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Abstract

A huge amount of  hazardous organopollutants,  often persistent  and toxic,  is  pro‐
duced annually over the world and may contaminate soil, water, ground water, and air.
Being from various sources such as wastewater, landfill leachates, and solid residues,
xenobiotics  include  phenols,  plastics,  hydrocarbons,  paints,  dyes,  pesticides  and
insecticides, paper and pulp mills, and pharmaceuticals. Among biological processes
for degradation of xenobiotics, fungal ones, being eco-friendly and cost cheap, have
been investigated extensively because most of basidiomycetes are more tolerant to high
concentrations of pollutants. Fungal bioremediation is a promising technology using
their  metabolic  potential  to  remove or  reduce  xenobiotics.  Basidiomycetes  are  the
unique microorganisms that show high capacities of degrading a wide range of toxic
xenobiotics.  They  act  via  the  extracellular  ligninolytic  enzymes,  including  laccase,
manganese peroxidase, and lignin peroxidase. Their capacities to remove xenobiotic
substances and produce polymeric products make them a useful tool for bioremedia‐
tion purposes. During fungal remediation, they utilize hazardous compounds, even the
insoluble ones, as the nutrient source and convert them to simple fragmented forms.
The  aim  of  this  chapter  is  to  elucidate  the  ability  of  basidiomycetes  to  degrade
xenobiotics. This is an overview to present the importance of extracellular enzymes for
efficient bioremediation of a large variety of xenobiotics.
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1. Introduction

The contamination of soil, water, ground water, and air with toxic chemicals is one of the major
environmental problems, faced by the world today. With the intensive industrialization and
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the extensive use of pesticides in agriculture and chemicals in various fields, the environmen‐
tal pollution with organic compounds has become a serious threat. Indeed, pollution of aquatic
system and soil is a worldwide problem that can result in accumulation of toxic chemicals in
food chains and also harm the flora and fauna. Hence, environmental pollution with hazard‐
ous wastes containing recalcitrant chemicals, being often xenobiotic compounds, has become
one of the major ecological problems, with an increasing awareness around the world [1, 2]. The
quick rise of industrial activities has extremely increased the release of toxic effluents into water
bodies along with ground water [3].  The pollution resulting in the release of these com‐
pounds causes disturbance to the natural bodies and their ecosystems, leading to climatic
changes, water level reduction, and other negative impacts [4]. On the other hand, there are
increasing concerns about potential adverse health and ecological effects resulting from the
production, the use, and the disposal of numerous chemicals that otherwise offer improve‐
ments in human life and economic activities. Thus, a huge amount of hazardous organopollu‐
tants is produced annually over the world and only 10% of these are disposed safely. The most
hazardous compounds are persistent in the environment and are carcinogenic and/or mutano‐
genic. Xenobiotics are chemicals that are “foreign to the biosphere” and may become availa‐
ble to microorganisms in different environmental compartments, depending on their fate in air,
water, soil, and sediments [5]. Household chemicals, pharmaceuticals, and other consuma‐
bles as well as biogenic hormones are released into the environment after passing through
wastewater treatment processes, which are not designed for their removal [6]. The main sources
of xenobiotics are wastewater, landfill leachates, and solid wastes released from the indus‐
tries directly, such as phenols, plastics, hydrocarbons, paints, dyes from textile mills, pesti‐
cides and insecticides from agricultural industries and paper and pulp mills, or indirectly,
including pharmaceuticals, especially the group of endocrine disrupters, and pesticide residues.
These chemicals include biopolymers (cellulose, kraft lignin, and lignin), synthetic polymers
(polyarylate,  polyacrylamide,  and nylon),  polycyclic  aromatic  hydrocarbons  (anthracene,
benzo[a]pyrene, chrysene, naphthalene, pyrene, etc.), pentachlorophenols (PCP), polychlori‐
nated  biphenyls  (PCB),  pesticides  and  insecticides  (1,1,1-trichloro-2,2-bis(4-chlorophenyl)
ethane [DDT], benzene, toluene, ethylbenzene, and xylene [BTEX]), as well as trinitrotoluene
(TNT), dyes (azo dyes, anthraquinone, etc.), and others (including azide, cyanides, aminotria‐
zole, and carbon tetrachloride). Unlike the naturally occurring organic compounds that are
readily degraded upon introduction into the environment, some of these synthetic chemicals
are extremely resistant to degradation by native microorganisms [7].

