) extracts knowledge from human experts by refining a 
previous model by identifying the rule that needs to be expanded by detailing it more. The 
models presented here are each a progressive refinement of the previous one. 

3. Plausible Logic for Localization 

Non-monotonic reasoning has long been considered too complex for real-time 
environments. Visual robot localization in the 4-legged league places particularly stringent 
demands on the processor. Video camera systems typically operate at a rate of 30 frames per 
second, which allows only about 30 ms to perform full image recognition, feature extraction, 
and consistency verification. Moreover, poor lighting conditions can make color calibration 
extremely difficult. More often than not, vision systems make errors in object recognition (in 
particular, they may occasionally miss the landmarks for localization or report non-existent 
objects as visible). In this section we present our first application of PL. We use it to make 
sense of the sightings in a scene before they are used as landmarks for localization. 

3.1  The Problem 

The most well known family of techniques to interpret the input provided by a sensor with 
some noise is derived from the Kalman Filter after the 1960’s publication by R.E. Kalman 
describing a recursive solution to the discrete-data linear filtering problem. Since that time, 
due in large part to advances in digital computing, the Kalman Filter has been the subject of 



Non-monotonic Reasoning on Board a Sony AIBO  49 

extensive research and application, particularly in the area of autonomous or assisted 
navigation. 

In robot localization, alternative techniques have emerged. Most notably, grid-based 
Markov localization and Monte Carlo localization (Fox et al., 1999; Gutmann & Fox, 2002; 
Thrun et al., 2001). These techniques are based on a paradigm that still uses probability 
distributions. The manipulation of the probabilistic representation is slightly different across 
these schemes. While the Kalman filter (KF) uses some mathematically defined probabilistic 
model (usually multivariate Gaussian distributions), the Markov model (MM) represents a 
distribution as a histogram (one could say Kalman is using parametric statistics while 
Markov localization uses non-parametric statistics). On the other hand, Monte Carlo 
localization (MCL) represents the probability distribution by a population of weighted 
samples (also close to a non-parametric model of the distribution) but rather than 
representing the distribution by piece-wise values on a grid, Monte Carlo uses a population 
of cases. Fundamentally, the three approaches update the current belief using Bayes 
theorem to incorporate the knowledge from a sensor and to update the current belief. They 
use conditional probabilities to represent the prior knowledge and posterior knowledge of 
the state of the world. In an autonomous mobile agent, the belief is revised by an 
observation as well as by an action. While the non-parametric schemes seem better 
equipped to deal with some of the performance issues of Kalman filters, and resolve some 
data fusion issues, they still are not able to rule out inconsistencies. For example, a phantom 
object in a frame can create a bump in the distribution that will be removed after many new 
consistent observations. 

In particular, an example is a frame where the vision module reports two objects as visible, 
even though it is not possible for these objects to appear together in the same frame. In the 
case of Robotic soccer for the 4-legged league, this would be illustrated by the vision system 
seeing the opponent’s goal as well as their own goal within the same frame. The localization 

approaches need to estimate Prob(visible scene| pos→ ), where the visible scene is a 

description of all visible objects, and vector pos→  is the current belief. To avoid describing 

probabilities for all possible scenes, one approach is to regard some observations as 
independent and modify the current belief by the product of 

( _ _ |Prob See front goal pos→  and ( _ _ |Prob See back goal pos→  (for example when 

seeing both goals). The problem with this is that because pos,  has significant error regarding 
the orientation and pan of the head of the Sony AIBO, both of these probabilities are 
unlikely to be zero in any reasonable sensor model. This would result in creating a local 
mode in the probability distribution (in Markov and Monte-Carlo models) while creating a 
significant enlargement of the covariance matrix for the spatial Kalman filter. In fact, we 
know it is impossible to see both goals in the same frame, that is, we know 

Prob(See_front_goal ∧ See_back_goal | pos→ )=0, for all postures pos→ . However, we just 

indicated that representing Prob(See_front_goal ∧ See_back_goal | pos→ ) as a function of 

( _ _ |Prob See front goal pos→  and ( _ _ |Prob See back goal pos→  is rather complicated. 

So the alternative is to generate a database of cases for these situations where domain 
knowledge allows us to plug in suitable values. The problem with this approach is that 
these cases become not only a few, but a rather large number. It then becomes hard to 



50  Robotic Soccer 

ensure that this database of facts is accurate (or complete, or consistent). Furthermore, we 
must ensure that we are using this database to rule out observations at the right time. 
Because of the modeling assumptions in localization algorithms, it is important that the 
observations from sensors be as reliable as possible (otherwise, the convergence is too slow 
or the artifacts to handle the kidnap problem introduce other high modes in the 
representation of the distribution). In RoboCup most teams participating in the competition 
perform rules of thumb that fall in the realm of classical logic (sensible sanity checks); that 
is, they will filter out observations from the vision system that indicate that opposite goals 
were seen in the same frame. These inconsistent5 inputs are simply, partially or not at all, 
used for localization. 

The situation becomes difficult to manage, as entangled with the localization code is a series 
of logical tests that check special cases. Some code filters the observations that are 
considered inconsistent. This consistency module rapidly becomes a large piece of software, 
hard to verify for correctness or completeness. Our first thesis is that such a filter of 
inconsistent observations is better handled by some logic. The second thesis is that such a 
logic should not only be capable of ruling out observations, but allow reasoning about them 
to provide informative inputs to the localization module. 

We have experimented with other alternatives (Billington et al., 2005) to model the field of 
RoboCup 2005/20066 for the 4-legged league. These usually result in a complex description 
of the potential inconsistent inputs. In particular, it is very likely that most imperative 
object-oriented or procedural (in the case of the Sony AIBO C++) implementations of this, 
will result in at least incomplete models, and more seriously, deliver inconsistent models as 
they are usually developed incrementally as deeper and deeper nesting of if-then-else
statements. Our analysis reflects that also some logic approaches rapidly result in a large 
number of rules. We believe most competing teams in RoboCup do not have a complete set 
of rules for handling, for example when vision detects four landmarks in a frame two of 
which are phantoms (blobs from the audience or off-field objects which fit the landmark 
characteristics but appear to vision as landmarks because of calibration or very similar 
color). Most teams survive this because these cases of many phantoms in one frame are 
reasonably rare in the constrained environment of labs or competition venues. However, 
they do pose a very serious threat to the correctness of their overall play (moreover, such 
faults become extremely difficult to reproduce and detect). The point we are making is that 
even from the software engineering, software verification and validation point of view, we 
need a complete and correct logic theory of the consistency of the vision reports. 

Our example here analyzes the challenge of imperfect vision reports. That is, in a single 
frame, the analysis of an image may actually perceive two blobs of yellow color and one of 
blue that are rectangular enough for all of them to be considered as goals. Again, any 
software/logic that rules out two rectangular blobs of yellow, perhaps on the basis that one 
is larger than the other, or one is above the field of vision, or one is next to green, is 
performing some reasoning based on domain knowledge. What we are arguing here is that 
if all those ways of ruling out sightings of landmarks are not concentrated in a single place 

                                                                
5We use here the word inconsistent for an observation that is in some way in contradiction to 
what we expect from our knowledge of the domain. Note that we will use inconsistent 
theory or incomplete theory in the usual sense used by logicians. 
6Previous versions of the field are very similar. 



