
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 4

Spatial Optimization of Urban Cellular Automata
Model

Khalid Al-Ahmadi, Mohammed Alahmadi and
Sabah Alahmadi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64788

Provisional chapter

Spatial Optimization of Urban Cellular Automata Model

Khalid Al-Ahmadi, Mohammed Alahmadi and
Sabah Alahmadi

Additional information is available at the end of the chapter

Abstract

Although cellular automata (CA) offer a modelling framework and set of techniques for
modelling the dynamic processes of urban growth, determining the optimal value of
weights or parameters for elements or factors of urban CA models is challenging. This
chapter demonstrates the implementation of a calibration module in a fuzzy cellular
urban growth model (FCUGM) for optimizing the weights and parameters of an urban
CA model using three types of algorithms: (i)  genetic algorithm (GA),  (ii)  parallel
simulated annealing (PSA) and (iii) expert knowledge (EK). It was found that the GA
followed by EK produced better and more accurate and consistent results compared
with PSA. This suggests that the GA was able to some extent to understand the urban
growth process and the underlying relationship between input factors in a way similar
to human experts. It also suggests that the two algorithms (GA and EK) have similar
agreement about the efficiency of scenarios in terms of modelling urban growth. In
contrast, the results of the PSA do not show results corresponding to those of the GA
or EK. This suggests that the complexity of the urban process is beyond the algorithm’s
capability or could be due to being trapped in local optima. With this satisfactory
calibration of the FCUGM for the urban growth of Riyadh city in Saudi Arabia by using
CALIB-FCUGM, these calibrated parameters can be passed into the SIM-FCUGM to
simulate the spatial patterns of urban growth of Riyadh.

Keywords: cellular automata, urban growth, calibration, genetic algorithm, parallel si-
mulated annealing, Riyadh

1. Introduction

Linear,  static,  top-down,  descriptive  and explanatory  models  cannot  adequately  help  to
explain and reflect the essence of urban phenomena. With deeper understanding of urban

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



phenomena, scientists have begun to recognize that cities are not uniform or a single type of
phenomenon but more typically hierarchies of complex systems. As complexity theory and
its properties have developed over the last three decades based on studies of non-linear
systems,  fractals,  bifurcations,  self-organization  and  chaos  theory,  cities  have  gradually
become regarded as spatially complex systems [1–3]. A city can be characterized as a non-
linear,  open,  complex,  self-organizing and emergent  system,  which is  far  from being in
equilibrium [1, 4, 5]. Urban growth dynamics are the direct consequence of the actions of
individuals, public and private corporations (local agents) acting simultaneously over urban
space and time. Therefore, cities are the spatial result over time of all these influences, which
continuously contribute to shaping a city (aggregate global form). Cellular automata (CA)
offer a modelling framework and set of techniques for modelling the dynamic processes and
outcomes of such self-organizing systems [6]. CA techniques provide a way of simulating a
self-organization process over geographical space and time [6, 7] and demonstrate significant
potential benefits for urban modelling from the late 1980s due to their simplicity, flexibility
and transparency [8–17]. However, Wu [18] argued that calibration of urban CA models is
challenging when one seeks to determine the optimal value of weights or parameters for
elements or factors of a model. If one can find optimal values, the results from running the
model are likely to be greatly improved. With this in mind, the authors designed, imple-
mented and evaluated a prototype for calibrating a stochastic, high-dimensional (up to 95)
and non-linear urban CA model.

A fuzzy cellular automata model of urban growth was presented in Ref. [19]. Al-Ahmadi et
al. presented an urban planning tool for the city of Riyadh, Saudi Arabia, which is one of
the world’s major cities undergoing rapid development. At the core of the system is a fuzzy
cellular urban growth model (FCUGM), which is capable of simulating and predicting the
complexities of urban growth. This model was shown to be capable of replicating the
trends and characteristics of an urban environment during three periods: 1987–1997, 1997–
2005 and 1987–2005. In another paper [20], the model was used to study and evaluate sev-
eral different planning scenarios, both baseline ones and scenarios that relate to actual Sau-
di government policy. The results demonstrated that the model was capable of predicting
plausible patterns of future urban growth. The model also has wider implications for use
as a spatial planning support tool for urban planners and decision-makers in Saudi Arabia.
A description of the application of fuzzy logic in the calibration of the FCUGM was pre-
sented in Ref. [21]. Along with calibration, one of the most significant aspects of any model
is to verify, validate and assess its performance. The focus of the work published by Al-
Ahmadi et al. [22] was on the techniques used to validate the performance of the FCUGM.
They presented seven different validation metrics including visual inspection, accuracy and
spatial statistics, metrics for spatial pattern and district structure detection as well as spatial
multi-resolution validation.

The aim of this chapter is to describe the implementation of a calibration module in the FCUGM
for optimizing the parameters for different modes and scenarios of the FCUGM using three
types of algorithms: (i) genetic algorithm (GA), (ii) parallel simulated annealing (PSA) and (iii)
expert knowledge (EK). These were applied over three periods [urban growth boundary
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(UGB)] including UGB I (1987–1997), UGB II (1997–2005) and UGB I + II (1987–2005). The
FCUGM is a hybrid CA model for research in urban planning and urban growth. It aims to
explore and explain the complex spatial patterns of urban growth and to support the spatial
urban planning through its two modules namely CALIB-FCUGM, the calibration model, and
SIM-FCUGM, the simulation model, which can be used for prediction. Although the FCUGM
is based upon fuzziness, it is designed to use stochastically constrained CA models.

2. Study area: geographic situation, physical environment and
urbanization process

The Kingdom of Saudi Arabia is situated at the furthermost part of south-western Asia and
occupies approximately four-fifths of the Arab Peninsula, covering a total area of 2.25 mil-
lion km2 of which about 40% are desert lands, and a population of 22,673,538 million ac-
cording to 2004 census. The city of Riyadh is situated on the Najd Plateau in the central
region of the Arabian Peninsula and surrounded to the east by high land ridges and to the
west by the convergence of valleys forming Wadi Hanifah and Mount Tuwaiq. Riyadh is
one of the fastest growing cities in the Middle East. The annual rate of population growth
in Riyadh has reached an average of 8.1% by natural increase and immigration, and ac-
cording to recent forecasts, the population is expected to increase to 10 million by 2020. In
parallel with this dramatic increase in population, the spatial extent of Riyadh has grown
from less than 1 km2 in 1920 to over 1150 km2 in 2004.