Degradation of such compounds by physical and/or chemical processes is costly and often
produces undesirable products which are toxic. Biological methods, being eco-friendly
and cost cheap techniques, were proposed for xenobiotic degradation purposes in order to
overcome these problems. Compared to bacteria, most of the fungi are robust organisms
and generally more tolerant to high concentrations of pollutants. It explains why they
have been extensively investigated since the mid-1980s for their bioremediation capacities.
White-rot fungi (WRF) constitute an eco-physiological group comprising mostly of basi‐
diomycetes and litter-decomposing fungi. Recently, there has been a great interest in
white-rot fungi and their ligninolytic enzymes, including laccase, manganese peroxidase
(MnP) and lignin peroxidase (LiP), for the degradation of a wide range of xenobiotics.
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These xenobiotics include phenols [2, 8–10], hydrocarbons [11–14], dyes and textile efflu‐
ents [15–21], pharmaceuticals including the endocrine-disrupter compounds [6, 22], pulp
and paper mills [23–25], pesticides, and insecticides [26–29]. Some studies reported the
effect of ligninolytic enzymes on degradation of other organopollutants like PCB [1],
chlorinated phenols including trichlorophenols [30, 31], and xenobiotics in landfill leach‐
ates, solid wastes [32–35], and munitions [26].

Because of the non-specific nature of fungal lignin depolymerization, white-rot fungi can
degrade a wide range of persistent environment pollutants even the insoluble chemicals [26].
These microorganisms generally act via the extracellular ligninolytic system showing good
potential applications in chemical, agro-food, paper, textile, and cosmetic industries. This
group may be a useful and a powerful tool for bioremediation purposes thanks to fungal
capacities to degrade many xenobiotic substances.

The expression of these enzymes depends on the strain itself: some white-rot fungi produce
LiP and MnP, but not laccase, while others produce MnP and laccase, but not LiP, acting
simultaneously or separately on xenobiotics released from the environment. The potential of
white-rot fungi can be harnessed thanks to emerging knowledge of the physiology and the
morphology of these organisms. This knowledge could be transformed into reliable and robust
waste treatment processes. The importance of high extracellular levels of these enzymes to
enable the efficient degradation of recalcitrant compounds under in vivo conditions relates to
the sorption and complexation of enzymes in soil and the probable loss of their activity once
externalized.

The lignin degradation system consists on peroxidases, H2O2-producing enzymes, veratryl
alcohol (3,4-dimethoxybenzyl alcohol), oxalate, and manganese. LiP and MnP are glycosylated
heme proteins that couple the reduction of H2O2 to water with the oxidation of a variety of
substrates [36]. It was reported that Phanerochaete chrysosporium, producing simultaneously
both MnP and LiP, was able to degrade many xenobiotics and recalcitrant compounds [26].

Laccases, which are also extracellular enzymes and being blue multicopper oxidases, catalyze
the monoelectronic oxidation of a large spectrum of substrates, including phenolic and
nonphenolic compounds as well as recalcitrant environmental pollutants [6, 11, 12, 22]. This
explains their potential use for xenobiotic degradation, and bioremediation purposes.

2. Origin, threat, and biodegradation of xenobiotics; enzymatic system
involved in xenobiotic biodegradation

While a huge amount of hazardous organopollutants is produced annually over the world,
only 10% of these are disposed of safely. The most hazardous compounds are persistent in the
environment and are known to have carcinogenic and/or mutanogenic effects. The prime
source of xenobiotics is wastewater, landfill leachates [33], and solid residual releases from the
industries [37]. Solid wastes may contain volatile organic compounds as residues or incorpo‐
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rated into the structure of materials such as plastic foams, packaging, floor and wall coverings,
solvents, paints, and adhesives [38].

Wastewaters, including domestic and industrial wastewaters, contain a variety of compounds.
Some of the common compounds present in wastewaters and in other effluents are phenolic
compounds, hydrocarbons, dyes, endocrine disrupting compounds, and pesticides [37].

