
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 2

Water Stress Induced by Enrichment of Nutrient and
Climate Change Factors

Daniela Simina Stefan and Mircea Stefan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64665

Abstract

Human activities accelerate the rate of water, air, and soil environment degradation. In
this paper, we propose to present the effects of important stressors for water bodies,
represented by continuous enrichment with nutrients and climate change. Nutrients’
concentration increases especially nitrogen and phosphorus, associated with tempera‐
ture increases and extreme weather events, involve important physical, chemical, and
biological alterations of water quality. The effect of the stressors’ factors can be seen on
the main parameters which characterize water: temperature, pH, dissolved oxygen,
transparency,  chlorophyll  a,  nitrogen  and  phosphorus  compounds,  and  plankton
population. The main changes which occur in the water reservoirs consist of modifica‐
tions  of  taste  and  odor,  increased  acidification,  decreased  transparency,  oxygen
depletion,  increased  toxicity,  increased  sediments  quantity,  excessive  growth  of
phytoplankton, and macrophytes vegetation. The water quality of lakes, streams, and
estuaries can be assessed using the trophic status that can be described mainly using
limiting nutrients’ concentrations (N total, P total), primary productivity (chlorophyll
a), and Secchi disc parameters, and also the Carlson’s index that includes all of these.

Keywords: eutrophication, stress factors, nitrogen, phosphorus, climate change, tem‐
perature, dissolved oxygen, transparency, chlorophyll a, trophic status assessment,
Carlson’s index

1. Introduction

Water has a unique place on the planet as it supports life on the earth. Clean water is an important
resource for drinking, irrigation, industry, transportation, recreation, fishing, hunting, the
biodiversity support, and sheer aesthetic enjoyment.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The main water stressors are human activities reflected by nutrients’ inputs and climate change
by increasing temperature and extreme weather phenomena. Nutrients, especially phospho‐
rus and nitrogen from various sources, and increasing temperature are the major causes of
degradation of the aquatic ecosystems, namely eutrophication.

Eutrophication can be a natural process in surface waters occurring as they age through
geological time, over hundreds or thousands of years or it can be very fast when the nutrients
are present in high concentrations, due to anthropogenic activities and climate change [1, 2].

Degradation of these vital water resources (coastal areas, lakes, and reservoirs all over the
world) can be measured by the loss of natural systems, followed by the modification of the
trophic chains with their component species, and the increase in the number of individuals of
a species in preference to others [3].

It is considered one of the major forms of water stress, which is extremely variable being
influenced by the specific characteristics of sites such as nutrient stoichiometry, biodiversity,
climate-related factors (temperature, precipitation, and storming), and the basin geomorphol‐
ogy [4, 5].

The main sources of nutrients (nitrogen and phosphorus), its effect on water quality associated
with influence of climate change factors, are presented in this chapter. The stressors’ effects,
nutrients, and climate exchange were highlighted by the parameters: temperature, pH, Secchi
disc (SD) transparency, chlorophyll a (CHL), dissolved oxygen (DO), total phosphorus (TP),
total nitrogen (TN), and plankton populations. The trophic stage was assessed using temper‐
ature, limiting nutrients concentrations (N total, P total), and their ratio TN/TP, primary
productivity (chlorophyll a), and transparency (Secchi disc) parameters, and also the Carlson’s
index that includes all of these. To illustrate how one can achieve a surface water quality
evaluation was presented using the trophic status of Lake Snagov, Romania, assessment.

2. Water stressors

Human activities accelerate the degradation rate of water, air, and soil. Continuous enrichment
with nutrients and climate change are important stressors for water bodies. Increasing
nutrients’ concentrations associated with increasing temperature and extreme weather events
involve important changes in the physical, chemical, and the biological configuration of the
waters’ characteristics [6].

2.1. Nutrient inputs

2.1.1. Sources of nutrients

The mains stressors that influence the water quality and trophic chain reaction are macronu‐
trients, such as phosphorus (P), nitrogen (N), silicon (Si), and micronutrients such as potassium
(K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), and molybdenum (Mo) are also
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needed. N, P, and K are considered primary nutrients, and N and P are the major limiting
nutrients in most aquatic environments [6–8].

The nutrient inputs in natural water body by both point and disperse sources. The point
sources may be wastewater effluents (domestic and industrial)—most importantly, runoff and
leach flows from waste disposal systems, infiltrations from animal feedlots, unsewered
industrial sites runoffs, sanitary sewers overflows, runoff from constructions sites, erosion into
the lake. The most important dispersed (nonpoint) sources are leachate of synthetic and natural
fertilizes from agriculture parcels and forest, runoff and infiltration from animal feedlots,
runoffs from agriculture/irrigation, pasture and range, urban runoff from not-sewered areas,
septic tank leachates, and atmospheric deposition on water surface [1, 10].

The results of enrichment of nutrient consist in the increase of aquatic primary production and
lead to visible algal blooms causing high turbidity and increasing anoxia in the deeper parts,
thus increasing the acidity and the modified aquatic ecosystems [9–11]. All these involve the
water quality deterioration, drinking water treatment problems, and decrease in the perceived
aesthetic value of the water body. The physical and chemical properties of the water influence
the distribution and trophic dynamics in the water body. Depending on the content of nutrient
and the production of organic materials, the water can have a trophic (degradation) level lower
or higher.