The urbanization process of Riyadh during the period between 1750 and 2004 has passed
through four main phases of development namely the pioneer phase, the pre-establishment
phase, the establishment phase and the oil-boom and post-oil boom phase. Broadly, the in-
crease in wealth, building of the railway, the inauguration of the airport and transferring
government agencies from Jeddah to Riyadh and the need to build new ministries and
hundreds of houses has had a significant impact on the urban growth of Riyadh. This high
rate of growth in population and areas has not been met with an adequate expansion of
services, management capacity and development intervention. As a result, several types of
problems have manifested, for example, the spread of slums and squatter settlements, a
shortage of services for large parts of the city and a growth in demand for housing accom-
panied by land and transportation difficulties. After examining the main three Master
Plans of Riyadh, the results indicate that most of the criticisms of the first and second Mas-
ter Plans were based on the fact that they did not adequately anticipate the size of urban
growth, which took place in Riyadh; this was because much of the development occurred
beyond the boundaries designated by the plan. This resulted in unexpected urban sprawl.
Another weakness aspect of these two Master Plans was that they were formulated on the
basis of moderate economic growth rate. Consequently, they could not have anticipated the
economic effect of oil boom in the 1970s and its adverse effect on the city’s physical growth
in terms of density and scale. This suggested the need for a tool to generate different sce-
narios of urban growth and test the potential physical and environmental impact for each
scenario. Planning authorities, urban planners and decision-makers in Saudi Arabia have
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recently, however, begun to use spatial analytical and other planning tools to simulate and
evaluate the consequences of urban planning policies prior to implementing them. Such
tools can help to explore plans, policies and other factors underpinning and influencing
processes of urban growth in the recent past, which can in turn lead to a better under-
standing the current factors influencing urban growth and ultimately in making more relia-
ble predictions. Based on the use of software applications and tools, one can generate and
evaluate the consequences of diverse future scenarios for urban growth by answering
‘what if’ type questions.

In this chapter, the term ‘urban growth’ refers to the physical transformation of vacant, dessert
or agricultural land to urban land by planning and building infrastructure and industrial,
residential, retail, educational and other buildings and social and recreational facilities.

3. Uncertainty and global sensitivity analysis of FCUGM

Although many studies [8–17] have investigated models of urban growth-based CA, little
attention has been paid to examining the uncertainty and errors in urban CA models. It has
been hypothesised that urban CA models are influenced by uncertainties that might be
generated from various sources such as the complex interaction between input factors and
parameters, specification and structure of the model and quality of input data [23]. The
structure of CA models is not error-free; however, like other computer models, they are
affected by errors owing to poor or partial human knowledge, complexity of the process
being investigated and limitations of technology [23, 24]. The impact of neighbourhood size
and type on model outcomes of a GIS-CA urban growth model was analysed by Kocabas
and Dragicevic [24]. They applied univariate sensitivity analysis to study the variations in
model outcomes by changing one parameter at a time while other parameters were kept
constant. They found that the size and type of neighbourhood parameters have a signifi-
cant influence on CA model output. The use of such a technique is considered as local sen-
sitivity analysis. It is, however, time-consuming and cumbersome if more than two
parameters are allowed to vary simultaneously. It is also deterministic and static. It cannot
mimic the non-linear, stochastic and dynamic features, which typically exist in urban mod-
els. The error propagation in urban CA simulation was examined by Yeh and Li [23]
through using a Monte Carlo Simulation (MCE). When MCE is applied, the spatial varia-
bles are perturbed so that the sensitivities of perturbations in urban simulation can be as-
sessed in terms of errors in the outcome of simulation.

The FCUGM models the spatial pattern of urban growth using three modes: Mode 1, Mode 2
and Mode 3. The three modes differ in the structure of the fuzzy IF-THEN rule because different
structures of transition rules might generate different simulation outcomes. The FCUGM can
simulate spatial patterns of urban growth under nine scenarios [21]. An uncertainty and global
sensitivity analysis (UGSA) was undertaken on all of the nine scenarios in the three modes of
the FCUGM in order to assess the effects of uncertainties in the input variable (independent
factor) and on the output variable (dependent factor). The advantage of using global rather
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than local sensitivity analysis is that the former is dynamic, stochastic and apportions the
output uncertainty to the uncertainty in all of input variables. It evaluates the effect of one
input variable while all of the others are varied as well. In contrast, the local perturbative
approach is based on partial derivatives. The effect of the variation in one input factor is
evaluated when all of the others are kept constant at their central value [25]. In the FCUGM,
UGSA can provide an initial estimation of the quality of each mode and scenario in terms of
understating urban growth of Riyadh. Since each mode and scenario has a different specifi-
cation and structure, UGSA will be applied to help in identifying the most appropriate one.

The MCS technique was selected to undertake the UGSA because it has been applied success-
fully in a variety of applications including financial risk and statistical physics [26]. In addition,
the MCS is one of the frequently applied techniques for computer simulations or numerical
experiments. In terms of urban CA models, Yeh and Li [27] claimed that MCS tended to be
most appropriate for the investigation of error propagation in urban CA simulation, particu-
larly when mathematical models are difficult to define. Moreover, applying MCS has advan-
tages since urban CA models cannot be modelled explicitly based on mathematical equations.
Although one of the main drawbacks of MCS is the computation time required to generate a
large number of samples, yet recent advancements in computer technology have reduced this
problem [23]. MCS is relatively simple and straightforward to apply. It is generally based on
generating numerous evaluations (runs) of the model with randomly selected input values for
variables. For each trial or run, the input variables are assigned to random values based on
selected input distributions and the value of each output variable recorded [25]. The results of
MCS are, however, only an approximation (not exact) of the true value [26].

Scenario Mean SD Skewness Kurtosis 90% certainty value

Mode 1—Scenario 1 0.277 0.142 0.079 1.987 0.523

Mode 1—Scenario 2 0.505 0.15 0.154 2.053 0.656

Mode 1—Scenario 3 0.319 0.159 −0.187 1.899 0.701

Mode 1—Scenario 4 0.458 0.189 0.343 2.859 0.507

Mode 2—Scenario 1 0.508 0.109 −1.257 2.468 0.628

Mode 2—Scenario 2 0.324 0.164 −0.062 1.891 0.518

Mode 2—Scenario 3 0.458 0.189 0.343 2.859 0.674

Mode 2—Scenario 4 0.187 0.132 0.754 2.753 0.423

Mode 3—Scenario 1 0.223 0.149 0.572 2.538 0.315

Table 1. Output distribution statistics of the uncertainty analysis of FCUGM’s scenarios using Monte Carlo simulation
(MCS).