Non-monotonic Reasoning on Board a Sony AIBO  51 

represented in logic, then the software is very likely to have such rules in several modules, 
resulting in high coupling of these, and more seriously, in incomplete and inconsistent 
modeling of the reasons why some sightings are ruled out before they are used for 
localization. As the robots move to more realistic environments more reasoning is needed. 

3.2  Modeling with Plausible Logic 

We introduce the modeling of consistent sightings incrementally. We start with a simple 
example but the point is not only to help the understanding of using non-monotonic logic, 
but to illustrate that in PL higher-level models are introduced incrementally as extensions of 
the previous model. This process allows us to model the most important (and most likely) 
scenarios upfront, while refining the models to handle the complexity of more specialized 
and sophisticated cases later. The execution of PL proofs on the AIBO is abstracted so that 
upgrading the model does not represent reprogramming the C++ code. The implementation 
of PL not only provides the algorithms for obtaining proofs, but provides a logic 
programming language DPL (Rock) for presenting facts, and describing a theory. 

3.2.1  Model 1 

We first need to represent the domain knowledge. Each 2005/2006 4-legged league soccer 
field has fundamentally 6 landmarks for localization. These are two goals (one yellow and 
the other blue) and four posts. Each post has two colors, and pink is always one of these. 
The two posts near the blue goal have blue as one of the colors while the two posts on the 
yellow side have yellow. This color-coding allows the identification of landmarks for a robot 
as Front Goal (FG), Back Goal (BG), Left Post  (LP), Right Post (RP), Right Back Post (RBP) 
and Left Back Post (LBP). We also take advantage of the fact that although in 2005 the field 
has been enlarged, there are still some scenes that can be ruled out. The horizontal angle of 

view is 56.9°, but to simultaneously see LP and RBP would require a view greater that 67.5°.

First, the facts about the world are presented by type declarations in the logic programming 
language as follows. There are two goals.  

type GoalType = {FG, BG}.

There are four posts.  

type PostType = {LP, RP, RBP, LBP}.

A landmark is either a goal or a post, that is Landmark=GoalType∪PostType. In the 
programming language we have  

type Landmark = GoalType + PostType.

The next step is to define the inputs as predicates. In general, any piece of information we 
can retrieve from sensors or messages from teammates can be modeled as an input. Each 
input is introduced in the logic model as an axiom and these inputs trigger (fire) the 
plausible assumptions that appear in the model description. It is cumbersome to write, for 

every axiom a, the two plausible rules a  p and ¬a  ¬p, where p is the plausible 
assumption to be fired by a. A macro of DPL simplifies this.  



52  Robotic Soccer 

$=declareInput$(a$,p$)${$#
 input{$+a}. {$+a} => $+p. {~$+a} => ~($+p). $}$#

Now, we can write the plausible assumptions (this is what vision reports). First, See(x) will 
evaluate to true if and only if the vision module reports a sighting of landmark x.

type See(x <- Landmark).

This first model provides correct results only if the vision module reports exactly one 
landmark or none. Now, we are in a position to describe consistency rules. By default, when 
vision does not report a landmark, we do not forward anything to localization. This is an 

easy default case. This is R1:{} ¬Cs(x) while in the programming language DPL we write  

R1: => ~Cs(x).

However, if vision reports a landmark, we believe it; since for only one frame we have no 

other information to rule this out. PL writes this as R2: See(x) Cs(x)     R2>R1. Note the 
relationship between rules. Now, the DPL equivalent is  

R2: See(x) => Cs(x).  R2 > R1.

This works because we also provide a statement that any frame that has two or more 
landmarks should be ignored. This completes the programming of this simple model. 

3.2.2  The Path to Implementation 

Initially, the only implementation available of PL was in Haskell, and it was unclear that this 
implementation, even if translated to C++ would be fast enough to operate in the time slot 
for processing a vision frame (which is the usual time slot for doing all computation without 
losing frames, and thus possibly even losing sightings of critical objects like the ball). While 
originally (Billington et al., 2005, 2006) we enabled PL without running the inference engine 
on the Sony AIBO, it became clear that this had computability limitations. This chapter 
focuses only on the scenario where the inference engine is operating on board the Sony 
AIBO. In order for PL proofs to be developed on board we had to extend the logic 
programming language DPL by adding automatic production of C++ macros and automatic 
production of gluing code. Also, we developed a template method and an architecture that 
makes model loading a component-replacement process. The PL was made to run on-board 
the Sony AIBO using a C implementation of the inference engine. The C implementation 
also ran on MAC-OS and LINUX since it used standard C-language constructs. 

Extensions to DPL enable generation of C++ glue code. Namely, we took the decision we 
would read or evaluate sensor input only once. We would store the outcome of evaluating a 
plausible assumption in a C++ Boolean variable. For vision, for example, the C++ expression 
FG has value true iff the front goal is visible. This is an input axiom of the description that 
will be asserted either positively or negatively.  

$+declareInput$("FG"$,See(FG)$)



Non-monotonic Reasoning on Board a Sony AIBO  53 

Similarly, we have five more declarations. These input axioms are the atoms the logic will 
talk about and can be given initial values by the sensors of the robot (or the modules that 
read those sensors).  

$+declareInput$("BG"$,See(BG)$)  $+declareInput$("RBP"$,See(RBP)$) 
$+declareInput$("LP"$,See(LP)$)  $+declareInput$("LBP"$,See(LBP)$) 
$+declareInput$("RP"$,See(RP)$)

An outcome of this is gluing code that declares the necessary Boolean variables in the 
corresponding C++ module (creates statements of the form bool FG;).

We proceed now to describe the special template method. The special template method 

consists of three phases. We already alluded to the first phase INIT_ALL_FALSE(). This is 
implemented as a macro that creates the necessary definitions of C++ Boolean variables for 
all input axioms. For example, we saw that the programming language enabled the 
declaration of an input.  

$+declareInput$("FG"$,See(FG)$)

In the C++ code, there is a Boolean variable corresponding to this sensory input. In more 
elaborate models we will have additional inputs that indicate if one landmark is to the left of 
another landmark. These will also become Boolean C++ variables. Moreover, 
INIT_ALL_FALSE() not only defines those Boolean variables, but sets their values to false 

(C++ statements of the form FG=false;). This is just a default initialization. In temporal 
models that use information from a previous frame, the values of input axioms in one frame 
are copied to a corresponding frame-indexed set of C++ Boolean variables. 

The second phase evaluates all input predicates (i.e. collects all information from the 
sensors), and stores this in the C++ Boolean variables. Its implementation is a macro 
UPDATE_ALL() that queries the values of the input axioms for the current frame. Also, if 
there are predicates that refer to sensor values in previous time slots, they become updated. 
We will say more about this when we discuss a model that analyses sightings across 
consecutive frames. In the current example, the macro obtains the values of input axioms 
from the vision module. For example, a variable for the front goal previously initialized to 
false may now be set to true if vision has found a front goal in the current frame (the most 
recent vision report will be extracted and since it reports the front goal as visible the C++ 

executes FG=true;). It also provides a pointer to such an object so other attributes about 
the landmark can be evaluated, e.g. its perceived size or whether it is seen to the left or right 
of another landmark in that frame. 