2.1.2. Water trophic level classification

According to the content of mineral nutrients, and the effect of these on primary production,
the trophic level classifications of water can be characterized using the terms as follows [12–14]:

- oligotrophic, poor in nutrients (nitrogen, phosphor)—nutrient deficient, small production of
organic matter—primary production (amount of organic carbon produced by photosynthesis),
clear waters, well illuminated, well oxygenated, low algae production, diatoms predominant;

- mesotrophic, medium levels of nutrients, intermediate level of primary production, clear
water, and ponds with beds of submerged aquatic plants;

- eutrophic, more nutrients, primary production, and higher organic compounds, the oxygen
concentration decreases with depths and the deep water layer is anoxic during summer,
development of microalgae and cyanobacteria, weak illuminated due to microalgae bloom;

- hypertrophic, greatly excessive nutrient inputs, excessive primary production, the oxygen
concentration decreases with depths and the deep water layer is anoxic, slow illuminated,
higher turbidity, fish killing possible in summer and under winter ice.

2.2. Climate change

2.2.1. Introduction

Both natural and human factors change the earth’s climate. The natural factors which cause
the changes in climate are the modifications in the earth’s orbit, alterations in the solar activity,
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or volcanic eruptions. Since the Industrial Revolution began around 1750, human activities
have contributed substantially to climate change by adding greenhouse gas emissions
including water vapors (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and
several others which have caused the earth’s surface temperature to rise. Atmospheric CO2

concentrations have increased by more than 40% since preindustrial times, from approxi‐
mately 280 parts per million by volume (ppmv) in the eighteenth century to 396 ppmv in 2013.
Figure 1 shows the variations of the atmospheric CO2, CH4, N2O per year [7, 16].

Figure 1. Atmospheric CO2, CH4, N2O variations per year [7].

2.2.2. Effect of climate change

Freshwater resources are vulnerable to climate change; warming of the climate system
increases global average air and influences the hydrological cycle [17]. Climate change
associated with the water cycle (Figure 2) includes water body and land temperature increase
[18], accelerated glaciers melting, decreasing the surface of water and land occupied with
snow, increased evaporation and level of lakes water reduction, increased level of coastal
marine and ocean and inundation, wetland loss by sea level rise, changes in the seasonal
distribution and amount of precipitation, increasing precipitation intensity sometimes as
extreme weather—storms, changes in the balance between snow and rain, increasing nutrients’
concentration by soil washing and soil erosion [19], increasing acidity in rivers, lakes, seas, and
oceans [20]. Figure 2 shows the conceptual diagram visualizing the main components of
climate change and their major effects on freshwaters [21].

Waters with similar effect filters, however, should respond similar to climate variability.
Hydrodynamic patterns are influenced largely by the depth and size of the lake affecting the
annual heat budget, temperature stratification during summer and winter, the concentration
of oxygen in the hypolimnion, salt solubility, and availability of nutrients. The retention time
(a factor depending on morphometry and through-flow) determines if internal or external
processes dominate.
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Figure 2. Conceptual diagram visualizing the main components of climate change and their major impacts on freshwa‐
ters [21].

Warming of the atmosphere will lead to warmer and wetter winters, and hotter and drier
summers. Large quantities of precipitation are expected in winter and spring which will come
down as rain rather than snow. The flow regime in stream and rivers changes reaching the
maximum flow faster than usual. Larger runoffs combined with more frequent extreme
rainfalls may result in floods, increased erosion, and wash out of nutrients, which ultimately
lead to the eutrophication of rivers and lakes.

In subtropical and tropical regions, storms and floods occur during rainy seasons. In temperate
zones, the summer temperatures increase, the stream and river flow decrease, and the period
of thermal stratification extends. In the warmer lakes, the oxygen is less available because the
solubility of this element declines with increasing temperature. Decreasing oxygen concen‐
tration with increasing temperature and increasing the decomposition rates of organic
compounds will increase the consumption of oxygen, which may lead to deoxygenating in
deeper parts of lakes. In glaciated regions, the discharge will first increase due to more melt
water and later decrease when glaciers have disappeared [19, 22, 23].

3. Stressors’ effect on eutrophication characteristics parameters

The stressors’ effects can be well highlighted by the mains parameters: temperature, pH, Secchi
disc transparency (SD), chlorophyll a (CHL), dissolved oxygen (DO), total phosphorus (TP),
total nitrogen (TN), and plankton populations [24].

3.1. Temperature and aquatic stratification

Usually, the atmospheric temperature influences the temperature of natural water bodies and
these two together depend on the geographical location and meteorological conditions
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(rainfall, humidity, wind velocity, etc.). The water temperature varies with depths, at the
surface the temperature is higher than at greater depths, a phenomenon known as aquatic
stratification. The water temperature influences the chemical, physical, and biological proc‐
esses. Gas solubility decreases with increase in temperature, and biochemical activity doubles
every 10°C of temperature increase. Thus, this kind of heating may cause a thermal impact on
receiving water bodies and may influence the whole native community [25, 26].

Figure 3. Temperate lakes are thermally stratified in the summer but mix each spring and autumn [28].