Spatial Optimization of Urban Cellular Automata Model
http://dx.doi.org/10.5772/64788

65



These were chosen to generate and evaluate different urban growth scenarios based on dif-
ferent planning objectives. In the context of the FCUGM, the independent variables are the
parameter values of input variables while the dependent variable is the output mean
square error (MSE) of the scenario. Thus, the UGSA will examine the effect of the varia-
tions in parameters values on the MSE outcome. There are no rules for selecting the ‘best’
number of iterations for performing UGSA primarily because it is problem-dependent. Suf-
ficient iterations are essential, however, to determine statistically the relevant response dis-
tribution. Technically 1000 to 10,000 trials are usually good measures in terms of the
number of trials [26]. The MCS was run 5000 times for each scenario. The uncertainty in
the parameters of the input variable was represented by a uniform distribution with lower
and upper bounds corresponding to each input variable. Each trial will be evaluated by
calculating the MSE of the differences between the observed and simulated urban maps.
Five distribution statistics were computed to assess the output variable (MSE) resulting
from MCS for each scenario including: mean, standard deviation (SD), skewness, kurtosis
and 90% certainty value (CV), as shown in Table 1. The skewness measures the extent to
which the MSE values cluster to one side or the other of the mean. When most values and
a higher number of occurrences cluster towards the left tail, this implies that they should
provide a good solution. The kurtosis measures the sharpness of the distribution. A kurto-
sis greater than three indicates a high peak of occurrences, while less than three indicates a
flat top [28]. The CV represents the value of the MSE that 90% of the outputs (trails) less
than the returned CV. Thus, the lower the CV value, the better the scenario. Figure 1A–I
shows the occurrences of MSE generated from each scenario; this indicates the empirical
estimation of MSE for the random combinations of the input parameters.

As illustrated in Table 1, Mode 1—Scenario 4, Mode 2—Scenario 4 and Mode 3—Scenario 1
generated the best performance with the lowest certainty values of 0.507, 0.423 and 0.315,
respectively. This means that 90% of the occurrences (iterations) have a MSE with 0.507, 0.423
and 0.315 for these three scenarios. In addition, as shown in Figure 1, these three scenarios
present a similar pattern where most of the occurrences are clustered towards the left side,
with a low MSE output and thus better performance. This is supported quantitatively by
accounting for the higher skewness rates with 0.343, 0.754 and 0.572 for Mode 1—Scenario 4,
Mode 2—Scenario 4 and Mode 3—Scenario 1, respectively. In contrast, Mode 1—Scenario 2,
Mode 1—Scenario 3 and Mode 2—Scenario 1 show the highest certainty values of 0.656, 0.701
and 0.628, respectively. This indicates that 90% of the solutions are below a relatively high MSE
range (0.65–0.701). Note that the structure of modes is based on the number of fuzzy variables
embedded in each fuzzy rule and the structure of scenarios is founded on the number and type
of urban growth factors, specifically the transportation support factor (TSF), urban agglomer-
ation and attractiveness factor (UAAF) and topographical constraints factor (TCF) [21]. It can
be inferred that the number of urban growth factors in each scenario has, to a large extent,
considerable influence on the performance of the scenario. For example, the three scenarios
that showed the best performance namely Mode 1—Scenario 4, Mode 2—Scenario 4 and Mode
3—Scenario 1, are the only scenarios among the total of nine that included the three urban
growth factors TSF, UAAF and TCF.
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Figure 1. Uncertainty analysis for scenarios of the FCUGM using Monte Carlo simulation: (A) Mode 1—Scenario 1, (B)
Mode 1—Scenario 2, (C) Mode 1—Scenario 3, (D) Mode 1—Scenario 4, (E) Mode 2—Scenario 1, (F) Mode 2—Scenario
2, (G) Mode 2—Scenario 3, (H) Mode 2—Scenario 4 and (I) Mode 3—Scenario 1.
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In contrast, the remaining six scenarios embed only one or two. This suggests that the urban
growth process in Riyadh can be modelled more accurately by integrating these three factors
into a single scenario, rather than just using one or two of them. In addition, one can deduce
that the higher the number of fuzzy variables embedded in each single fuzzy rule in the mode,
the better the performance of that mode. Mode 3—Scenario 1, for example, embeds three fuzzy
variables in each rule and accounts for the highest certainty value, that is, 90% of the 5000
evaluations produced a low MSE with less than 0.315, which indicates that such a mode
structure is better than any other. When the number of fuzzy variables in the fuzzy rule
decreases, the MSE decreases, for instance, Mode 2—Scenario 4 (two fuzzy variables with
0.423) and Mode 1—Scenario 4 (one fuzzy variable with 0.507). However, the high accuracy
produced by Mode 3 involved a high computation time. One can see that as the fuzzy variables
in the fuzzy rule increase, the simulation time increases exponentially. For example, the
average computation time was 4.5, 8 and 19 hours for scenarios in Mode 1, Mode 2 and Mode
3, respectively.

With respect to the scenarios in Mode 1 (except for the best one, Scenario 4), it can be inferred
that urban growth in Riyadh is influenced by transportation support (Scenario 1 with a CV of
0.523) more than socio-economic services (Scenario 2 with a CV of 0.656) and topographical
constraint factors (Scenario 3 with a CV of 0.701). With regard to the scenarios in Mode 2 (with
the exception of Scenario 4), it can be inferred that the process of urban expansion in Riyadh
city is moderately affected by integrating the transportation support with socio-economic
services (Scenario 2 with 0.518 as CV) more than by integrating transportation support with
topographical constraint factors (scenario 1 with a CV of 0.628) or socio-economic services with
topographical constraints factors (Scenario 3 with a CV of 0.674).

4. Calibration of the FCUGM

The calibration process of the FCUGM is undertaken by a module called the CALIB-FCUGM.
This consists of several interlinked sub-models that are processed sequentially either once or
several times during a calibration period. The CALIB-FCUGM aims to provide the SIM-
FCUGM, the module by which the simulation is executed, with the optimal parameter values
or weights of spatial variables to enable realistic generation of urban patterns. The CALIB-
FCUGM optimizes parameters by three different algorithms, namely GA, PSA and EK.