The last phase of the template method is the invocation of the inference engine. 
PLACE_CS_ALL() will use the inference engine to evaluate the expressions for which we 
requested outputs. When we are filtering localization landmarks, if a landmark is found to 
be consistent (evaluates to true), the information on the landmark sighting will be 
forwarded to the localization module (or any other module that may benefit from it, such as 
the behaviour to kick when the front goal is visible). In particular PLACE_CS_ALL() will 
have as many if statements as landmarks, each with an expression that is a call to the 
inference engine. For any term in the model we want to ask its value, we can make a call to 
the inference engine (for example, is the sighting of the front goal consistent? ). The C 



54  Robotic Soccer 

implementation returns one of the three values of PL. For those landmarks found consistent, 
the information on them is forwarded to localization. 

For the analysis of each frame, we have a module named Consistency. The C++ code of 

the template method Consistency::Run is executed every time a new frame arrives. In 
the filtering for localization example, the vision module is reporting about landmark 
sightings in each frame. The template method runs and verifies such reports.  

void  Consistency::Run() 
{INIT_ALL_FALSE(); UPDATE_ALL(); PLACE_CS_ALL();}

The three macros in the template method have the responsibility of implementing the three 
phases. The three macros in the template method are defined in a file named 
ConsistencyMacros.h that provides the glue code to the Mi-Pal architecture for the 
soccer playing robots as well as glue code for a visual testing tool. The code in 

ConsistencyMacros.h is computer generated, and depends slightly on the model to be 
executed on the Sony AIBO. 

For the particular case of the Model 1 just presented, testing (evaluating) if the front goal is 
consistent is a call to the inference engine. If the front goal was not seen in this frame, then 
INIT_ALL_FALSE() would have set the variable to false and UPDATE_ALL() would not 
have changed FG’s value, so no landmark sighting is forwarded to localization. However, if 

the front goal was visible, UPDATE_ALL() would have set FG to true and the if statement 
in PLACE_CS_ALL() would fire (because the engine would have used the logic rules of the 
model to prove a consistent sighting), resulting in localization receiving the sighting 
information about the front goal. 

3.2.3  Higher Level Models 

Originally, we developed the simple Model 1 for validation of the entire concept of a non-
monotonic logic implemented on a Sony AIBO. We now introduce progressively more 
sophisticated models. We present a model that handles the consistency cases when vision 
reports 0, 1, or 2 landmarks in a frame. The type declarations regarding the landmarks are 
the same as before, but we need to describe the domain in a bit more detail. In particular, we 
use Opp(x,y) to mean x is opposite y. Also Opp(x,y) if and only if Opp(y,x). This appears in 
the programming language as  

type Opp(x <- Landmark, y <- Landmark - {x}).  default ~Opp(x, y). 
Opp(FG, BG).   Opp(RP,  LBP).   Opp(RBP, LP). 
Opp(BG, FG).   Opp(LBP, RP).    Opp(LP,  RBP).

Also, we want to define relative positioning on the soccer field. The predicate LR(x,y) means 
landmark x is to the left of landmark y, and there are only 0 or 1 landmarks between them. 
The following are facts about left-to-right placements.  

type LR(x <- Landmark, y <- Landmark - {x}).  default ~LR(x, y). 
LR(LP, FG).  LR(RP, BG).   LR(FG, RBP).  LR(RBP, BG).
LR(LP, RP).  LR(BG, LP).   LR(RP, RBP).  LR(RBP, LBP).
LR(FG, RP).  LR(LBP, FG).  LR(BG, LBP).  LR(LBP, LP).



Non-monotonic Reasoning on Board a Sony AIBO  55 

We are now in a position to use inputs from vision (using the same macro to declare them). 
Declarations for See(x) and axioms relating this predicate to the C++ expression FG are as 
before. What is new in this model is that we now use that vision reports if one landmark 
appears to the left of another. Plausible assumption SeeLtoR(x,y) means vision reports seeing 
landmark x to the left of landmark y.

type SeeLtoR(x <- Landmark, y <- Landmark - {x}).

Also for efficiency of the computation of proofs, we can use rules that simplify the setting. A 
macro for an axiom such as LP_FG that fires SeeLtoR(LP,FG) allows us to not consider cases 
where LP_FG is asserted but either of LP or FG is not. In the programming language we 
define a macro call $+declareSeeLtoR$(x$,y$) that declares an input axiom x_y, rules 
to fire SeeLtoR(x,y), and then specifies the (possible) cases to ignore.7

$=declareSeeLtoR$(x$,y$)${$#
 $+declareInput$("$+x_$+y"$,SeeLtoR($+x,$+y)$)
  ignore {"$+x_$+y",~"$+x"}.  ignore {"$+x_$+y",~"$+y"}. $}$#

Then, we only need to use this macro, for all possible pairs of landmarks, for example  

$+declareSeeLtoR$(LBP$,LP$).

For the new model, the first two rules are the same as before. Namely, nothing is to be 
forwarded to another module unless it is seen. But now we add that if vision reports two 
landmarks we know to be opposites, then we believe neither (irrespective of whether vision 
reports one to the left of the other).  

R3: {See(x), See(y), Opp(x,y)} => ~Cs(x).  R3 > R2.

If vision reports two objects out of left-to-right order, then we also believe neither.  

R4: {See(x), See(y), SeeLtoR(y,x), LR(x,y)} => ~Cs(x). 
R4: {See(x), See(y), SeeLtoR(y,x), LR(x,y)} => ~Cs(y).  R4 > R2.

The complete rules for Model 2 are expressed in the programming language as follows:  

R1: => ~Cs(x).  R2: See(x) => Cs(x).  R2 > R1. 
R3: {See(x),See(y), Opp(x,y)} => ~Cs(x).  R3 > R2. 
R4: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => ~Cs(x). 
R4: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => ~Cs(y).  R4 > R2.

Note the non-monotonic aspect of the model. In particular, the inference engine may reach 
the initial conclusion that nothing is to be forwarded to the localization module (by R1) but 
then conclude that there is a landmark sighting to be forwarded (because of R2). However, it 
may change that conclusion in light of R3.

                                                                
7While the ignore statements do not influence the plausible rules directly, they serve the 
purpose of declaring that the given combinations of inputs can be ignored.  



56  Robotic Soccer 

If we want to add rules that use other aspects of the information from the sensors in the 
report from vision, we can also achieve this. We illustrate with rules to report a post over a 
goal, or the larger of two goals. We can now revise Model 2 to Model 2a to use information 
on objects size or type, for example. We may want to report a post over a goal even if 
perceived in the wrong left-to-right order.  

R1: => ~Cs(x).  R2: See(x) => Cs(x).  R2 > R1. 
R3: {See(x),See(y), Opp(x,y)} => ~Cs(x).  R3 > R2. 
R4a: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => Cs1(x,y).  R4a > R2. 
R5: {Cs1(x,y),Post(x),Goal(y)} => Cs(x). 
R5': {Cs1(x,y),Post(x),Goal(y)} => ~Cs(y). 
R6: {Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} => Cs(x). 
R6': {Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} => ~Cs(y).

The predicate Cs1(x,y) means only one of x and y is consistent with the domain knowledge. 
We now have that when two objects on the scene are a post and a goal and we have 
concluded one is inconsistent, then we prefer the post (because it is harder to confuse an 
object identified with two colours). The last rule says that the larger of two inconsistent 
posts is to be forwarded as input for localization since it is harder to perceive a large 
phantom post. 