Landfills generate large amounts of leachates containing high levels of organics and ammonia
nitrogen [32, 39]. These substances with others like phenols and hydrocarbons can be a major
source of contamination of the groundwater. Indeed, the variety of contaminants in landfill
leachates, their synergistic and antagonistic effects as well as their physicochemical properties
make them serious toxicants, which may survive different treatments [32]. Landfill leachates
exhibit consequently high toxicity levels [32, 33, 40, 41]. The efficiency of fungal remediation
of landfill leachates has been proved on Trametes trogii, Lentinus tigrinus, and P. chrysospori‐
um [32]. The strains were able, via their extracellular enzymes, to reduce organics (chemical
oxygen demand (COD), phenols, and hydrocarbons) as well as toxicity, for twofolds diluted
LFL. However, raw LFL caused growth inhibition and enzyme secretion reduction, indicating
the sensitivity of these strains to high levels of toxic compounds such as phthalates and phenol
derivatives [42]. Tigini et al. reported that autochthonous and allochthonous fungal strains
were efficient in LFL treatment, showing a complete spectrum of action and being able to
significantly reduce the wastewater toxicity for all the tested strains. Thus, Porostereum
spadiceum showed the best activity with 40 % of decolorization within 1 week [33].

Solid waste residues can be domestic wastes, including food, paper, and garden wastes; waste
from council activities associated with servicing residential areas: street sweepings, tree
lopping, parks and gardens, and litter bins; and waste from institutional, commercial, indus‐
trial activities, generally containing higher proportions of metals and plastics than domestic
wastes. They also can be derived from demolition and building activities, which contain high
proportions of inert material (concrete, bricks) and low proportions of other materials. Many
xenobiotic compounds are released from municipal solid waste and may be found in the
leachates and the gaseous phase of landfills [43]. They include 1,1-dichloroethylene, 2,4,6-
trichlorophenol, dimethyl phthalate, phenol, benzoate, and phthalic acid [44].

Phenols and phenolic compounds are widely distributed compounds in the nature, especially
in the plants, but also in marine systems, produced by marine plants and animals where they
can be degraded by indigenous microbial population [45]. Several types of industries, such as
coal refineries, phenol manufacturing, pharmaceuticals, dying, petrochemical, pulp mill as
well as agricultural wastes, contain phenols which are considered among the most prevalent
pollutants due to their high toxicity even at low concentrations [37, 46, 47]. Phenol is also
employed in the production of resins and also used in the manufacture of plastic, biocides,
disinfectants, textiles, medicines, explosives, pinks, perfumes, and photographic materials
[48]. Consequently, phenols have negative effects on the ozone layer and on the earth heat [47].
Phenol, being a carcinogenic compound, must be removed from industrial wastewaters prior
to their discharge, via biodegradation processes resulting in minimum secondary metabolites
and harmless end products [49]. Several studies have shown that phenol can be degraded by
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a wide variety of fungi including P. chrysosporium, Trametes versicolor, Trametes villosa, and
Lentinus eodes [25, 26, 50].

Furthermore, chlorinated phenols are one of the most serious environmental pollutants.
Lignin-degrading fungi and their enzymes have been used to detoxify these compounds
through their transformation into non-toxic or less toxic substances [51, 52]. Ehlers and Rose
found immobilized WRF cultures to be effective in removing phenolic and chlorinated
phenolic pollutants [52]. Leontievsky et al. reported that Panus tigrinus and Coriolus versicolor
and their ligninolytic enzyme systems efficiently transform 2,4,6-trichlorophenol (TCP) to 2,6-
dichloro-1,4-hydroquinol and 2,6-dichloro-1,4-benzoquinone [51]. However, MnP and laccase
differed in their specificity: in P. tigrinus culture, primarily the MnP attacked 2,4,6-TCP,
whereas in C. versicolor culture, predominantly laccase catalyzed the transformation. Besides,
P. chrysosporium has been the most extensively studied among the ligninolytic fungi, as a model
system, and the pathways for degradation of 2,4-di, 2,4,5-, and 2,4,6-trichlorophenols were
investigated [26, 53].

Plastics are known to be hazardous materials due to the nature of components that are made
of and including polystyrene, polyvinyl chloride, polyethylene, and its derivatives. They are
very slowly degraded due to the molecular bonds and interactions. Biodegradation of plastics
gained importance in the last few years, but the fragmented compounds released by this
biodegradation also lead to other with environmental issues [37]. Cameron et al. reported that
P. chrysosporium was able to degrade plastics like nylon [26].