4.1. Basic process flow of CALIB-FCUGM

The stages of the CALIB-FCUGM are illustrated in Figure 2. The main procedures of the
CALIB-FCUGM fall into four stages: (i) Input Variables Weighter, Fuzzy Distance Decay
Quantifier, Fuzzy Input Variables Integrator and Fuzzy Input Variables Normalizer (yellow
boxes); (ii) Fuzzy model (green boxes); (iii) CA model (blue boxes); and (iv) Optimization
Algorithms (grey box), as shown in Figure 2. Most boxes in Figure 2 are a sub-model of CALIB-
FCUGM; it takes some outputs from the preceding sub-model and feeds the subsequent sub-
model with some inputs. The dashed boxes indicate that this sub-model includes parameters,
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which require to be optimized. The calibration process works sequentially. It begins by reading
input variables into the Input Variables Weighter, by which a weight is assigned to each input
variable reflecting its corresponding importance to other variables. Next, the weighted input
variables are passed into the Fuzzy Distance Decay Quantifier to compute the effect of the
distance decay of each variable by optimizing the distance decay parameters. These weighted
fuzzy variables are then fed into the Fuzzy Input Variables Integrator, which integrates these
weighted fuzzy variables into three fuzzy driving forces [19, 21]. These in turn are normalized

Figure 2. Calibration Process of the CALIB-FCUGM.
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to between 1 and 100. The next stage involves passing these three fuzzy input variables into
the fuzzy model and creating a ‘calibrated development suitability map’. After adding a
stochastic disturbance factor into the development suitability map, this map is called the
‘calibrated development possibility map’. This calibrated development possibility map is then
entered a conditional statement to decide whether a certain location can be considered as
‘urban’ or ‘non-urban’ based on both its development possibility and the calibrated transition
threshold. The conditional statement outputs the final ‘urban calibrated map (UCM)’, which
is a binary map (1 for urban and 0 for non-urban). Finally, the ‘urban calibrated map’ is read
by the Evaluator, in order to assess the accuracy of this map, and compared with the ‘urban
observed map (UOM)’ (which is also a binary map), by computing the error between the two
maps by calculating the best net objective value (BNOV). All of this procedure is generated
several times according to the characteristics of each of the three algorithms GA, PSA and KB.
Note that the CALIB-FCUGM module works automatically after a user enters the input
variables to the module. The outcome of the CALIB-FCUGM module is an optimal set of
parameters and weights. This will be read into the SIM-FCUGM module to simulate urban
development. As the FCUGM is a loosely coupled model, the output of the CALIB-FCUGM is
read by the SIM-FCUGM by manual entry.

4.2. Feasible solution of the CALIB-FCUGM

As stated earlier, the main aim of the CALIB-FCUGM is to find the optimal set of weights and
parameters for each scenario of the FCUGM. Each candidate solution provided by the CALIB-
FCUGM is a set of weights or parameters, which vary according to their associated range
(predefined upper and lower bounds). Table 2 shows the total number of weights and
parameters, which are calibrated for each scenario. As shown, the number of weights and
parameters for scenarios is different. This is due to the difference in the number of fuzzy
variables employed in each scenario. This affects the number of input variables, number of
weights, number of distance decay parameters and other parameters because all these
parameters are used to build fuzzy variables.

Modes and scenarios Number of weights and parameters

Mode 1—Scenario 1 57

Mode 1—Scenario 2 59

Mode 1—Scenario 3 57

Mode 1—Scenario 4 65

Mode 2—Scenario 1 63

Mode 2—Scenario 2 69

Mode 2—Scenario 3 69

Mode 2—Scenario 4 93

Mode 3—Scenario 1 99

Table 2. Number of weights and parameters for scenarios in the FCUGM.
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4.3. Objective function of CALIB-FCUGM

The performance of the GA, PSA or EK algorithms is evaluated based on the quality of the
final solution acquired by the algorithm. In relation to the quality of the final solution, the value
of the objective function (cost function), which is also referred to as an fitness function in GA
and energy function in PSA, is the major criterion for assessing performance of the algorithm.
The effectiveness of any iterative algorithm such as GA or PSA depends heavily on having an
efficient objective function. The purpose of the objective function is to determine for any given
configuration of the search space a value that represents the relative accuracy of that configu-
ration or solution. In the CALIB-FCUGM context, the robustness of the solution can be
considered as an error and the objective function aims to minimize the error between the UOM
and the UCM.

There are several techniques for measuring errors, which can be used in the FCUGM problem
such as total absolute error (TAE), mean absolute error (MAE), MSE, root mean square error
(RMSE), normalized root mean squared error (NRMSE), relative operating characteristic
(ROC), confusion matrix (CM) and Kappa Index of Agreement (KIA). The measurement of
differences in errors between the observed and simulated images has been performed in
different ways by various authors. A CM was used by Wu and Webster [29] to evaluate the
accuracy of the simulated image against the observed one. The MSE and the MAE were used
by Li and Yeh [30, 31] for measuring errors between simulated and observed images in a study
involving modelling urban developments. The MSE also used by Kim [32] for measuring the
accuracy between the observed and probability images as a way of validating results from
calibration process. The NRMSE was used by Heppenstall [33] as a fitness function to validate
the calibration results of a GA and to measure the error between the observed and predicted
spatial multi-agent model for petrol prices. In addition, Pontius and Schneider [34] applied
and explained how to use the ROC technique to examine how well a probability map portrays
the likely locations of a category of new development. The Leica ERDAS image processing
application uses RMSE for measuring the error of image rectification and KIA for validating
image classification results.

As a result, in the FCUGM, the authors selected two types of measures, one to verify the
calibration results and the other for testing the simulating results. Although most of the
techniques are appropriate for verifying the performance of simulation processes, few of them
are suitable for doing this for calibration. This is because the calibration process in the FCUGM
requires the candidate solution to be assessed in each iteration, while in the simulation process,
the results are verified once at the end. Consequently, the MSE and RMSE were selected to
validate the results of the CALIB-FCUGM for several reasons. First, they are the most well
known and widely used techniques of error measurement [35]. Second, they are efficient for
validating the performance in a cell-by-cell manner, which is the case in calibrating the
FCUGM, and they will be calculated in this research as given below in Eqs. 1 and 2:

( )21OFI MSE
n

ij iji
O C
n

=
-
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where OFI is the objective function (MSE or RMSE) of a location ij; Oij is the urban observed
state at location ij; Cij is the urban calibrated state at location ij; and n is the number of locations
or cells.

Although several research studies have only applied a straightforward objective or fitness
function such as the MSE or RMSE as measure for error, little attention has been paid to
measuring the effect of constraints. It has been claimed that GA and PSA are stochastic
algorithms and have to be constrained to explore only the search space with desired values.
The author argues, however, that it would be much better to compute the overall net objective
value (NOV) as well, because such a measure includes a weighting system with objective
functions and implemented constraints through penalty functions, which add to the overall
objective value. The net objective value, therefore, is penalized as the set of design variables
moves further out of bounds or does not meet a constant constraint value. The NOV can be
computed as shown in Eq. 3:

( ) ( )NOV
i ii OF i PFOF W PF W= ´ + ´ (3)

where OFi is the objective function (MSE or RMSE) for a solution i; ���� is the weight of the

objective function (MSE or RMSE) for a solution i; PFi is the penalty function for a solution i;
and ���� is the weight of the penalty function for a solution i.