Because the lakes and reservoirs are deep enough, they stratify, generating “layers” of water
with different physical characteristics. The large differences in density between layers of water
determine thermal stratification. The density is influenced by temperature, so at about 3.98 °C
the water is most dense (heaviest). The water stratification is seasonal. In the spring time, in
temperate climates, immediately after the ice melts, the surface water beings to warm to 0°C.
The increasing density of the warming water along with wind cause this surface water to sink
and mix with the deeper water, a process called spring turnover. In this period, the water
column is cold and has approximately the same temperature (Figure 3). During the late spring
and summer, the sunlight is absorbed in the water column, heating up with the air average
daily temperature increases. In the absence of wind, temperature decreases exponentially with
the depth. The lake is now stratified into three layers of water, termed summer stratification.
The upper layer, called the epilimnion zone, is in contact with the atmosphere and seasonal
climate factors variations, is warm, well-mixed, has a higher pH and higher dissolved oxygen.
The thermocline is a plane where the greatest water temperature changes and is very resistant
to wind mixing. Hypolimnion starts beneath the metalimnion, extending to the lake bottom,
is the coldest layer of a lake in summer, and the warmest layer during winter, usually dark,
receives insufficient irradiance (light) for photosynthesis to occur and relatively undisturbed.
In deep, temperate lakes, the bottom-most waters of the hypolimnion are typically close to 4°C
throughout the year [26, 27].
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Epilimnion is cooling down during autumn when decreasing the difference of the density to
the hypolimnion. When the temperature of surface and bottom waters and density are
approximately the same, winds can mix the entire lake. In winter, the surface water is cooling
until it freezes; thus it appears less distinct density stratification because the density difference
between 0 and 4°C water is quite small; most of the water column is isothermal at a temperature
of 4°C, which is denser than the colder, lighter water just below the ice [26, 29].

Blue-green algae tend to dominate warmer waters while green algae do better under cooler
conditions. The toxicity of unionized ammonia is also related to warmer temperatures [30].
The maximum specific growth rate is in the range 5–40°C for members of the Chlorophyta and
Bacillariophyta [31]. The optimal temperature for phytoplankton cultures is generally between
20 and 24°C, most commonly cultured species of microalgae tolerate temperatures between
16 and 27°C [32].

3.2. pH

The pH value is a measure of water acidity or alkalinity and the number expresses the
concentration of hydrogen ions indirectly and is expressed to the pH scale (measured on a
scale of 0–14). Water pH changes are governed by the amount of free CO2, carbonates, and
bicarbonates and are accompanied by the changes in other physicochemical aspects that in
turn influence the quality of water. Algal and macrophytes mass increase by the photosyn‐
thesis act, the CO2 increase, in dissolved state, as results of the respiration processes and
decomposition of organic matter, reduce the pH [33].

2 2 2 3CO  H O H CO+ « (1)

– +
2 3 3H CO HCO  H« + (2)

– 2  +
3 3HCO CO  H-« + (3)

The buffering system CO2/HCO3
− /CO3

2− maintains pH around the neutral level. Depending
on the current pH level operates these equations in both directions. When pH increases Eqs.
(2) and (3) shift to the right.

The presence of high alkalinity (>100 mg/l) represents considerable buffering capacity and
reduces the effects of both photosynthesis and decay in producing large fluctuations in the pH
[30].

A minor change in the pH of water determines increasing solubility of phosphorus and other
nutrients—making them more available for plants. Increasing accessible nutrients’ quantity,
determine increasing demand for dissolved oxygen and creates a eutrophic lake where other
organisms living in the water become stressed.
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The properly pH range for most fish is between 6.0 and 9.0 with a minimum alkalinity of 20
mg/l, with ideal CaCO3 levels between 75 and 200 mg/l, the pH range for most cultured algal
species is between 7 and 9, with the optimum range being 8.2−8.7 [20, 32, 33].

In acidic waters’ conditions, only some plants and animals survive. Generally, the younger
exemplars of most species are more sensitive to environmental changes. Figure 4 shows the
minimum pH level for different species of fish, shellfish, or the insects which they can tolerate
the same amount of acid; for example, frogs can tolerate water that is more acidic (i.e., has a
lower pH) than trout [20].

Figure 4. Recommended minimum pH level to survive for different species of aquatic organisms [20, 33].

3.3. Dissolved oxygen

Dissolved oxygen refers to the level of free, noncompound oxygen present in water. Dissolved
oxygen concentration is affected by diffusion and aeration, photosynthesis, respiration, and
decomposition. The source of the oxygen in the water is the dissolved oxygen from the air and
the primary production (photosynthesis process). Depending on the atmospheric conditions,
the oxygen enters the water slowly, diffuses quickly by aeration caused by wind, rapid
waterfalls, groundwater, etc. The atmospheric temperature and implicit water temperature
influence the water oxygen content, and the dissolved oxygen concentrations decrease as
temperature increases.
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The consumption of oxygen in the lake is the result of two processes: the oxidative and
biochemical decomposition processes and respiration (animals, plants, and microbes consume
oxygen). The dissolved organic matter is oxidized and the oxygen is taken up by purely
chemical oxidation, photochemical oxidation by UV light [25].

Daily and seasonal fluctuations in DO may occur in response to algal and bacterial action. The
biological activity increases during the spring, summer, and fall when the photosynthetic
activity is high. During the summer and winter, most lakes in the temperate climate are
stratified. The combination of thermal stratification and biological activity causes patterns in
the water chemistry. The major zones of the lake in relating with oxygen concentration and
biological activity are the following [35]:

- The trophogenic zone—the upper stratum of a lake in which photosynthetic production
predominates;

- The tropholytic zone—the aphotic deep stratum of a lake where decomposition of organic
matter predominates;

- The photic zone—the upper stratum of a lake which receives light input (greater than 1% of
surface radiation);

- The aphotic zone—the lower stratum of a lake in which there is no light (less than 1% of
surface radiation).

The dissolved concentration varies by season and depth. At turnover (both spring and fall),
the O2 in the water is near 100 % saturation (12–13 mg/l at 4°C at sea level pressure).