There is a case with 3 landmarks in a frame where Model 2 could be refined. To describe this 
new refined model we have to state some more facts about the environment. We use 
Adj(x,y,z) to say x is left of and next to y, and, y is left of and next to z.

type Adj(x <- Landmark , y <- Landmark - {x},
z <- Landmark - {x, y}).  default ~Adj(x, y, z). 
Adj(LP,FG,RP). Adj(FG,RP,RBP). Adj(RP,RBP,BG). 
Adj(RBP,BG,LBP). Adj(BG,LBP,LP). Adj(LBP,LP,FG).

Let us consider the case when we see three objects x, y, and z, known to be adjacent from left 
to right, but we see x on the wrong side of both y and z. While we do not need to revise our 
opinion about x being inconsistent (by R4) the mutual consistency of y and z are grounds for 
overriding the conclusion by R4. This leads to an extension that we name Model 3.

R5: {See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(x,y,z)} => Cs(y). 
R5: {See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(x,y,z)} => Cs(z). 
R5 > R4.

Similarly, if z is the one out of order, then believe x and y.

R5: {See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(x,y,z)} => Cs(x). 
R5: {See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(x,y,z)} => Cs(y).

The rules that complete this model are as follows. 

R6: {See(x),See(y),See(z),SeeLtoR(x,z),SeeLtoR(z,y),LR(x,y),LR(y,z),
     Opp(x,z)} => Cs(x). 
R6: {See(x),See(y),See(z),SeeLtoR(x,z),SeeLtoR(z,y),LR(x,y),LR(y,z),
     Opp(x,z)} => Cs(y). 
R6 > R3.  R6 > R4.



Non-monotonic Reasoning on Board a Sony AIBO  57 

We omit the last model that handles even 4 landmarks in the same frame. But we believe 
this progression of models and the illustration of their design suffices. 

3.3  A First Evaluation 

The implementation of these PL models has been evaluated in two directions. The 
effectiveness of the approach was demonstrated in an ERS-7 Sony AIBO in the lab and in the 
actual RoboCup competitions. We evaluated the results on the robot with a telnet
connection that displays the ID of the objects reported by vision (see Figures 1 and 2). 

Figure 1 creates a scene where a non-moving Sony AIBO would have a vision module where 
the left post is correct, but the goal and right post are inverted. We can see in the figure the 
telnet connection that portrays the image captured in the robot as well as the text that 
reports which landmark sightings are being forwarded for localization. For Figure 1, 
Model 2 provides the correct result. Namely, we can forward to localization the left post, but 
neither the goal nor the right post should be forwarded to the localization module. 

We believe it is remarkable that the PL description for Model 2 (which only aims at writing 
rules for frames with zero, one or two landmark sightings) obtains correct conclusions for 
many settings in which three sightings or more occur. This again reflects the power of 
modeling with PL as opposed to modeling without it. The PL is analyzing the pairs within 
the triplet in sight. And while two of the pairs are consistent (those involving the left post), 
the pair involving the goal and the right post indicates both of these are inconsistent. 

Fig. 1.  The left post is correct, but the goal and right post are inverted 

Not all settings with 3 landmarks are correctly identified with Model 2. Figure 2 is a setting 
where Model 2 rules all landmark sightings as inconsistent. In this case, all objects are 
involved with another object to form a pair seen in the incorrect left to right order with 
respect to the domain knowledge. While Model 2 rules this setting as inconsistent Model 3 
correctly identifies that the left post and the goal constitute a pair seen in the expected order 
and thus it is likely that the right post is the phantom. 



58  Robotic Soccer 

Fig. 2.  The left post and the goal are in correct order, but the right post is not 

The following figures show images at the RoboCup-2005 venue in Osaka where the 
consistency module filtered phantom objects for localization. Figure . 3 shows the processing 
by vision system on board the Sony AIBO. We have enlarged the captured image on board, 
then the blobs of color as the second largest and the objects reported by vision appear on 
three screens on the bottom right corner. The left most of these bottom images displays the 
sightings for goals.  

(a) The blue timer appears as a 
goal with the yellow goal. 

(b) Phantom goal caused by 
yellow pixels on the ball. 

(c) A window appears as a 
blue goal above the real goal. 

Fig. 3. Examples of competition situations where we see opposite goals in the same frame 

Figure . 3 (a) shows that the blue match score and timer appear as a goal on a frame with the 
yellow goal. While our vision system has an analysis for filtering objects above the field of 
vision, the fact that the Sony AIBO has a head with three degrees of freedom and has legs 
that during pursuit of the ball make positions and angles of vision that cannot always rule 
this case out. Figure . 3 (b) shows that phantom sightings occur even with the regular color-
coded objects in the field. The ball has enough yellow pixels to be confused with a yellow 
goal against a blue goal. Figure . 3 (c) shows another case where natural lighting and off the 
field objects result in phantom sightings. In this case, a window registered enough blue 
pixels to be reported as a blue goal on a frame that spots the yellow goal as well. 

With the aid of a GUI simulator (description to follow) and the telnet connection, the models 



Non-monotonic Reasoning on Board a Sony AIBO  59 

were evaluated for all possible configurations of phantom and real sightings that involve up 
to three landmarks, and even in some cases 4 or 5 landmarks. Some examples of the 
outcomes are shown in the Figure 4. We invite the reader to attempt to decide what the 
reliable sightings are before exploring the results produced by the models. 

The results are as follows. In Figure 4 (a) only BG and RBP are consistent. For Figure 4 (b), 
BG and RBP are the consistent objects while only RBP is consistent for Figure 4 (c). For these 
three previous cases, with Model 3 both Cs_LBP and ¬Cs_LBP are -1. For Figure 4 (b) both 

Cs_RP and ¬Cs_RP are -1. In Figure 4 (d) nothing is consistent while for Figure 4 (e) only 
RBP and RP are consistent. 

(a) RBP BG LBP RP (b) RP RBP BG LBP (c) RP RBP LBP (d) RBP BG FG LP (e) RBP BG FG RP

Fig. 4. Interesting cases for the static models 

3.4  Using A Model of Time to Improve Localization 

Our previous model illustrated reasoning based only on the current reading from the 
sensors. It is natural that decisions on agents may be based not only on the information on 
the current state of the system, but also on data retrieved in the past. To illustrate how we 
can accomplish reasoning about the current and previous states of the environment we 
show a temporal expansion of the previous spatial DPL model. In a temporal model, the 
objects may have been visible in the previous frame or in the current frame. So we model 
this by considering that vision now reports sightings with respect to a time step or a frame 
(i.e. the predicate is now See(x,f)).

type Frame = {PF, CF}. type See(x <- Landmark, f <- Frame). 
type SeeLtoR(x <- Landmark, y <- Landmark - {x}, f <- Frame).

Sightings may be transient (did not last across consecutive frames) or persistent (the object is 
in both frames).  

type Tra(x <- Landmark).   R1: {} => ~See(x,f).   R2: {} => ~Tra(x).
R3: {See(x, PF), ~See(x, CF)} => Tra(x). 
R3: {~See(x, PF), See(x, CF)} => Tra(x).  R3 > R2. 
type Per(x <- Landmark).   R4: {} => ~Per(x). 
R5: {See(x, PF), See(x, CF)} => Per(x).   R5 > R4.