Polycyclic aromatic hydrocarbons and saturated hydrocarbons are usually found in petroleum
effluents at high concentrations and cause an environmental pollution. Because physical-
chemical degradation of such compounds is cost-effective and may lead to further disturbances
in the environment, biological treatments offer the alternative to reduce the impact of these
pollutants [37]. Hence, bioremediation had a great potential as an alternative method for the
rehabilitation of contaminated sites. The use of natural microorganisms, isolated for their
ability to degrade a large variety of hydrocarbons [11–14], allows the elimination of such
compounds from contaminated sites [54]. Microorganisms that can degrade hydrocarbons are
particularly isolated from petroleum-contaminated sites [55]. Indeed, the microbial action
depends on aromatics structure since the aromatic fraction is more difficult to degrade [56].
Olusola and Anslem reported that Pleurotus pulmonarius was able to degrade crude oil [14].
Other studies reported the effective fungal bioremediation of hydrocarbons [11–13]. Bioreme‐
diation of anthracene and pyrene in soil, using mycelia of P. chrysosporium, T. versicolor, and
Pleurotus ostreatus was reported as effective, since MnP and LAC were secreted at high levels
in the soil. However, these high enzyme levels allowed a more efficient degradation of
recalcitrant compounds in liquid media [1].

Volatile organic compounds and additives, such as emulsifiers and texturizers in paint, can be
degraded by different tools such as chemicals (water as solvent), hygroscopic stresses, and
microbial sources [37]. Some fungi were reported as effective decomposers of paints. The
development of microfungi on the surface of painting induces aesthetical, mechanical, and
biochemical decay [57].
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Textile effluents are one of the principal sources of pollution over the world. In particular, the
release of colored effluents into the environment is undesirable, not only due to their color but
also because many synthetic dyes with their complex aromatic molecular structure [58, 59] and
their breakdown products are toxic and/or mutagenic [59, 60]. Due to the unspecific nature of
their lignin-degrading enzymatic system, fungi can also degrade textile dyes [61]. However,
the well understanding of the fungal degradation mechanism involved is essential to identify
the degradation products and to verify the toxicity removal, consequently. Until now, much
research has been done on dye degradation by fungi and or laccases [62, 63] but few studies
have focused on the intermediate products toxicity [64]. Many fungal isolates and their
enzymes were reported as efficient for the degradation or the decolorization of many poly‐
meric dyes, including blue dextran and Poly R478 as well as the triphenylmethane dyes: cresol
red, crystal violet, and bromophenol blue [19, 20]. Ben Younes et al. reported that laccase from
the thermophilic fungal strain Scytalidium thermophilum catalyzed the decolorization and the
detoxification of the azo dye Congo red and the triarylmethane dyes, commonly found in
textile industry effluents [20]. The team also reported, in previous studies, that the crude
enzyme as well as the purified laccase from Perenniporia tephropora was able to decolorize dyes
of the textile industries, including neolane pink, neolane blue, and remazol brilliant blue R
(RBBR) [18]. The latter was also efficiently decolorized by laccase from T. trogii [17]. The ability
of T. trogii laccase to decolorize azo and triarylmethane dyes was approved in the absence of
redox mediators, since MG and BCG were completely degraded with crude laccase within 6
h of treatment. Toxicity evaluation showed a final product detoxification [21]. On the other
hand, the fungal decolorization of RBBR has been reported for other strains such as Dichomitus
squalens, Ischnoderma resinosum, Pleurotus calyptratus [65], and P. ostreatus [66]. Tekere et al.
reported the ability of Trametes cingulata, T. versicolor, Datronia concentrica, and Pycnoporus
sanguineus to decolorize the Poly R478 [67]. Mohorcic et al. found that Bjerkandera adusta was
able to decolorize the black-blue dye through violet and red to pale yellow via its extracellular
enzyme; the MnP which was also reported for its ability to decolorize amaranth and remazol
black B [68]. Previously, Swamy and Ramsay reported since 1999 the ability of Bjerkandera sp.,
P. chrysosporium, and T. versicolor to decolorize remazol orange, remazol brilliant blue, reactive
blue, and tropaeolin O in agar plates [69]. Consequently, some strains including T. trogii and
S. thermophilum were reported to be able to decolorize and detoxify textile effluents [19, 20].
Robinson et al. reported that B. adusta and Phlebia tremellosa provided a good efficiency to
decolorize textile effluent in N-limited conditions [62].