During summer stratification, in an oligotrophic lake, the oxygen concentration at depth is
influenced by physical processes. The absolute concentration of oxygen decreases in the
warmer waters (epilimnion) and increases in the cooler waters (metalimnion and hypolimn‐
ion). In a eutrophic lake, the oxygen concentration at depth is influenced by biological
processes; the oxidative processes (decomposition and respiration) result in the consumption
of oxygen (the dissolved organic matter is oxidized and the oxygen is taken up by purely
chemical oxidation, photochemical oxidation by UV light) and the production of oxygen by
photosynthesis (primary production):

2 2 6 l2 6 26CO  6H O C H O  6O+ ® + (4)

Circulation (mixing) and primary production in the epilimnion maintain the oxygen at near
100% saturation. Oxidative consumption reduces the oxygen concentrations in the hypolimn‐
ion and the oxygen concentrations have less than 100% saturation [35].

Figure 5 shows the variation of temperature and DO with season and depth in lake water. The
amount of dissolved oxygen needed varies from creature to creature. Salmon cannot reproduce
at a pH levels below 6 mg/l [36]. Coastal fish avoid areas where the DO is below 3.7 mg/l.
Bottom feeders, crabs, oysters, and worms need minimal amounts of oxygen (1–6 mg/l), while
shallow water fish need higher levels (4–15 mg/l) [37].
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Figure 5. Seasonal fluctuation of temperature and DO with depth [34].

At low concentration of dissolved oxygen, major changes in the types and amounts of aquatic
organisms found living in the water can occur. Species such as fish, mayfly nymphs, stonefly
nymphs, caddis fly larvae, pike, trout, and bass that need high concentrations of dissolved
oxygen will move out or die. They will be replaced by organisms such as sludge worms,
blackfly larvae, and leeches which can tolerate lower dissolved oxygen concentrations. Such
phenomena usually occur in late summer, when the temperature is high, the DO low, the rate
of photosynthesis is intense, and water transparency is low. A fish which is under stress caused
by low oxygen levels in the water is more susceptible to poisoning by insecticides or heavy
metals, which can be mobilized under reducing conditions [37, 38].

During winter when water is covered by ice the diffusion of oxygen from the atmosphere in
the water cannot be realized and fish, plant, and other organism consumption is greater than
the oxygen production by photosynthesis. If the frozen water is covered by snow, the light
cannot penetrate and photosynthesis also cannot occur. In this circumstance, the microorgan‐
isms, fish, plants, and decomposition that consume the oxygen will kill [39].

3.4. Transparency

Secchi depth is the most commonly used method to determine the water transparency (clarity).
Water transparency determines the depth of the photic zone and consequently affects the lower
limit of light penetration which influences the primary productivity of a lake. Changes in water
transparency are determined of suspended sediments: inorganic particulates and colloidal
organic matter, humic and fulvic acids, phytoplankton (free-floating algae), and zooplankton.
Algae are often the dominant influence on the transparency of lake water [40, 41].

For lakes’ trophic state evaluation, the Secchi disc transparency parameter will be associated
with another like chlorophyll a, and phosphorus concentration [12].

Water Stress in Plants24



3.5. Nitrogen compounds

Nitrogen is one macronutrient, which is very important for the primary production in the
water body. Nitrogen is a dietary requirement for all organisms, because it is a constituent of
all proteins and nucleic acids. Plants consist of approximately 7.5% nitrogen (dry mass).

Depending on water properties, various inorganic nitrogen compounds may be found.
Nitrogen is mainly present as N2, NO3

−, HNO2, NO2
−, or HNO3 in aerobic conditions and as

N2O, NH3, and NH4
+. Ammonium, nitrate, and nitrite have the most important role in bio‐

chemical processes. Organic nitrogen includes protein, amino acids, urea, and methylamines
[1, 3]. The sum of all quantities of nitrogen contained in organic and inorganic compounds is
defined as total nitrogen (TN). Total Kjeldahl nitrogen (TKN) represents the sum of the
quantities of nitrogen contained in organic compounds and ammonium nitrogen (TKN = org-
N + NH4-N [mg/l]). For wastewater, Kjeldahl nitrogen is used as a measure.

The main sources of nitrogen in the water are natural and anthropogenic. The discharge of
nitrogen is provided by agriculture from the leachate of fertilizers from the agricultural and
natural soil, which mainly contain nitrate, ammonia, urea, and amines and various pesticides,
industry (pharmaceutical, alimentary, explosives, dyes, fertilizers, etc.), domestic wastewater
(detergents, metabolic human products, etc.), food processing, and atmospheric deposition
(Figure 6) [1, 42].

Nitrogen is a biological inert gas. The excess of N2 in the water (supersaturations at over 110%)
affects several fishes species, causing "gas embolism" or the gas bubble disease.

Ammonia is important as the predominant excretory product of aquatic animals, through the
NH3 excreted directly and also by the degradation of the fecal matter, and uneaten feed. Several
types of fishes are affected by ammonia at levels higher than 0.1 mg/l. Carps and tilapias can
withstand to concentrations of ammonia higher than 3–4 mg/l.

Nitrite (intermediary between ammonium and nitrate) is only present in smaller quantities in
natural waters. The NO2 combines with hemoglobin and forms methemoglobin, causing the
brown coloration of blood, being toxic to fish [44]. The presence of chloride ions and calcium
inhibits the nitrite toxicity [45]. NO2 concentration in hard fresh water pond in fish culture
should not exceed 0.1 mg NO2-N/l, and in seawater, 1.0 mg NO2-N/l. Nitrate is the major form
of nitrogen used by phytoplankton; no toxic effects to fish have been reported at nitrate level
below 100 mg NO3-N/l [47].