It can be difficult, however, to compare NOV values from different experiments if the range
and mean of the NOV are different in each case. Thus, to avoid this problem, the standardized
net objective value (SNOV) will be used as shown in Eq. 4:

( ) ( )
SNOV

Range
i ii OF i PF

i
i

OF W PF W´ + ´
= (4)

The penalty functions that will be used in the CALIB-FCUGM include two types of constraints:
(i) equality (some calibrated parameter values have to be equal a constraint value) and (ii)
inequality (some calibrated parameter values have to be less or greater than constraints). An
example of the equality constraint is that the total calibrated weights should be equal to 100;
if it is more or less than 100, the net objective value is penalized by adding this difference to
the net objective value resulting in poorer solutions.
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Figure 3. Steps of experiments for calibration process.

4.4. Experimental design of calibration process

In order to calibrate the FCUGM for acquiring the best set of parameters to generate a realistic
simulation, several experiments were conducted. The experiments have eight aspects: (i)
sample data set; (ii) calibration algorithms; (iii) mode; (iv) scenarios; (v) urban growth periods;
(vi) training process; (vii) cross-validation process and (viii) calibration time. Figure 3
illustrates the process of the calibration experiments. The best sample size for calibration is
specified. Then, this data set is divided equally into two parts, one called ‘training data set’
and the other ‘cross-validation data set’. The purpose of the former is to train the performance
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of the scenario of interest, while the latter aims to verify the calibrated parameters, which were
generated by using the training data. The authors propose to calibrate the FCUGM urban
growth process under three modes, which are comprised of nine scenarios as previously
explained.

Each scenario is calibrated over three periods UGBI, UGBII and UGBI+II. The process starts
by passing the training data sets into the CALIB-FCUGM, so the model is calibrated by
three algorithms: GA, PSA and KB. Each scenario is calibrated five times for each period.
Then, the parameters of the best solution are passed into the VALID-FCUGM, where the
cross-validation data set exists, to verify the calibration results. The VALID-FCUGM is a
static model, which validates the parameters as an off-line model. This process is conduct-
ed for each scenario over the three periods. Afterwards, the performance of the scenarios in
terms of training and validation are evaluated and the best scenario in each mode is select-
ed. Next, the mean of the optimal parameters for the best scenarios from applying the
three algorithms is reported and passed into the SIM-FCUGM for simulation purposes.

4.5. Calibration data set

In terms of the calibration data set, it might be not appropriate to use the whole study area as
a training data set because the volume of data is very large and could require very high levels
of computational resources, which eventually affect the efficiency of the model. Moreover,
spatial data are often not independent: the value of one observation is likely to be influenced
by the value of another observation, so using the whole data set leads to the common problem
of spatial autocorrelation (or spatial dependence) because values of variables at one location
are more likely to be significantly associated with values at nearby locations. The high spatial
dependency of variables is more likely to affect the accuracy of analysis and might lead to
misinterpretation of the results. Random sampling is, however, a conventional way to
overcome this problem [28, 31, 36].

The authors could not find any rules in the scientific literature about the ‘best’ type and size
of random samples for calibrating urban models. An urban CA model was calibrated by Li
and Yeh [30] using artificial neural networks by training the model using a proportional
stratified random sampling method with a total of 3000 cells. The samples were proportionally
randomly selected from different land use types, 50% (1500 points) being used as a training
data set while the rest was used as test data set to verify the training results. In another study,
Li and Yeh [31] calibrated the same model but with binary urban states (urban and non-urban)
by applying the same spatial sampling method but with a total of 1000 samples, 50% for
training and the remainder for validating training results. This suggests that the sample sizes
reduce as the number of urban states decrease. There are many types of spatial sampling
methods such as random, systematic, proportional random stratified, disproportional random
stratified and clusters. It has been argued, however, that the stratified is better than the random
sample, because the latter might supply redundant observations when sample locations are
nearby to one another [36] and may exclude some smaller urban categories [31]. In any event,
systematic sampling is not appropriate for the FCUGM problem because the urban and non-
urban locations are randomly located and not systematically distributed. A random sampling
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method was used because it depends on the variable that is being investigated rather than the
size of the variable area. In the case of the FCUGM, the urban state is the state by which the
urban growth process and pattern are represented and measured. Thus, particular attention
needs to be focused on the locations of the urban state rather than non-urban ones. In this
sense, urban state locations need a more detailed monitoring or over-sampling, while main-
taining adequate coverage of the non-urban portion of the sampled area. As a result, the
proposed random sampling offers more intensity of samples for urban state locations with
60% of the total samples while 40% for the non-urban locations. With respect to the size of
sample, Rogreson [36] claimed that the size of sample should be based on the accuracy that
one seeks for estimation. Generally, the larger size of samples, the more accurate the estimation
of means and proportions. Rogreson [36] claimed that, in general, accurate estimates can
generally be obtained by choosing sample size according to Eq. 5.

2

24
Zn
W

= (5)

where n is the size of sample; Z is the confidence intervals, that is, ±1.96 for 95% confidence
interval and W is the width of the confidence interval.

Using Eq. 5, the total sample size for calibration in the FCUGM, with a 95% confidence interval
and width within ±0.02, is ≈9600 samples. Fifty per cent of the total sample data set is randomly
selected and used for training the calibration model, while the rest is used to verify the results
of training, that is, 4800 cells were used for calibrating the model and 4800 cells were used for
verifying the results of training.

5. The process of optimising algorithms within the CALIB-FCUGM

The basic theoretical foundation of GA and SA can be found in Refs. [37–40]. This section,
however, examines these algorithms in relation to finding an optimal solution from the huge,
non-linear and non-differential solution space of the FCUGM.

5.1. Genetic algorithms

In relation to GA, Figure 4 shows how the GA works within the CALIB-FCUGM. Prior to
starting the GA simulation, however, several decisions (FCUGM and GA parameters) have to
be made as shown in Figure 5. After selecting suitable GA parameters, the GA simulation starts
by generating an initial random population of a pre-specified number of chromosomes. Each
chromosome is a solution out of all of the total potential solutions and is made of a number of
genes. Each gene represents one parameter or weight value, which requires calibration. The
gene is represented by a number of bits. Given that, Table 3 displays the urban development
scenarios in the FCUGM and the number of their genetic characteristics.
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Figure 4. Flowchart of the Genetic Algorithm (GA) Process in the CALIB-FCUGM.
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Figure 5. The Parameters of the FCUGM and Genetic Algorithms (GA).