Paper and pulp mills are effluents released from paper mill industries and cause serious
environmental pollution because they contain chlorinated organic compounds, which are
absorbable organic halides, including pentachlorophenols, tetrachlorocatechols, and tetra‐
chloroguaiacols [70]. They are often released to anaerobic conditions, exhibiting high acute
and chronic toxicity levels and mutagenicity and/or carcinogenicity. Fungal enzymes were
used for bleaching these effluents to obtain high-quality paper pulps [23, 71]. Indeed, it was
reported that the laccase from Coriolopsis gallica has been implicated in the decolorization of
effluents from the pulp and paper industry [25, 72]. Laccases have also been shown to be
applicable for the bioremediation of pulp and paper industry wastes by effecting direct
dechlorination [73] for the removal of chorophenols and chlorolignins from bleach effluents
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[74, 75]. Other uses of laccases for the pulp and paper industry include reduction of the kappa
number of pulp [15] and an improvement in the paper-making properties of pulp [76].

A large variety of pesticides and insecticides, including organophosphorous compounds, and
benzimidazoles, are intensively used and may contaminate the land due to their slow degra‐
dation [37]. Despite the slow process, microbial degradation is considered as a tool to minimize
the negative effects of these compounds on the ecosystem. Many studies reported the effective
degradation of pesticides by fungal strains, including P. chrysosporium and T. versicolor, and
involving two different enzyme systems: laccase and peroxidases [26–29].

Pharmaceuticals are discharged directly by pharmaceutical manufacturers or in wastewaters
from hospitals. These compounds have performed their biologically intended effect, but their
degradation into toxic substances in the body is often a cause for concern [77] since they
unfortunately get passed into the environment in either their complete or fragmented forms.
These pharmaceuticals, used in personal care products (PCPs) or being endocrine-disrupting
chemicals (EDCs), mainly include hormones, anesthetics, and antibiotics, and can be accumu‐
lated in an organism and passed on to the other through the common food chain [78]. Even
though they are the indirect sources, they cause adverse effect on the ecological cycle [37].
Nonsteroidal anti-inflammatory drugs are also a large and diverse chemical group of drugs
used on humans and animals for the treatment of inflammation, pain, and fever [6]. The use
of diclofenac in animals has been reported to have led to a sharp decline in the vulture
population reaching 99% [6]. These compounds, including nonylphenol (4-nonylphenol),
bisphenol A (2,2-bis(4-hydroxyphenol) propane), triclosan (5-chloro-2(2,4-dichlorophenoxy)
phenol) and others, are frequently detected in receiving waters downstream of intense
urbanization [79, 80]. The latter can mimic or interfere with the action of animal endogenous
hormones by acting as estrogen agonists, binding to the estrogen receptor or eliminating a
normal biological response [6, 81, 82]. The promise of laccase for the transformation or the
elimination of PCPs and EDCs from both aqueous solutions and polluted soils has been
recently established [6, 83]. Cabana et al. demonstrated that the resulting chemicals do not
have any estrogenic activity [84].

It is known that white-rot fungi can degrade lignin in the way that the mycelia of the organisms
penetrate the cell cavity and release ligninolytic enzymes to decompose materials to a white
sponge-like mass [85]. The ability of fungi to transform a wide variety of hazardous chemicals
has aroused interest in using them in bioremediation [86]. Enzymatic treatment, involving
mainly peroxidases and/or laccases, is currently considered as an alternative method for the
removal of toxic xenobiotics from the environment [87].

2.1. Peroxidase system

The lignin degradation system consists on peroxidases, H2O2-producing enzymes, veratryl
alcohol, oxalate, and manganese. All of these enzymes are glycosylated heme proteins that
couple the reduction of hydrogen peroxide to water with the oxidation of a variety of sub‐
strates. The redox potentials of LiP and MnP are higher than for others peroxidases; that is
why they have been shown to oxidize chemicals that are not easy to be oxidized by other
microorganisms. These chemicals include Polycyclic aromatic hydrocarbons (PAH), phenol
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and its derivatives, cyanide, TNT, and others [26]. This finding was reported for the fungus
P. chrysosporium, which has been shown to degrade many xenobiotics and recalcitrant
compounds, both in soil and in liquid cultures, suggesting the attractive use of such fungus in
bioremediation.

Lignin peroxidases (LiPs) belong to the family of oxidoreductases [36, 88] and were firstly
described in the basidiomycete P. chrysosporium in 1983 [89]. This enzyme has been recorded
for several species of white-rot basidiomycetes [90]. LiP is dependent of H2O2, with an
unusually high redox potential and low optimum pH [91, 92]. This enzyme is able to oxidize
a variety of substrates including polymeric ones [93] and has consequently a great potential
for application in various industrial treatment processes [92].