Nitrate (NO3-N) and ammonia (NH4-N) concentrations are highly variable during the lake
seasonal cycles. For deep stratified lakes, nitrate is higher during mixing events and usually
decreases in late summer and fall. NH4-N is generated by heterotrophic bacteria as the primary
nitrogenous end product of the organic matter decomposition, and is readily assimilated by
plants in the trophogenic zone [35]. NH4-N concentrations are usually low in oxygenated
waters of oligo- to mesotrophic deep lakes because it is nitrified. At lower dissolved oxygen
values, nitrification of ammonia ceases and higher amounts of NH4-N from the sediments are
released [48].
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Figure 6. Distribution on depth of the ammonia, nitrate, nitrite, redox potential, and temperature in a temperate lake
[43].

3.6. Phosphorus compounds

Phosphorus is one very important macronutrient, which limits the primary production in
freshwater. Though phosphorus is the 11th most abundant mineral in the earth’s crust, it does
not exist in a gaseous state. Phosphorus (P) is an essential nutrient for life, playing a role in the
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), adenosine diphosphate (ADP), and
adenosine triphosphate (ATP).

Figure 7. Natural phosphorus cycling between the source, terrestrial, and aquatic ecosystems [6].
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The phosphorus in the natural water body is provided by anthropogenic (industrial and
agricultural sources) and natural sources. The phosphorus increase is caused by domestic
wastewater (detergents and soaps, pesticides, food wastes, and human metabolic waste) [49,
50], food processing industries (meat, vegetable, and cheese processing) [51], distillery,
synthetic and natural (cow dung, pig dung, and poultry manure) fertilizers used in agroeco‐
system [52], agricultural runoff and domestic sewage, phosphate mines [53], and it is very
slow, being largely insoluble from mineral matter of rocks (Figure 7) [4].

The quantities of phosphorus entering the surface drainage vary with the amount of phos‐
phorus in catchment soils, topography, vegetative cover, quantity and duration of runoff flow,
land use, and pollution.

The total phosphorus in aquatic systems, occurs in three forms: inorganic phosphorus
(orthophosphate and polyphosphate), particulate organic phosphorus, and dissolved organic
phosphorus (soluble and insoluble). The dissolved phase includes inorganic phosphorus,
organic phosphorus excreted by organisms, and macromolecular colloidal phosphorus.

Particulate matter includes living and dead plankton, precipitates of phosphorus, phosphorus
adsorbed to particulates, and amorphous phosphorus [54]. Total phosphorus concentrations
greater than 30μg/l cause algal blooms in lakes and reservoirs.

Aquatic plants require inorganic phosphate, orthophosphate ions (PO4
3−) for nutrition [55].

This form of phosphate is transferred to consumers and decomposes as organic phosphate
soluble and insoluble [35].

The deposition of phosphorus into lake sediments occurs by mechanisms such as:

a. sedimentation of phosphorus minerals imported from the drainage basin;

b. adsorption or precipitation of phosphorus with inorganic compounds;

c. uptake of phosphorus from the water column by algal and other attached microbial
communities [56].

3.7. Total nitrogen to total phosphorus ratio, TN/TP (redfield ratio)

Nitrogen and phosphorus are two nutrients, which are necessary for microorganism’s growth.
The nitrogen can be present in three species: nitrate, nitrite, and ammonia, all species are highly
soluble in aquatic environment. If nitrogen is in low concentration, the microorganisms can
use the nitrogen from atmosphere; also the nitrogen cannot be limited in aquatic systems. The
phosphorus is most important nutrient after nitrogen, its concentration controls the plants
growth, and it can be easily uptake by precipitation. The total nitrogen to total phosphorus
ratio parameter indicates the stage of plant growth [57, 58].

The ratio of nitrogen:phosphorus 10:1 is ideal for aquatic plant growth, the ratio higher than
10:1 indicates phosphorus limited systems; and nitrate accumulates in abundance in water and
the ratio less than 10:1, nitrogen limited systems; nitrate will be used soon as input in the water
body [30, 38, 59].
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3.8. Chlorophyll a (CHL)

Chlorophyll a is used as a trophic state indicator. It indicates the ratio between planktonic
primary production and algal biomass. The algal biomass generates the main problems
resulting from eutrophication. It is easier to measure the value of CHL, the algal biomass.
Chlorophyll a presents a great variability of the cellular chlorophyll content (0.1–9.7% of fresh
algal weight), which is influenced by algal types. Seasonally, a great variability in individual
cases can be expected due to composition of species, nutrient availability, and light conditions
[3, 61].

3.9. Plankton populations

The general effect of eutrophication on the trophic chain consists of excessive growth phyto‐
plankton and macrophytes vegetation, shift to bloom-forming algal species, which might be
toxic or inedible, green or brown coloration of the water, increase in the biomass of benthic
and epiphytic algae, change in the species composition of macrophytes vegetation, increase of
consumer species biomass, increase of fish killing incidence, reduction in species diversity
especially macrophytes, frequent occurrence of low dissolved oxygen events (particularly
overnight), large pH changes [6, 14].