Modes and scenarios Number of genes in each chromosome Number of bits in each chromosome

Mode 1—Scenario 1 57 570

Mode 1—Scenario 2 59 590

Mode 1—Scenario 3 57 570

Mode 1—Scenario 4 65 650

Mode 2—Scenario 1 63 630

Mode 2—Scenario 2 69 690

Mode 2—Scenario 3 69 690

Mode 2—Scenario 4 93 930

Mode 3—Scenario 1 99 990

Table 3. Number of genetic characteristics in FCUGM scenarios.

The GA simulation starts by generating an initial random population (set of solutions) of a
pre-specified number of chromosomes. Subsequently, each chromosome (solution) is decoded
from bits into a certain value, that is, each parameter or weight is given a number within its
bound. This is followed by evaluating the fitness of each individual solution in the initial
population by calculating the error (according to Eqs. 1–4) between the UOM, the UCM and
reported the NOV. Then, the best solution (lowest NOV value, i.e., BNOV) in this initial
population is saved.

Spatial Optimization of Urban Cellular Automata Model
http://dx.doi.org/10.5772/64788

77



To create possible solutions for the next evolution (next population), three types of opera-
tors are applied including selection, crossover and mutation. These operators are described
in more detail below. By the selection operator, two solutions are randomly selected pro-
portion to their fitness values (based on the probabilistic function of fitness). The lower the
NOV value, the more times it is likely to be selected to reproduce in the next generation.
Next, the crossover procedure based on the crossover rate combines two solutions from the
current evolution to produce two new solutions (offspring or children) for possible inser-
tion in the next evolution. The mutation rules modify the solution by randomly altering
one or more of the values of parameters or weights based on the mutation rate. Then, the
best solution (lowest NOV value) in this evolution is saved. This iterative process continues
until the maximum number of evolutions is performed (termination rule). CALIB-FCUGM
checks whether or not the desired number of evolutions are met (termination rule), if not
the population of the first evolution will be decoded and the same iterative processes con-
tinue. If the desired number of evolutions is met, then the CALIB-FCUGM will stop and
evaluate the best solution in each evolution and select the best one and report the results of
this solution in a form. The implication of selecting different GA parameters was examined
by undertaking empirical experiments on different values of the parameters. Table 4 shows
the best control parameters of GA for FCUGM problem, which will be used for all subse-
quent experiments in this research.

GA parameters Best options

Population size Small (50)

Selection method Tournament

Crossover probability Medium (0.7)

Crossover method Single point

Mutation probability High (0.2)

Table 4. The best parameters of GA for the FCUGM problem.

5.2. Parallel simulated annealing

Similar to GA, prior to starting the PSA simulation, several decisions should be made as
shown in Figure 6. It is worth noting that the PSA differs from the conventional SA in that sets
of points (solutions) are run simultaneously in each control parameter rather than one single
solution. Figure 7 shows how the PSA works within the CALIB-FCUGM. The PSA simulation
within the CALIB-FCUGM starts at a high temperature (control parameter) by generating a
number of initial random solutions (Points) of the feasible solutions, each solution denoted as
S0. Then, the error between the UOM and the UCM is measured by computing the NOV, the
resultant value is denoted as NOV(S0), The lower the value of NOV(S0), the better the solution
S0. The objective value NOV(S0) works to minimize the error (MSE, RMSE and meet its
constraints).
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Figure 6. The parameters of the FCUGM and Parallel Simulated Annealing (PSA).

After calculating the NOV(S0), a small change in the initial solution S0 is brought about using
a perturbation mechanism by which two weights or two parameters are randomly selected
and their values are exchanged between them. This yields a new solution denoted as S1.
Subsequently, a new cost function NOV(S1) is calculated in the same way as NOV(S0). Then,
the results of the two objective functions NOV(S0) and NOV(S1) are evaluated. Whether the
new solution is accepted or not is based on the following conditions:

If the NOV(S1) < NOV(S0), the objective function has declined (the error decreased) and the
new solution S1 is accepted, and the current solution S0 is replaced with new solution,
therefore, S0 is set to S1 and S0 = S1.

If the NOV(S1) > NOV(S0), the objective function has raised (the error increased) and is
subjected to the metropolis criterion that will accept the new solution S1 according to the
probability calculated as, exp((NOV(S0) – NOV(S1))/Ti), and the computed probability is
compared to a uniformly distributed random number, R, between 0.0 and 1.0.

If R ≤ exp((NOV(S0) – NOV(S1))/Ti), the new solution is accepted, and the initial solution is
replaced with new solution.

If R > exp((NOV(S0) – NOV(S1))/Ti), the new solution is rejected, and the initial solution stays
in the same current state.

The preceding process is regarded as an iteration in SA algorithm. This process is repeated
until the predefined number of successful moves (SM) in this particular temperature step is
met. If the number of SM is met, it implies that a quasi-equilibrium state is reached at this
particular control parameter step N and is liable to be reduced by the cooling function and
cooling rate ∞ that were predefined. The processes will continue for a new control parame-
ter step N + 1 unless the termination rule is met, i.e., the final control parameter Tf = 0.1. At
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this control parameter value, the algorithm will stop and provide the global optimal solu-
tion. The implication of selecting different PSA parameters was examined by undertaking
empirical experiments on different values of the parameters. Table 5 shows the best control
parameters of PSA for FCUGM problem, which will be used for all subsequent experi-
ments in this research.

Figure 7. Flowchart of the PSA Process in the CALIB-FCUGM.
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PSA parameters Best parameters options and its values

Initial temperature Moderate temperature—MT (60%)

Cooling function Exponential cooling function—ECF

Cooling rate Slow cooling—MC (0.9)

Number of successful moves Medium number of successes—MNS (60)

Table 5. The best parameters of SA for the FCUGM problem.

5.3. Expert knowledge

In contrast to GA and PSA, by using EK the proper parameters and weights for the urban
model are derived intuitively and empirically rather than automatically. In relation to the urban
CA models, most studies calibrate parameters using a trial and error approach that combines
the experience of the analyst. For example, in Ref. [29], the weights of urban factors and urban
agglomeration are calibrated based on the analyst’s views. The effect of distance decay
parameters is calibrated empirically by Cheng and Masser [41] and Ward et al. [42]. In the
FCUGM, the EK approach is not entirely based on the analyst’s perspective. The parameters
are calibrated on the foundation of the spatial structural analysis as well as the urban planner’s
experience. Thus, the calibration is not wholly qualitative in relying on a planner’s view
because quantitative results from the initial spatial structural analysis are used. Even so, the
large number of parameters in some scenarios makes it very difficult for an expert to derive
the proper parameter values.