Nothing is consistent unless we get at least a transient or a persistent sighting.  

type Cs(x <- Landmark). R6: {} => ~Cs(x).
R7: {Tra(x)} => Cs(x). R7 > R6. R8: {Per(x)} => Cs(x). R8 > R6.

Seeing two opposite landmarks is grounds for inconsistency (even persistently or 
transiently).



60  Robotic Soccer 

R9: {Opp(x, y), Per(x), Per(y)} => ~Cs(x). R9 > R7. R9 > R8. 
R10: {Opp(x, y), Tra(x), Per(y)} => ~Cs(x).
R11: {Opp(x, y), Tra(x), Tra(y)} => ~Cs(x). R10,R11 > R7.

What does it mean for two objects to be in a transient left-to-right order?  This happens if 
vision sees the objects in the previous frame in that order but does not see them in the 
current frame in that order, or they are seen in the current frame in that order but they were 
not seen in the previous frame in that order.  

type TraLtoR(x <- Landmark, y <- Landmark - {x}). 
R14: {} => ~TraLtoR(x,y). 
R15: {SeeLtoR(x,PF,y,PF),~SeeLtoR(x,CF,y,CF)} => TraLtoR(x, y). 
R15: {~SeeLtoR(x,PF,y,PF),SeeLtoR(x,CF,y,CF)} => TraLtoR(x, y). 
R15 > R14.

However, objects are persistently seen in a left-to-right order if the sighting of that 
relationship happened in the previous and current frame.  

type PerLtoR(x <- Landmark, y <- Landmark - {x}). 
R16: {} => ~PerLtoR(x,y). 
R17: {SeeLtoR(x,PF,y,PF), SeeLtoR(x,CF,y,CF)} => PerLtoR(x,y). 
R17 > R16.

Finally, seeing landmarks out of order is grounds for inconsistency. But we only overwrite 
those rules that may have suggested consistency.  

R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(x). 
R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(y).  R18 > R8. 
R19: {LR(x, y), Tra(x), Per(y), TraLtoR(y, x)} => ~Cs(x). 
R19: {LR(x, y), Per(x), Tra(y), TraLtoR(y, x)} => ~Cs(y).  R19 > R7. 
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(x). 
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(y).  R20 > R7.

3.5  Implementation of Temporal Models 

For the temporal model, the robot executes a variant of the template method (named 

Run()). Again, the template method is executed every time a prompt from the environment 
demands an action and we want to do some reasoning before the action. For the localization 
example, arrival of a frame and its analysis by the vision module are prompts for reasoning 
about the sightings before sending results to the localization module. However, this variant 
involves other macros.  

void  Consistency::Run() 
{INIT_ALL_FALSE(); UPDATE_ALL(); CHECK_NEW_LANDMARKS(); 
PLACE_CS_ALL(); COPY_ALL_BOOL(); }

As explained earlier, the building blocks of Run() are procedures defined by computer 
generated glue code macros. The INIT_ALL_FALSE() macro implements the first phase. It 
gives definitions of C++ Boolean variables for all defined inputs and sets all Booleans 



Non-monotonic Reasoning on Board a Sony AIBO  61 

corresponding to inputs of the current frame to false. UPDATE_ALL() queries the reports of 
all the sensors in the current status of the environment, in our case obtains from the vision 
module reports for the current frame. We have a new intermediate phase 

CHECK_NEW_LANDMARKS() that ensures all information from sensors is labeled with its 
time step identifier. A sensor reading now is labeled with subindex 0, but for the previous 
fame the index is -1. Indexes are shifted when this macro is executed. In our case, this 
ensures that sightings are for the current frame and that previous sightings also have the 

correct fame numbers relative to the current frame. As before, PLACE_CS_ALL() will 
evaluate the output expressions using the inference engine. If a landmark is found 
consistent, it will forward the sighting to the localization module (or any other module that 

may benefit from it, like the action to kick when the front goal is visible). PLACE_CS_ALL()
will have as many if statements as outputs/proofs are requested. For example, testing 
(evaluating) the Cs_FG macro, corresponds to asking the inference engine if we have a 
consistent sighting of the front goal. Finally COPY_ALL_BOOL() shifts all the current 
Boolean values in C++ Boolean variables to the Boolean variables corresponding to previous 
frames (so the previous frame values are correctly set for the next execution of the template 
method Run()). We avoid keeping the reports and evaluating predicates regarding vision 
reports on previous frames. 

3.6  Evaluation of the Temporal Model 

The entire architecture, and the models, were also validated in a Graphical User Interface 

(GUI) simulator. That is, the roboconsistency.h files produced for a model as output by 
DPL can be used by the GUI simulator as well. A user interacting with the GUI simulator 
can set up the vision reports (for example, set up a scenario where the front goal and front 
post are visible and the front post is to the right of the front goal). The GUI simulator then 
indicates which of these landmark sightings are regarded as worth forwarding to the 
localization module. This simulator facilitates the debugging of the entire architecture 
without having to execute the consistency module on the robot. This is particularly useful in 
the evaluation of temporal properties. On the robot, validation is particularly hard because 
sighting errors only occur sporadically at a frame rate higher than 25 Hz. Our simulator 
allows reproducible scenarios of what vision might report to the localization system and this 
was used to validate the correctness of the PL expressions resulting from a model. The 
inference engine is also the same in the simulator and the on-board execution module on the 
robot. In order to provide a way to consistently set and evaluate a scene, the simulator 
wraps the C++ expressions in a graphical user interface (GUI) (refer to Fig. 5).  

(a) (b) (c) (d)

Fig. 5. (a) The simulator showing one particular object (RP) as visible in the current frame. 
(b) Two consistent objects in the current frame. (c) Three inconsistent sightings in the 
current frame. (d) The persistent back goal (BG) wins over the temporary sightings of 
the right post (RP) and the front goal (FG) 

The user of the simulator places landmarks on rows, and the succession of rows represents 



62  Robotic Soccer 

the order in which these objects are seen (with top to bottom representing left to right in the 
field of vision). The first column shows the landmark. The next two columns allow the user 
to select what the visibility state is for the previous (Pre) and current (See?) frames. The 

rightmost column shows the output of the consistency module (Cs) after performing its 
reasoning. Furthermore, the GUI allows the dragging and dropping of objects to change the 
order, as well as addition (Add) and deletion (Delete) of landmarks. 

Fig. 5 (b) shows two consistent sightings. Even though the two landmarks RP and BG were 
not visible in the previous frame, they are consistent with each other, allowing them to be 
forwarded on to the localization module. In fact, this is the same result that a traditional 
value domain reasoning system would obtain. This is also true for Fig. 5 (c) where we can 
see three objects that are inconsistent with each other. Since all the objects only occur within 
one single frame, the only conclusion that can be drawn is that nothing is consistent in that 
scene. Once information varies over time, a richer belief about the environment can be 
formed. Fig. 5 (d) shows the same scenario as Fig. 5 (c), but this time the temporal properties 
of the visible objects vary. The back goal that was visible in the previous frame as well as the 
current frame is given precedence over the right post and the front goal that were only 
visible in a single frame.  

Temporal and spatial tests can be combined as in Fig. 6 (a). Objects that are consistent in 
either space or both space and time are ruled as being consistent in the world view of the 
system. Only inconsistencies that persist over both space and time will force the system to 
conclude that nothing is consistent (Fig. 6 (b)). 