The major consequence of eutrophication concerns is oxygen availability. By daylight,
photosynthesis phytoplankton produces oxygen and biomass and at night, organisms (animal
and plants) and microorganisms by respiration and microorganisms by aerobic decomposing
(oxidation) of the dead biomass, consume the oxygen. When the all oxygen will be consumed
the oxygen from the sulfate will be used by the anoxic bacteria, will release sulfur which will
capture the free oxygen still present in the upper layers and in the deep layer there will be
accumulated hydrogen sulfite, which has the smell of rotten eggs.

The changes in the water will lead to important changes in the plankton population. Macro‐
algae, phytoplankton (diatoms, dinoflagellates, chlorophytes), and cyanobacteria (blue/green
algae) will experience excessive growth; some of these organisms can release toxins in the
water and be toxic themselves. Gelatinous aggregation that floating on the water surface can
be produced by blue-green algae and diatoms. In 1982 and 1983, large amounts of gelatinous
aggregations were observed on the Aegean Sea [62].

Macroalgal proliferations, the massive developments in spring and summer, also called green
tides, are repeatedly observed in the marine environment. The species implicated are fre‐
quently from the genus Ulva, Monostroma, Enteromorpha, Elodea Myrisphyllus in fresh
waters, Chaetomorpha, and Cladophora. The increasing amount of these type of macroalgae
determine the decreasing amount of much more interesting species for biodiversity (autoch‐
thonous long-living) such as Fucus. Accumulation of large amounts of these species on beaches
can induce numerous nuisances including odor, making it impossible to be used [63].

Most sensitive to oxygen availability, the zooplankton (fish and shellfish, animals with and
without limited active locomotion, etc.) may die in oxygen limitation or in water with excessive
alkalinity (intense photosynthesis), or toxicity from dangerous metabolic produces (cyano‐
toxins) or cells themselves of cyanobacteria and other microorganisms.
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Humans or animals may be exposed to toxins through the consumption of contaminated
drinking water, direct contact with fresh water or the inhalation of aerosols. Toxic compounds
can be found free in the water or are cells bound. The normal processes used in treating water
for drinking purposes are not efficient so as to remove the free toxins from the water.

Toxins induce damage in animals and humans by acting at the molecular level and conse‐
quently affecting cells, tissues, and organs. The main toxin groups include hepatotoxins,
neurotoxins, and dermatotoxins, which produce the cyclic peptides, alkaloids, and lipopoly‐
saccharides. The nervous, digestive, respiratory, and cutaneous system may be affected [63].

The symptoms observed on mice using acute doses of hepatotoxins are liver injury and death
from liver hemorrhage and cardiac failure within a few hours of exposure. Chronic exposure
induces liver injury and promotes the growth of tumors, and cancer. The species of microor‐
ganisms that cause the toxic effect are Microcystis, Schizotrix, Plectonema Phormidium,
Lyngbia, Cylindrospermopsis raciborskii, Anabaena, Planktothrix agardhii, Aphanizomenon,
Oscillatoria, and Spirula.

Neurotoxins affect the mice and aquatic birds by causing death in a few minutes through
respiration arrest. Anabaena, Oscillatoria, Aphanizomenon, Lyngbia are the species respon‐
sible for neurotoxins production. Dermatotoxins induce irritant and allergic response in tissues
by contact. Lyngbia, Schizothrix, Oscillatoria are most important species which produce the
dermatotoxins.

In marine water, over 40 algal species produce the toxins the most important microalgae;
Dinophysis, Alexandrium, Gymnodinium, Prorocentrum, Pseudonitzschia (diatoms) are
frequently observed and represent a risk for seafood consumers.

The effects include [63]:

- Amnesic shellfish poisoning (ASP), mental confusion and loss of memory, disorientation,
and coma;

- Neurotoxic shellfish poisoning (NSP), muscular paralysis, state of shock, and sometimes
death;

- Venerupin shellfish poisoning (VSP). Intoxication leads to gastrointestinal, nervous, hemor‐
rhagic, hepatic symptoms and in extreme cases delirium and hepatic coma.

4. The trophic status assessment

4.1. Simple lake characterizations

Trophic state of a lake can be determined by simply observing its basic characteristics (Table
1). More profound approaches of trophic state require analysis of key parameters such as
phosphorus, nitrogen, chlorophyll a, and Secchi depth [65–68]. Table 1 shows the trophic state
classification based on simple lake characterization [69, 70].
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Characteristic Eutrophic state
Oligotrophic Eutrophic

Total aquatic plant
production

Low High

Number of algae
species

Many Few

Characteristic
algae groups

Parse Abundant

Oxygen in
hypolimnion

Present Absent

Characteristic fish Deep-dwelling cold water fish such
as trout, salmon, and cisco

Surface-dwelling, warm water fish such as
pike, perch, and bass; also bottom-dwellers such as
catfish and carp

Secchi depth 7.5 m 1.5 m

Table 1. Trophic state classification based on simple lake characteristics [69].

4.2. Trophic state per nutrients, primary productivity and Secchi disc parameters

Ecosystems can be described at different trophic states using grow-limiting nutrients, primary
productivity and Secchi disc parameters. Table 2 shows the average characteristics of lakes,
streams, and coastal marine waters of different trophic states.

Water body Tropic state TN, mg m−3 TP, mg m−3 CHL, mg m−3 SD, m
Lakes Oligotrophic <350 <10 <3.5 >4

Mesotrophic 350–650 10–30 3.5–9 2–4

Eutrophic 650–1200 30–100 9–25 1–2

Hypertrophic >1200 >100 >25 <1

Suspended CHL, mg m−3 Benthic CHL, mg m−3

Streams Oligotrophic <700 <25 <10 <20

Mesotrophic 700–1500 25–75 10–30 20–70

Eutrophic >1200 >75 >30 >70

Suspended CHL, mg m−3 SD, m

Streams Oligotrophic <260 <10 <1 >6

Mesotrophic 260–350 10–30 1–3 3–6

Eutrophic 350–400 30–40 3–5 1.5–3

Hypertrophic >400 >40 >5 <1.5

Table 2. Average characteristics of lakes [66], streams [67], and coastal marine waters [68] of different trophic states
[13].