6. Results and discussion

In this section, the FCUGM is calibrated using real data and the meaning of the calibrated
values and the consistency of the calibration results, training and accuracy of the validation
are discussed. In order to investigate the characteristics and features of the urban growth
factors that might generate and affect the urban growth pattern of Riyadh city over the last
18 years, this period was divided into two intervals, namely UGB I and UGB II. The former
represents the urban growth between 1987 and 1997, while the latter between 1997 and
2005. This division is not arbitrary; it is approximately the two intervals stated in the Gov-
ernment resolution on Urban Growth Boundary Policy. By calibrating the FCUGM over
these two intervals, the authors would be able to assess the results and compare growth
trends. The authors argue that combining the two periods (UGBI and UGBII) into one peri-
od (UGBI+II), which represents the urban growth between 1987 and 2005, so one can cali-
brate the model over the 18 years in one time, might provide an insight into changes in
urban growth patterns. In this sense, the FCUGM was calibrated for three periods UGBI,
UGBII and UGBI+II. The calibration process was carried out on nine different scenarios for
each period, which are based on different urban growth factors and different transition
rules. Thus, one can examine what are the best scenarios over each period and to what
extent they correspond to the best scenarios over other periods.
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Figure 8. A–J: SBNOV evolution curves for (A) M1—S1, (B) M1—S2, (C) M1—S3, (D) M1—S4, (E) M2—S1, (F) M2—S2,
(G) M2—S3, (H) M2—S4, (I) M3—S1 and (J) overall mean using GA, respectively.
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As mentioned previously, the CALIB-FCUGM produced figures that show the progress of
evolution and temperature for the GA and PSA respectively. Figures 8A–J and 9A–J show
90 least-so-far standardized best net objective value (SBNOV) curves, five for each scenario
and a mean SBNOV for each scenario using GA and PSA as a result of calibration FCUGM
over the period UGB I + II. In terms of the progressive patterns, Figures 8A–J and 9A–J
show that the curves are concave, decreasing as the evolution increases in the GA and tem-
perature decreases in PSA, i.e., the SBNOV declines as the evolution and temperature prog-
ress. Nevertheless, the degree of decrease and the values of starting and ending of SBNOV
are varied from run to run, from one scenario to another and across all of the algorithms.
Some curves decrease steeply in the early stages of evolution or temperature, while others
decrease constantly in the middle or late stages. The variation in starting points of the GA
might be attributed to dissimilar genetic characteristics in the different starting chromo-
somes. In the PSA, it might be because of the initial random states at different starting
points. Broadly, convergence into the global solution (lowest SBNOV) decelerates as the
evolution and temperature progress. The variation in ending points (the ends of curves’
tails) of the GA and PSA might be because most runs converge to a narrow extent but gen-
erally do not converge altogether. This suggests that some performed better than others
did. Some were possibly trapped in local minima.

In relation to the progress of the GA’s evolution against the SBNOV, it can be seen that the
SBNOV of the GA decreases in a consistent manner. For example, the SBNOV for most
scenarios decreases exponentially with different degrees and little noise, indicating that errors
are apparently decreasing as evolution progresses. This suggests the elitism feature of the GA,
by which the best chromosome (solution) survives (passes) into the next evolution without
any change, is working well. In contrast, the PSA shows considerable variations in the
reduction of SBNOV against the PSA’s temperature in different scenarios and modes. One
possible reason for this variation is that the computation became stuck in local minima as
shown in most scenarios. This is evident in the case of Mode 1—Scenario 2, Mode 1—Scenario
3 and Mode 1—Scenario 4, where the value of SBNOV decreases sharply in the early high
temperature (first quarter) but afterwards (over the last three quarters) there was little or even
no reduction of SBNOV. With respect to the convergence to the best global solution, it can be
seen that most of the scenarios in the GA converged into very low SBNOV, broadly below 0.1,
indicating positive performance of the algorithms across most scenarios. The higher conver-
gence to the global solution are presented by Mode 1—Scenario 4, Mode 2—Scenario 4 and
Mode 3—Scenario 1, where most evolution curves converge to a very narrow range towards
curves’ tails. This supports the argument generated as a result of the uncertainty and sensitivity
analysis discussed above, that these three scenarios produced the higher certainty values. It
also suggests that the structure of these scenarios and the urban growth factors embedded in
them are most appropriate for understanding urban growth processes. The convergence to the
best global solution in PSA was, however, varied without any apparent pattern of convergence.
The variations were not only evident by scenarios but also by running within a single scenario.
For example, Mode 1—Scenario 4 converges to a different solution with different SBNOV in
each run, where the SBNOV ranges between 0.1 and 0.5. Thus, it can be deduced that PSA
yielded poor solutions with inconsistent convergence in the global solution. However, only
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Mode 2—Scenario 3 and Mode 2—Scenario 4 showed better convergence into low SBNOV for
most of their scenarios.

Figure 9. A-J: SBNOV evolution curves for (A) M1—S1, (B) M1—S2, (C) M1—S3, (D) M1—S4, (E) M2—S1, (F) M2—S2,
(G) M2—S3, (H) M2—S4, (I) M3—S1 and (J) overall mean using PSA, respectively.

Figure 10A–F shows a comparison of the mean of Standardized Best Net Objective Value
(SBNOV) in terms of all runs, training and validation of the optimum solution found by
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running CALIB-FCUGM five times for each scenarios using GA, PSA and EK. It can be seen
from Figure 8A–F that, while there is some variation, there is broad correspondence in the
performance of calibration between the algorithms, in terms of overall accuracy and validation.
In terms of algorithm, the GA broadly produces highly consistent results with relatively low
variations among different runs for each scenario. It can easily be observed that Scenario 4 in
Mode 1, Scenario 4 in Mode 2 and Scenario 1 in Mode 3 account for by the lowest SBNOV
generated from different runs. Scenario 2 in Mode 1 and Scenario 3 in Mode 2 yield the worse
solution with high SBNOV in most runs.

Figure 10. (A, C and E): SBNOV for the training data using GA, PSA and EK respectively. (B, D and F) SBNOV for the
validation data using GA, PSA and EK, respectively.

In contrast, PSA produced relatively inconsistent results, which led to difficulties in observing
the accuracy of each scenario. In addition, GA and EK have a similar pattern of accuracy across
scenarios, with little variation in magnitude. For example, they gained similar levels of SBNOV
accuracy in Mode 1—Scenario 1, Mode 1—Scenario 2, Mode 1—Scenario 4, Mode 2—Scenario
1, Mode 2—Scenario 2 and Mode 3—Scenario 1 but differ slightly in the remaining scenarios.
This suggests that the GA was capable to some extent to understand the urban growth process
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and the underlying relationship between input factors in a way similar to human experts. It
also suggests that the two algorithms have similar agreement about the efficiency of scenarios
in terms of modelling urban growth. In contrast, the results of the PSA do not show results
corresponding to those of the GA or EK. This might suggest that the complexity of the urban
process is beyond the algorithm’s capability as will be seen when we come to assess the
accuracy of results.