Fig. 6. Whether an Object is visible is indicated by See? for the current frame and by Pre
for the previous frame. Column Cs shows whether the corresponding object is 
concluded to be consistent. (a) The two persistent landmarks (RP and BG) are 
consistent with each other, but inconsistent with the front goal (FG). (b) Nothing is 
consistent in this view 

3.6.1  Evaluation on the Robot 

We also have analyzed the effectiveness of the approach in a Sony AIBO ERS-7 in the lab. 
Fig. 7 shows a lab setting where we can rapidly produce opposite goals in a frame and 
immediately after block one goal, or the other. In the log, we found sequences where the 
robot is seeing only the front goal and reports it as consistent. When the back goal appears 
as well, for that first frame, the front goal remains consistent and the back goal is labeled 
inconsistent (note that in the discussion of the KF, MM, and MCL localizers we indicated 
that the frame with both goals becomes not usable). If the back goal persists with the front 
goal for one more frame, then both goals are now labeled inconsistent (note that the model 



Non-monotonic Reasoning on Board a Sony AIBO  63 

can easily be adjusted if a different effect is desired besides having two consecutive frames 
with both goals to rule them out). If the front goal drops out, then the back goal in the 
previous frame and the back goal in the current frame both become consistent. We have no 
space here to discuss more examples of the versatility of the modeling here, but using the RP 
also helps since the blue goal is in the right left-to-right order with respect to the post.  

(a) Both goals are visible. (b) The blue goal is covered. (c) The yellow goal is covered. 

Fig. 7. Lab Examples. A setting that allows sequences of frames where two goals are 
reported by vision. Goals can be covered and uncovered quickly 

4. Plausible Logic for the Referee 

One of the most crucial aspects of soccer is the offside rule (rugby, hockey and many others 
have similar variants). Typically, the rule is a source of much debate, and almost every 
soccer fan forgets one or more of the exceptions when first presenting the rule to a novice. 
The rule represents an interesting resource for the defense, and its comprehension is crucial 
for the attacking team. Naturally, soccer referees (main and assistant) are mostly judged by 
their ability to officiate the rule. 

If robotic players are to participate in a competition in 2050 and defeat the human world 
champion they would need to reason about these types of rules. Moreover, we can foresee 
that an artificial agent can enforce the rules in leagues like the simulation league or even the 
Sony AIBO competition as there are now video analyzers that recognize players, landmarks 
and the ball (Ruiz-delSolar et al., 2006). 

The official rules of the game, as per the FIFA web site indicate that Rule 11 corresponds to 
the off-side rule.  

It is not an offence to be in an offside position. A player is in an offside position if he is  

• nearer to his opponents’ goal line than both the ball and second last opponent  

A player is not in an offside position if he is 

• on his own half of the field of play or  

• level with the second last opponent or  

• level with the last two opponents  

A player in an offside position is only penalized if, at the moment the ball touches or is 
played by one of his team, he is, in the opinion of the referee  

• interfering with play or  

• interfering with an opponent or  



64  Robotic Soccer 

• gaining an advantage by being in that position.  

There is no offside offence if a player receives the ball directly from  

• a goal kick or  

• a throw-in or  

• a corner kick.  

We now describe this with a model using PL with the programming language DPL. We will 
mimic closely the official wording, although simpler equivalent models can be described 
more succinctly. We define the objects we need to talk about as the last two opponents and 
the ball.

type Last2Opponents = {Opp1, Opp2}.
type Objects = {Ball} + Last2Opponents.

We also need to describe the possible types of activities for a player and the possible ball 
transfers.

type Plays = {IfPlay, IfOpp, TkAd}.
type Transfers = {GlKk, ThwIn, CnrKk}.

The robotic referee would need to deduce from its sensors whether a player is level with the 
second last opponent.  

type lvl(x <- Last2Opponents).

Also, using its sensors, it must identify the involvement of the player in play and the types 
of transfers that result in no offside.  

type play(x <- Plays). 
type xfer(x <- Transfers).

The default situation is that a player is not committing an offense, as per the official rules 
above. Note that we are naming rules with more meaningful names that just a rule 
identifier.  

NoOffence: {} => ~offsideOffence.

The remaining rules are now clear from the similarity with the FIFA’s Rule 11.  

Offence: {offsidePosition, active} => offsideOffence. 
Offence > NoOffence. 

NotOffside: {} => ~offsidePosition. 

Offside: {nearr(x) | x <- Objects} => offsidePosition. 
Offside > NotOffside. 

OwnHalf: {ownHalf} => ~offsidePosition.  OwnHalf > Offside. 

lvl: {lvl(x)} => ~offsidePosition.  lvl > Offside. 



Non-monotonic Reasoning on Board a Sony AIBO  65 

NotActive: {} => ~active. 

Active: {play(x)} => active.  Active > NotActive. 

Transfer: {xfer(x)} => ~offsideOffence.  Transfer > Offence.

5. Plausible Logic for the RoboCup@Home 

RoboCup@Home is a league that concentrates on real-world applications for robotics. It has 
a strong focus on interaction between autonomous robots and humans, aiming at the 
development of applications that can assist humans in everyday life (van der Zant & 
Wisspeintner). We believe that such applications will become prevalent in the near future 
and will be an integral part of our lives in areas such as public transport, housework, care, 
and medicine. We have explored human-robot interfaces for assisting learning of blind 
children (Bartlett et al., 2003) and e-mail between blind adults (Estivill-Castro & S., 2006). As 
originally proposed (van der Zant & Wisspeintner), RoboCup@Home anticipates many 
applications of robots assisting elderly humans with situations like emergencies. 

We have presented, as part of the Open Challenge in RoboCup 2007, the use of rules in DPL 
for a scenario where an elderly lady (Grandma) lives alone at home. While she does not 
require constant care, raising an alarm in an emergency or if something unexpected happens 
can be of vital importance. We now illustrate the constructing of these rules for our scenario. 
We use vision as the main source of input and information about the environment since 
RoboCup@Home settings can hardly have specific sensors for robots. Again, the suggested 
methodology for building a model is to introduce the rules incrementally, adding 
consideration of possibly visible objects one at a time. 

We presume that the raising of an alarm could be forwarded to a behavior module on the 
robot. Thus, alarm means an alarm should be raised about Grandma’s welfare. By default, no 

alarm should be raised. Default: {} ~alarm The frames analyzed by vision have attached a 

frame identifier f. Ft',t denotes the sequence of frames between two points in time, t and t'.
The variable now denotes the point in time when a decision for an alarm is being made. For 
a short time in the past, say half an hour, we use short, but long is a long time, say 8 hours. 
The variables long and short could represent a collection of tunable parameters, for those 
rules that use them. Again, sightings from the sensors are plausible assumptions and See(x,f)
is true if the vision module reports that object x is visible in frame f. Sorry Grandma, but to 
your robotic helper you are just an object. 

A prolonged absence of Grandma is reason to raise an alarm. PL represents this as a 

definition for what absence means (absence = ∀f∈Fnowlong ~See(Grandma,f)), one plausible rule 

Absence: {absence} alarm, and an instance of the priority relation Absence > Default. In DPL 
this can be expressed as follows.  

Default: {} => ~alarm. 
Absence: {absence} => alarm.  Absence > Default.