To increase the efficiency of a lake management program is used a more sophisticate trophic
state index to provide more and complete information about the water state. The characteri‐
zation of trophic status has been conducted using the following: the Carlson’s trophic state
index, the TSI (Carlson’s index).
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4.3. Carlson’s trophic state index

The trophic state is an absolute scale which describes the biological condition of the water
body. The trophic state (TSI) is defined as the total weight of living biological material
(biomass) in a water body at a specific location and time, a biological response to forcing
factors such as nutrient additions [71]. The TSI is the interrelationship between the varia‐
bles which can be used to identify certain conditions in the lake which are related to the
factors limiting the phytoplankton biomass [72]. The effect of nutrients is modified by factors
such as season, grazing, mixing depth, etc. For characterizing the trophic state of lakes
independent of climate exchange, there were defined the trophic state index (TSI)—
Carlson’s index Secchi depth, chlorophyll a, and total phosphorus; these are three varia‐
bles which can therefore be used to classify the water body [73]. Three linear regression
models are used to calculate the trophic state index and the classified water body: the Secchi
disk, TSI(SD); chlorophyll pigments, TSI(CHL); and total phosphorus, TSI(TP). The simpli‐
fied equation used is presented below [73]:

( ) ( )TSI SD  = 60 14.41 ln SD- (5)

( ) ( )TSI CHL  = 9.81 ln CHL   30.6+ (6)

( ) ( )TSI TP  = 14.42 ln TP  + 4.15 (7)

where TSI(SD) is the trophic state index depending on the Secchi depth, the values of SD is in
meters;

TSI(CHL) is the trophic state index depending on the chlorophyll a concentration, CHL (μg/l);
TSI(TP) is the trophic state index depending on the total phosphorus concentration, TP (μg/l).

Parameter Oligotrophic Mesotrophic Eutrophic Hypertrophic

Transparency (Secchi depth), SD, m >4 2–4 2–0.5 0.5–0.25

Total phosphorus, TP, μg/l <12 12–24 24–96 96–389

Chlorophyll, CHL, μg/l <2.6 2.6–20 20–56 56–155

TSI 30–40 40–50 50–70 >80

Table 3. Assessment criteria for lake Trophic status (SD, TP, CHL, TSI) [9].

More used is the averaging TSI value, which characterizes the central tendency of the trophic
state [73–75]. Table 3 shows the assessment criteria for the lake trophic status regarding the
averaging TSI, the Secchi depth, chlorophyll a, and total phosphorus concentration [8].
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TSI values Trophic status Attributes

<30 Oligotrophic Clear water, oxygen throughout the year in the hypolimnion

30–40 Oligotrophic A lake will still exhibit oligotrophy, but some shallower lakes

will become anoxic during the summer

40–50 Mesotrophic Water moderately clear, but increasing probability of anoxia

during the summer

50–60 Eutrophic Decreased transparency, warm-water fisheries only

60–70 Eutrophic Dominance of blue-green algae, algal scum probable, extensive

macrophyte problems

70–80 Hypereutrophic Heavy algal blooms possible throughout the summer

>80 Hypereutrophic Algal scum, summer fish killing, few macrophytes

Table 4. Carlson’s trophic state index values and classification of lakes [76].

TSI results could be analyzed using Carlson’s scale. This is divided into four steps regarding
lake productivity: oligotrophic (least productive), mesotrophic (moderately productive);
eutrophic (very productive), and hypereutrophic (extremely productive). In natural condition
at largely variation of meteorological parameters, a simple interpretation of trophic state of
lake water is not enough.

Figure 8. A representation of possible explanations of deviations of the trophic [74].
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For complex characterization of natural water must to account of systematic deviations of the
simple presentation like in Table 4, reported of Carlson in 1992. Figure 8 illustrates the
deviations of TSI(CHL) − TSI(TP) and TSI(CHL) − TSI(SD), and are simultaneously plotted on
a single graph, that completes the interpretation of trophic state of natural water. The possi‐
bilities are illustrated in Figure 8 [74]

4.4. Case study: Snagov Lake trophic stage assessment

The Snagov Lake is a natural lake located at 25–30 km North from Bucharest, in Ilfov County,
Romania. It is an important natural lagoon on the inferior Ialomita river course with its 5.75
km2 surface, 16 km length, and 9 m maximum depth, it is included in national patrimony as
natural reservation (Figure 9).

The lake water sources are the underground waters and in small part snow and rain waters.
As consequence, the water level is relatively constant except in winter and autumn [77].

Samples were collected in 2015 during three annual campaigns: April, July, and October. The
duplicate of samples were collected from three sampling points than were chosen to monitor
the Snagov Lake: input of Lake-Antena Tancabesti, middle of lake—Complex Pacea and
output of lake Santu Floresti (Figure 9).

Figure 9. Sampling sites to Snagov Lake: input-Antena Tancabesti, middle-Complex Pacea, and output-Santu Floresti
[74].
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There were analyzed temperature (T), pH, transparency Secchi depth (SD), total nitrogen (TN),
total phosphorus (TP), chlorophyll a (CHL), dissolved oxygen (DO), turbidity (Tr), total
suspended matter (Ts) (Table 5).