Manganese peroxidases (MnPs) belong to the family of oxidoreductases [36]. Following the
discovery of LiP in P. chrysosporium, MnP secreted from the same fungus was found as another
lignin-degrading enzyme [94] and was secreted by almost all white-rot fungi. MnP catalyzes
the oxidation of phenolic structures to phenoxyl radicals [9]. The product Mn3+, being highly
reactive, complex with chelating organic acids, such as oxalate, lactate, or malonate. On the
other hand, it was reported that MnP may oxidize Mn(II) without H2O2 and with decomposi‐
tion of acids, and concomitant production of peroxyl radicals [95].

2.2. Laccase system

Laccases which are blue multicopper oxidases, catalyze the monoelectronic oxidation of a large
spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols,
and aromatic or aliphatic amines, coupled with a full, four electron reduction of O2 to H2O.
Laccases act on both phenolic and nonphenolic lignin-related compounds as well as highly
recalcitrant environmental pollutants, and they can be effectively used in paper and pulp
industries, textile industries, xenobiotic degradation, and bioremediation and can act as
biosensors. Some studies reported the identification of genes that are differentially regulated
during fungal growth in the presence of different environmental pollutants. However, abiotic
stress caused by many factors including water potential, temperature, and pH can influence
the metabolism of the degradation process. Hence, considering bioremediation in soil, the
conditions that favor fungal activity in soil, such as temperature, moisture, nutrient status, pH,
and aeration, need to be optimized to promote metabolic degradation of xenobiotics. Magan
et al. studied the effect of abiotic factors on the fungal degradation of pesticides by T. versicol‐
or and P. chrysosporium for soil bioremediation purposes [96]. In fact, the potential property of
laccase is its highly non-specific nature of substrates [97]. Furthermore, the common presence
of one or more substructures in the lignin molecule and in xenobiotics explains the ability of
white-rot fungi to degrade such a wide range of environmental organic pollutants, even at
high levels [98, 99]. Otherwise, it has been shown that laccase metabolizes these compounds
without any net energy gain [100]. Indeed, the oxidation of lignin is performed to access to
wood polysaccharides, being their main energy source [101]. This implies that the presence of
lignin-cellulosic substrates is required to ensure the degradation of xenobiotic compounds
[102].
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3. Conclusion

One of the major environmental problems, causing a serious threaten over the world, is the
contamination of atmosphere components with toxic chemicals. Unfortunately, the most
xenobiotic compounds, produced annually at huge amounts, are persistent in the environment
and have carcinogenic and/or mutanogenic effects. The main sources of xenobiotics are
wastewater, landfill leachates, and solid wastes. Xenobiotics include phenols, plastics,
hydrocarbons, paints, dyes, pesticides, insecticides, paper and pulp mills, pharmaceuticals,
and others.

Biological processes, being eco-friendly and cost cheap techniques, were proposed for
xenobiotic degradation to overcome these problems. White-rot fungi, especially the basi‐
diomycetes, are the most tolerant microorganisms to high concentrations of pollutants,
giving their exceptional abilities for biodegradation in aqueous environments and soil and
have been investigated extensively for their bioremediation capacities. Fungal bioremedia‐
tion is a promising tool since the metabolic potential of such microorganisms converts
most of the environmental pollutants to less hazardous or non-hazardous compounds
with less input of energy and time. White-rot fungi are the unique organisms that show
the capacities of degrading highly toxic organics and recalcitrant compounds. The key en‐
zymes of their metabolism are extracellular ligninolytic enzymes that enable fungi to toler‐
ate high concentrations of toxic substrates. These enzymes have potential applications in a
large number of fields, including the chemical, fuel, food, agricultural, paper, textile, and
cosmetic industrial sectors. Their capacities to remove xenobiotic substances and to pro‐
duce others, which are less or non-toxic, make them a useful tool for bioremediation pur‐
poses.

The potential of white-rot fungi can be harnessed thanks to emerging knowledge of the
physiology and morphology of these microorganisms. This knowledge could be transformed
into reliable and robust waste treatment processes. The importance of high extracellular levels
of these enzymes to enable the efficient degradation of xenobiotic compounds under in vivo
conditions relates to the sorption and complexation of enzymes in soil and the probable loss
of much of their activity once externalized.
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