Grandma is likely to be in trouble (suffered a fall) if not standing, that is Horizontal. If 
Grandma is horizontal, then Grandma is by necessity visible. Our implementation can 



66  Robotic Soccer 

assume that the analysis of a frame by vision can not assert Horizontal(Grandma,f) without 
also asserting See(Grandma,f) over matching frame ranges. A fall is likely if Grandma is 

Horizontal for a short time. Thus, formally, we need again a definition (lying = ∀f∈Fnowshort

Horizontal(Grandma,f)), two refining rules (Lying: {lying} fall, and Fall: {fall} alarm), and 
one more instance in the priority relation Fall>Default. This can be expressed by the 
following DPL rules.  

Lying: {lying} => fall. 

Fall: {fall} => alarm.  Fall > Default.

With the simple model so far, we can already handle two cases that might be cause for 
concern and raise an alarm. However, in a real-world scenario, it may be perfectly valid for 
Grandma to lie down and rest. It is likely that when Grandma is lying down on her bed, that 
she may be resting. We now model this refinement. We assume that the robot can sense 
Over(x,y,f), that means that object x is over object y in frame f. Over(x,y,f) implies See(x,f) and 
See(y,f). There is no possibility that Grandma can be absent and over her bed, so rules 

Absence and OnBed can never conflict. Mathematically, onBed = ∃f∈Fnowshort

Over(Grandma,Bed,f). The refinement is introduced with a rule that indicates the exception 

OnBed: {onBed}  ~alarm. And the priority over the rule that raises an alarm when lying 
OnBed > Lying. The corresponding DPL rules are as follows.  

OnBed: {onBed} => ~fall.  OnBed > Lying.

However, if Grandma stays in bed for too long and is not getting up, this may still be cause 
for concern. Therefore, if Grandma is horizontal for a long time, raise an alarm regardless of 

where she is. We specify what it is to be lying for too long as LyingLong: {lyingLong}

notGettingUp, where lyingLong = ∀f∈Fnowlong Horizontal(Grandma,f). Then, we have an 

exception to the exception with the rule NotGettingUp: {notGettingUp} alarm and another 
instance of the priority relation NotGettingUp > Default. So we can extend our DPL model 
once more to take the amount of time that Grandma has been lying down for into account.  

LyingLong: {lyingLong} => notGettingUp. 
NotGettingUp: notGettingUp => alarm.  NotGettingUp > Default.

Grandma is likely to be okay if the long time she is lying is at night and on the bed. At night 
you cannot see the sun. Grandma is not likely to get up at dawn, and may go to bed before 
dark. All we know is that bedtime overlaps nighttime. This leads to the following definition 

nighttime = ∃f∈Fnowlong ~See(Sun,f). We model the new revisions by another rule Nighttime:

{nighttime}  ~notGettingUp. This is a revision on when it is OK to be lying too long 
Nighttime > LyingLong. The following DPL code handles this scenario.  

Nighttime: {nighttime} => ~notGettingUp.  Nighttime > LyingLong.

To continue with this illustration, we ask the question what happens if Grandma is not 
home alone. Perhaps we want to raise an alarm if a stranger is looming over Grandma. For 
purposes of this scenario, a stranger is anyone other than Grandma. The presence of a 
stranger is not alarming unless Grandma is horizontal. We define the condition our sensors 



Non-monotonic Reasoning on Board a Sony AIBO  67 

can detect as looming = ∃f∈Fnowshort See(Stranger,f) ∧ ∀f∈Fnowshort Horizontal(Grandma,f). Then, 

we define the rule Looming: {looming} alarm. And place it in the hierarchy with 
Looming>Default. This can be expressed in DPL as follows.  

Looming: {looming} => alarm.  Looming > Default.

To better illustrate how these rules work, Figure 8 summarizes the relationship between the 
rules shown above. To cope with more complex scenarios, additional rules can be created 
and priority relations can be added to resolve potential conflicts between the existing set of 
rules and the newly added set. 

Fig. 8. Grandma’s rules represented graphically. A priority is represented by an arc. The 
anticlockwise end beats the clockwise end 

5.1  Implementation and Evaluation 

The DPL model for Grandma’s helper was implemented and evaluated in a similar fashion 
to the robotic soccer models introduced earlier. Using the GUI simulator, all combinations of 
inputs were tested to verify that the response (alarm or no alarm) was consistent with the 
model’s discussion. An instance of the simulator using the complete set of rules is shown in 
Figure 9. 

The user can set the conditions as perceived by a virtual vision module. If the user changes 
the inputs, the engine attempts to prove the alarm output. The “Proof” output column for 
alarm is set to +1 if an alarm should be raised and to -1 if no alarm should be raised. An 
output of 0 would indicate that the current situation cannot be decided either way (because 
a proof always leads to loop). This cannot (and did not) occur with the given set of rules. 
The “Negation” output column shows the results of proofs of ~alarm.

Fig. 9. Evaluation of the Grandma-Alarm model in the Plausible Test GUI simulator. The 
state of the DPL inputs is set on the left side of the screen while the output (the proof 
result from the engine whether alarm should be set or not) is shown on the right 
hand side 



68  Robotic Soccer 

The same model and the DPL proof engine were then used on an ERS-7 Sony AIBO for the 
RoboCup@Home open challenge.  We used the same vision module of our robotic soccer 
code. Any person dressed in blue is easily recognized using the code that recognizes the 
blue goal, while we set the bed yellow so we reused the modules for identifying the yellow 
goal. An orange circle passes for the sun, and thus the code for the module to recognize balls 
was reused. Any other object, when visible, was perceived as a stranger. 

While most of the robotic software used for the league (such as vision, the behavior module, 
and the networking code) could be re-used some changes needed to be made to 
accommodate the Grandma scenario. A new module is introduced with the template 
method and the phases we discussed before. The template method executes every time a 
frame is ready and analyzed by vision. This new module forwards alarm signals to other 
modules (a behavior module or a network connection if an alarm takes the value true for the 
current frame). Naturally, some of the definitions must be translated into concrete detectable 
sensor information. Thus, some C++ code needs to be produced. For example, in a soccer 
game, the goal would never be expected to be in a vertical position. Since it does make a 
difference whether Grandma is standing upright or is lying in a horizontal position, a 
method was added that would determine whether the dimensions of the blue object (if 
reported as visible by the vision module) were horizontal (wider than its high) or vertical 
(higher than its width). Similarly, if both goals (i.e., both Grandma and her bed) were 
visible, C++ code needs to be added to compare their relative positions to provide the 
information whether Grandma is lying on the bed or not. C++ code needs to be added for 
the other terms defined in PL that demand information from processing sensory input. To 
determine if Grandma had been lying down for long, we developed new C++ code that 
counts the number of frames that Grandma had been seen in a horizontal position.  

6. Conclusion 

One of the most satisfying aspects of our implementation is that it has proven efficient 
enough to be running on board a Sony AIBO while in competition in the soccer 4-legged 
league or in RoboCup@Home. Table 1 shows the CPU-timings on board an ERS-7 running 
our C++ implementation with three different models and two situations. It may be 
surprising that while the robot was in the playing state, chasing the ball and executing kicks, 
the execution is faster than while standing as a goalie. However, the standing situations 
have usually on average 2 landmarks per frame. But while playing, frames with 2 objects in 
sight are less frequent. In all cases, the inference engine is executed six times per frame, to 
verify if each of the landmarks is consistent.