We calculated the trophic state index (Carlson’s index), TSI(SD), TSI(CHL), and TSI(TP) using
Eqs. (5)–(7) and there average values TSI and using Figure 7 and Table 4 the state of lake was
characterized. Table 6 shows the characterization of Snagov Lake in time in sampling points.

Table 6 shows the evolution of water quality of Snagov Lake in time and in space, at input
loaded with nutrient in organic and inorganic matter like smaller particles that involve an
excessive development of algae and inorganic matter sedimentation in the middle zone of lake
until output when the biological activity slowly decreasing and water quality is slightly
improvement, all of this in the eutrophic-hypertrophic state of lake. With this evaluation
system can identify the status of the lake and can take necessary measures to improve water
quality.

Parameter Input Antena Tancabest Middle Complex Pacea Output Santu Floresti

Data Data Data

April July October April July October April July October

T, °C 15 29 16 14 28 17 16 29 16

pH 8.4 8.7 7.9 8.3 7,86 7.74 8,5 8,1 7,6

Ts, mg/l, 21.6 32.2 60.8 21.6 19.6 55.2 23.4 40.2 45.2

SD, m 0.5 0.5 0.5 0.8 0.9 0.9 2 0.45 0.9

Tr, NTU 10 51 32 10.9 5.5 11 18 45 8

DO, mg/l 14.8 21.1 16.8 8.7 10.9 9.4 11.0 9.3 11.5

TN, mg/l 1.7 1.99 0.43 1.47 1.41 0.37 1.85 1.9 0.37

TP, mg/l 0.14 0.23 0.09 0.08 0.14 0.05 0.14 0.08 0.06

TN/TP 12 8.7 4.8 18.8 10.1 7.4 13.2 13.8 6.2

CHL, μg/l 2.4 65.2 58.5 3.6 28.4 22.9 2.37 23.5 11.7

TSI(SD) 70 70 70 63.2 61.5 61.5 50 71.5 61.5

TSI(TP) 75.7 82.5 68.2 67.3 75.4 60.6 75.4 67.3 63.2

TSI(CHL) 39 71.6 69.4 43.2 63.4 61.3 53.8 61.6 54.7

TSI 61.6 74.7 69.2 57.9 66.7 61.1 60 66.8 60

Table 5. Average parameter values for Snagov Lake characterization.
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Data Sampling

point

TSI Relation

between

TSI

variables

Eutrophic

stage

Attributes

April Input of

lake

61.6  TSI(TP) >

TSI(SD) >

TSI(CHL)

Eutrophic Nonalgal and algal turbidity, smaller particles

predominate, temperature lower that optimum

temperature of algal growth, close to optimal

ratio TN/TP

Middle of

lake

57.9 TSI(TP) >

TSI(SD) >

TSI(CHL)

Eutrophic Algal and nonalgal turbidity, lower boundary of classical

eutrophy decreased transparency, temperature lower

that optimum temperature of algal growth

Output of

lake

60 TSI(TP) >

TSI(CHL) >

TSI(SD)

Eutrophic Dominance of blue-green algae, algal scum probable,

extensive macrophyte problems, temperature lower that

optimum temperature of algal growth

July Input of

lake

74.7 TSI(TP) >

TSI(CHL) >

TSI(SD)

Hypertrophic Algal bloom, large particulates dominate, light limited

productivity, dense algae, and macrophytes, weak nitrogen

deficiency, optimum temperature of algal growth

Middle of

lake

66.7 TSI(TP) >

TSI(CHL) >

TSI(SD)

Eutrophy Predominant blue green algae, algae turbidity, larger

particles predominant, optimum ratio TN/TP, optimum

temperature of algal growth

Output of

lake

66.8 TSI(SD) >

TSI(TP) >

TSI(CHL)

Eutrophic Algal and non-algal turbidity, smaller particles

predominate, slow phosphorus limitation

of algal growth, optimum temperature of algal

growth, nitrogen limitation

October Input of

lake

69.2 TSI(SD) =

TSI(CHL) >

TSI(TP)

Eutrophic-

Hipereutrophic

Blue-green algae dominate, light attenuation,

zooplankton grazing or toxics limit algal

biomass, algae death, large particles predominate,

nitrogen limitation

Middle of

lake

61.1 TSI(SD) =

TSI(CHL) >

TSI(TP)

Eutrophic Dominance of blue-green algae, algal scum

probable, extensive macrophyte problems, nitrogen

limitation

Output of

lake

60 TSI(TP) >

TSI(SD) >

TSI(CHL)

Eutrophic Algal and nonalgal turbidity, smaller particles predominate,

nitrogen limit the algae development Temperature

lower than optimum temperature of

algal growth

Table 6. Values of trophic state index (TSI) (Carlson’s index), the state of lake, and characterization of it to input of lake
Antena Tâncăbeşti, middle of Lake Complex Pacea, and output of lake Santu Floresti.
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5. Conclusions

Continuous enrichment with nutrients from anthropic sources and enhanced by climate
change are important stressors for water bodies. Increasing nutrients concentrations especially
nitrogen and phosphorus by anthropogenic sources and extreme weather events, associated
with increasing temperature involve important physical, chemical, and biological alterations
of water quality. The Carlson’s trophic index and its systematic deviations, the TN/TP ratio,
and temperature can offer the information regarding trophic state of lake and the characteri‐
zation of water quality.
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