Figure 11. (A–C) Urban observed map (UOM) depicting urban expansion of Riyadh city during three periods: (A)
1987–1997, (B) 1997–2005 and (C) 1987–2005.
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Figure 12. Performance of SIM-FCUGM for UGB I (1987–1997) period: (A) simulated image for scenario M1—S4; (B)
simulated image for scenario M2—S4 and (C) simulated image for scenario M3—S1.

With respect to the accuracy of scenarios, it can be seen that Mode 3—Scenario 1 produced the
higher levels of accuracy across all three algorithms, while Mode 2—Scenario 1 generated the
worst solution. The high accuracy of Mode 3 might be attributed to the structure of this
scenario, which includes three fuzzy variables in each fuzzy rule, that is, each fuzzy rule
includes all of the three urban growth factors (TSF, UAAF and TCF). In addition, this high
accuracy of Mode 3—Scenario 1 agrees with the results of uncertainty and sensitivity analysis,
in which this scenario had the lowest uncertainty compared with others. The worst solution
was produced by Mode 2—Scenario 1. This might be related to two factors: (i) the structure of
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the scenario and (ii) the type of driving forces employed in this scenario (which are TSF and
TCF), that is, these two forces are not capable in this scenario of understanding the urban
process of Riyadh. The low performance of this scenario is also revealed in the uncertainty and
sensitivity analysis, indicating a weakness in structure of this scenario. Figure 11 shows the
urban observed map for 1987, 1997 and 2005, while Figures 12–14 show the simulated urban
growth during the three periods UGB1: 1987–1997, UGB2: 1997–2005 and UGB3: 1987–2005,
respectively, that generated from THE best scenarios: M1—S4, M2—S4 and M3—S1.

Figure 13. Performance of SIM-FCUGM for UGB I (1987–2005) period: (A) simulated image for scenario M1—S4; (B)
simulated image for scenario M2—S4 and (C) simulated image for scenario M3—S1.
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Figure 14. Performance of SIM-FCUGM for UGB I (1997–2005) period: (A) simulated image for scenario M1—S4; (B)
simulated image for scenario M2—S4 and (C) simulated image for scenario M3—S1.

In relation to the validation of the calibration results, it can be observed that the GA and
EK show validation results that are very close to one another and correspond closely to the
training results, whereas the PSA presents lower matching results. For example, the GA
and EK have identical training and validation results in all scenarios except Mode 2—Sce-
nario 1 and Mode 2—Scenario 3 in GA and EK, respectively. In the PSA, only four scenar-
ios match the training results including: Mode 1—Scenario 1, Scenario 2, Scenario 4 and
Mode 2—Scenario 1, and the remaining five scenarios contradict one another. This implies
that the GA and EK are better than the PSA, indicating that they have the capability to
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work well not only for the data that they trained with but with other data sets. Thus, in
terms of generalization, it might be deduced that the CALIB-FCUGM by using the GA or
EK can be used to calibrate different data sets from different times and locations.

7. Conclusion

In this chapter, theory underlying the CALIB-FCUGM has been applied to calibrate the
FCUGM for Riyadh in Saudi Arabia. This chapter can broadly be divided into three main
parts: uncertainty and global sensitivity analysis; calibration of the FCUGM; and results
and discussion of calibrating the FCUGM. This chapter began by undertaking uncertainty
and global sensitivity analysis on the scenarios in the FCUGM, which showed that the dif-
ferent structures of scenarios have different levels of uncertainty. It was found that Mode 3
—Scenario 1, Mode 2—Scenario 4 and Mode 1—Scenario 4 generated the best performance,
with the lowest uncertainty values, where 90% of the occurrences (iterations) of the Monte
Carlo simulation for those scenarios gained the lowest error in terms of the objective func-
tion of the CALIB-FCUGM. After that, the technical stages of the calibration of the FCUGM
were examined. These included the feasible solution, objective function, experimental de-
sign and calibration data set. This was followed by outlining the detailed processes of the
optimization algorithms (GA, PSA and EK) within the CALIB-FCUGM. Next, empirical ex-
periments were conducted to investigate the best control parameters of the GA and PSA
for the FCUGM problem. It was found that the best GA and PSA parameters for the
FCUGM problem had some similarity but differed with respect to problem in geography
and non-geography. Finally, the FCUGM was calibrated under nine scenarios over three
periods using three optimization algorithms. It was revealed that scenarios Mode 3—Sce-
nario 1, Mode 2—Scenario 4 and Mode 1—Scenario 4 produced the best performance
among the nine scenarios; this result is similar to that found in the uncertainty and global
sensitivity analysis. The first reason for this is that the driving forces (TSF, UAAF or TCF)
were embedded in those scenarios. This indicated that the spatial patterns of urban growth
for Riyadh can be better understood by the three forces all together. The second reason can
be attributed to the structure of the fuzzy transition rules, for example, Mode 3—Scenario
1, embedded all the three driving forces in each fuzzy rule and produced the most accurate
results compared with others scenarios where their rule structure embedded only one or
two driving forces.

It was found that the GA followed by EK produced better and more accurate and consistent
results compared with PSA. This suggests that the GA was able to some extent to understand
the urban growth process and the underlying relationship between input factors in a way
similar to human experts. It also suggests that the two algorithms (GA and EK) have similar
agreement about the efficiency of scenarios in terms of modelling urban growth. In contrast,
the results of the PSA do not show results corresponding to those of the GA or EK. This suggests
that the complexity of the urban process is beyond the algorithm’s capability or could be due
to being trapped in local optima. Investigation into the CALIB-FCUGM results over different
urban growth periods indicated that, where the spatial pattern is more compact, the calibration
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results are more accurate. The calibration results over the period UGB I + II followed by UGB
I produced better results compared with the one over UGB II. This can be understood due to
the characteristics of the spatial pattern of urban growth for each period. UGB I+II followed
by UGB I experienced edge expansion (relatively compact pattern), while UGB II faced in-
filling development (dispersed compact pattern).

To sum up, CALIB-FCUGM was to a large extent able to calibrate the FCUGM over differ-
ent growth periods under different scenarios using different algorithms. Although some
algorithms and scenarios showed average performance, others revealed high capability for
calibrating the model well. With this satisfactory calibration of the FCUGM for the urban
growth of Riyadh by using CALIB-FCUGM, these calibrated parameters will be passed into
the SIM-FCUGM to simulate the spatial patterns of urban growth of Riyadh.
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