Model Activity Phase 1 and 
Phase 2 

95 % 
Confidence 

Interval

Phase 1, 
Phase 2, and 

Phase 3 

95 % 
Confidence 

Interval

Net Phase 3 

4 Chasing 749 µs ± 7 µs 931 µs ± 8 µs 182 µs
4 Standing 1,438 µs ± 31 µs 1,687 µs ± 35 µs 249 µs
3 Standing 407 µs ± 15 µs 622 µs ± 17 µs 215 µs
2 Standing 209 µs ± 13 µs 371 µs ± 17 µs 162 µs

Table 1. CPU-times for the 3 phases of our template method on a Sony AIBO ERS-7 



Non-monotonic Reasoning on Board a Sony AIBO  69 

7. References

Antoniou, G. (1997). Nonmonotonic Reasoning. MIT Press, Cambridge, Mass. ISBN 0-262-
01157-3.

Bartlett, B.; Estivill-Castro, V.; S., Seymon & Tourky, A. (2003). Robots for pre-orientation 
and interaction of toddlers and preschoolers who are blind. In Roberts, J. & Wyeth, 
G., editors, Proceedings of the 2003 Australasian Conference on Robotics and Automation,
Brisbane, Australian Robotics and Automation Association Inc, Queensland Centre 
for Advanced Technologies (QCAT). CD-ROM (paper 13.pdf) ISBN 0-9587583-5-2. 

Billington, D. & Rock, A. (2001). Propositional plausible logic: Introduction and 
implementation. Studia Logica, 67:243–269. ISSN 1572-8730. 

Billington, D.; Estivill-Castro, V.; Hexel, R. & Rock, A. (2005). Non-monotonic reasoning for 
localisation in robocup. In Sammut, C., editor, Australasian Conference on Robotics 
and Automation, Sydney, Australian Robotics and Automation Association. ISBN 0-
9587583-7-9.

Billington, D.; Estivill-Castro, V.; Hexel, R. & Rock, A. (2006). Using temporal consistency to 
improve robot localisation. In Lakemeyer, G. & Sklar, E., editors, International
RoboCup Symposium, Bremen, Germany, Springer-Verlag Lecture Notes in 
Computer Science. Volume 4434, pages 232-244, 2007. ISBN 978-3-540-74023-0.

Billington, D. (2005). The proof algorithms of plausible logic form a hierarchy. In Zhang, S. 
& Jarvis, R., editors, Proceedings of the 18th Australian Joint Conference on Artificial 
Intelligence, volume 3809, pages 796–799, Sydney, Australia, Springer Verlag 
Lecture Notes in Artificial Intelligence. ISBN 3-540-30462-2. 

Brooks, R.A. (1991). Intelligence without reason. In Myopoulos, R. & Reiter, R., editors, 
Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 
569–595, San Mateo, CA, ICJAI-91, Morgan Kaufmann Publishers. Sydney, 
Australia. ISBN 1-55860-160-0. 

Compton, P.J. & Jansen, R. (1990). A philosophical basis for knowledge acquisition. 
Knowledge Acquisition, 2(3):241–257. ISSN 0001-2998. 

Estivill-Castro, V. & S., Seymon. (2006). Mobile robots for an e-mail interface for people who 
are blind. In Lakemeyer, G. & Sklar, E., editors, International RoboCup Symposium,
Bremen, Germany, Springer-Verlag Lecture Notes in Computer Science. Volume 
4434, pages 338-346, 2007. ISBN 978-3-540-74023-0”.

Fox, D.; Burgard, W. & Thrun, S. (1999). Markov localization for mobile robots in dynamic 
environments. Journal of Artificial Intelligent Research, 11:391–427. ISSN 1076-9757. 

Gutmann, J.-S. & Fox, D. (2002). An experimental comparison of localization methods 
continued. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots 
and Systems, v 1, pages 454–459, Lausanne, Switzerland, IEEE. ISBN 0-7803-7398-7. 

Haemmi, R. & Hartmann, S. (2006). Modeling partially reliable information sources: A 
general approach based on Dempster-Shafer theory. Information Fusion, 7:361–379. 
ISSN 1566-2535. 

Kahney, L. (2003). The new pet craze: Robovacs. Wired Magazine. June, 16th; visited 
Septenber 10th, 2003, www.wired.com/news/technology/0,1282,59249,00.html. 

Marek, V.W. & Truszczynski, M. (1993). Nonmonotonic Logic: Context-Dependent Reasoning.



70  Robotic Soccer 

Springer Verlag, Berlin. ISBN 0387564489. 

Rich, E. & Knight, K. (1990). Artificial Intelligence. McGraw-Hill Higher Education, NY, 
second edition. ISBN 0070522634. 

Rock, Andrew. The DPL (decisive Plausible Logic) tool. Technical report, (continually) in 

preparation, available at www.cit.gu.edu.au/ , arock/.

Rock, A. & Billington, D. (2000). An implementation of propositional plausible logic. In 
Edwards, J., editor, 23rd Australasian Computer Science Conference, volume 22(1) of 
Australian Computer Science Communications, pages 204–210, Canberra, IEEE 
Computer Society, Los Alamitos. ISBN 076950518X. 

Ruiz-delSolar, J.; Loncomilla, P. & Vallejos, P. (2006). An automated refereeing and analysis 
tool for the four-legged league. In Lakemeyer, G. & Sklar, E., editors, International
RoboCup Symposium, Bremen, Germany, Springer-Verlag Lecture Notes in 
Computer Science. in press. 

Russell, S. & Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc., 
Englewood Cliffs, NJ, second edition. ISBN 0130803022. 

Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A.B.; Dellaert, F.; Fox, D.; Hahnel, D.; 
Rosenberg, C.R.; Roy, N.; Schulte, J. & Schulz, D. (1999). MINERVA: A tour-guide 
robot that learns. In KI - Kunstliche Intelligenz, 23rd Annual German Conference on 
Artificial Intelligence, volume 1701, pages 14–26. Springer Verlag Lecture Notes in 
Computer Science. ISBN 3-540-66495-5. 

Thrun, S.; Fox, D.; Burgard, W. & Dellaert, F. (2001). Robust monte carlo localization for 
mobile robots. Artificial Intelligence, 128:99–141. ISSN 0004-3702. 

van der Zant, T. & Wisspeintner, T. Robocup X; a proposal for a new league where robocup 
goes real world. www.robocupathome.org. 

Veloso, M.; Uther, W.; Fujita, M.; Asada, M. & Kitano, H. (1998). Playing soccer with legged 
robots. In Proceedings of IEEE/RSJ Intelligent Robots and Systems Conference (IROS-98),
volume 1, pages 437–442, Victoria, Canada. ISBN 0-7803-4465-0. 

Wallich, P. (2001). Mindstorms - not just a kids toy. IEEE Spectrum, pages 53–57. ISSN 0018-
9235.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. John Wiley & Sons, NY, USA. 
ISBN 047149691X. 



Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

David Billington, Vladimir Estivill-Castro, Rene Hexel and Andrew Rock (2007). Non-Monotonic Reasoning on

Board a Sony AIBO, Robotic Soccer, Pedro Lima (Ed.), ISBN: 978-3-902613-21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/non-monotonic_reasoning_on_board_a_sony_aibo



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


