
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 5

Microbial Enhanced Oil Recovery

Aliya Yernazarova, Gulzhan Kayirmanova,

Almagul Baubekova and Azhar Zhubanova

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64805

Provisional chapter

Microbial Enhanced Oil Recovery

Aliya Yernazarova, Gulzhan Kayirmanova,
Almagul Baubekova and Azhar Zhubanova

Additional information is available at the end of the chapter

Abstract

The ever-rising global demand for energy and the issue of large volumes of unrecov-
ered  oil  after  primary  and  secondary  oil  production  operations  are  driving  the
development  and/or  advancement  of  enhanced  oil  recovery  (EOR)  techniques.
Conventional EOR processes include thermal, immiscible and miscible gas injection,
chemical, and microbial enhanced oil recovery (MEOR), among others. This chapter
provides an overview of MEOR including its history, strata microflora, mechanisms of
MEOR for oil recovery, and a brief recount of field MEOR applications.

Keywords: microbial enhanced oil recovery, MEOR, microorganisms, strata micro-
flora, biosurfactants, oil reservoirs

1. Introduction

The  necessity  of  improving  and/or  advancing  the  current  enhanced  oil  recovery  (EOR)
processes to make them more efficient has attracted the attention of researchers and oil field
operators.  Thus,  over the last  few decades,  this  problem has received constant attention
resulting in slow but steady growth of the average oil recovery factors. For instance, at present
the worldwide average recovery rate is about 30%, whereas in the USA, the average oil
recovery factor is 39%. However, many experts believe that in the foreseeable future the
recovery factor may well reach 50–60% and even 70–80% [1].

The development of an oilfield refers to the process of displacing the accumulated liquid and
gas hydrocarbons in the reservoir towards production wells. Oil is produced initially using
the natural driving energy of the reservoir (i.e., primary recovery operations), or by introduc-
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ing energy into the reservoir during secondary oil recovery (i.e., waterflooding or gas flooding),
as soon as the natural reservoir energy is depleted.

Particularly, in Kazakhstan most of the hydrocarbon deposits have already been discovered
and commercially produced. Currently, fewer and fewer drilling sites in those mature
reservoirs are of interest from the commercial standpoint. In this regard, the residual oil left
behind in these mature hydrocarbon deposits after primary and secondary oil recovery offers
an opportunity for the implementation of EOR processes, including the application of
microbial enhanced oil recovery (MEOR) technology.

2. Review on MEOR

2.1. History of MEOR

In 1926, J. W. Beckman [2] came to the conclusion that it was necessary to develop additional
methods to augment oil recovery beyond primary and secondary oil recovery processes.
Therefore, he proposed the utilization of microorganisms as one of the solutions to the oil
recovery issue. Later on, the use of microorganisms for oil recovery enhancement was pa-
tented by C. E. ZoBell in 1946 [3], since then, the MEOR process has been validated by nu-
merous studies and successful fields tests, the first of them carried out in Arkansas, USA, in
1954 [4].

Since the 1970s, intense research efforts on MEOR have been made in the USA, USSR, Cze-
choslovakia, Hungary, and Poland. The oil crisis in the 1970s further aroused the interest in
MEOR research in more than 15 countries. For instance, in 1976, the Soviet Government enacted
a special regulation “…concerning measures on achieving the most efficient oil recovery
processes.” This regulation defined the target volumes of additional oil recovery that were
required using tertiary enhancement methods and provided economic incentives to encourage
oil-production enterprises [5].

Since year 1970 until the 2000s, microbial ecology and deposit characterization were the focus
of MEOR research. By 1990, MEOR reached interdisciplinary technological status. In 2007, a
review of 322 MEOR projects in USA showed that 78% of the total number of projects were
successful in enhancing oil recovery; while no cases of lowered oil recovery were revealed [6].
At present, there is a grown interest in the application of MEOR to enhance oil production
from depleted reservoirs, because its low capital cost and environmental friendliness.

MEOR mechanisms are the same mechanisms obtained from other chemical enhanced oil
recovery (EOR) methods; however, MEOR presents the advantage that microbial metabolites
are directly produced in the reservoir rock formation, which makes them more effective.
Furthermore, microorganisms metabolize different hydrocarbons at different rates [6].

Figure 1 presents a breakdown of the worldwide recoverable petroleum reserves by type and
region prepared by Meyer and Attanasi [7] and Schmitt [8].
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Figure 1. World’s current recoverable petroleum reserves by oil type and region in billions of barrels. From Meyer and
Attanasi [7] and Schmitt [8].

Worldwide accumulations of heavy oil and bitumen are about five times higher than the
reserves of light conventional oils. For instance, heavy oil resources are an essential part of the
oil industry in Kazakhstan as well as in a number of other oil-producing countries.

The largest reserves of bitumen and heavy oil are located in Canada and Venezuela; while
significant reserves are also found in Mexico, the United States, Russia, Kuwait, and China [9].

Kazakhstan is currently experiencing a period of late-stage development. Oil fields under
waterflooding have reached a high water cut ranging from 80 to 90%, while a large volume of
undeveloped oil reserves (up to 60–-70%) are located in deep oil reservoir formations. In
addition, most deposits of Kazakhstan are characterized by high viscosity oils and complex
geological structures [10].

2.2. MEOR: Challenges and Opportunities

Primary and secondary oil recovery processes achieve on a worldwide basis an average re-
covery of 33% of the original oil in place (OOIP); while the unrecovered oil (67%) might be
retained in the reservoir by viscous and/or capillary forces. Conventional chemicals, such as
solvents and surface-active compounds (surfactants) are used during chemical EOR applica-
tions. Solvents reduce the oil viscosity to improve the oil mobility by overcoming viscous
forces; while surfactants reduce the interfacial tension between oil and rock or oil and water
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overcoming capillary forces. These chemicals are added to the injection water and transport-
ed within the reservoir during water flooding, however, the chemicals reach only the places
where oil has already been displaced by water; furthermore, the chemicals could be partial-
ly consumed and/or retained within the rock formation before they reach the target area in
the reservoir for their intended use [6].

The injection of solvents and surfactants into some reservoirs have yield unsatisfactory results
because the chemicals failed to contact the residual oil for the required time period, which is
needed to achieve a long-term effect. Another problem is the natural heterogeneity of the
reservoirs; therefore, the injected chemicals inevitably flow along the paths of least resistance
(i.e., high permeability zones, natural fractures, etc.) where the saturation of residual oil is
usually the lowest.

It has been known for decades that specifically selected microorganisms are capable of
metabolizing hydrocarbons producing organic solvents, such as alcohols, aldehydes, surface-
active fatty acids, and other metabolites which can interact with the crude oil improving its
fluidity. Other oil production issues such as the presence of paraffin, emulsions, and corrosion
problems can also be controlled using microorganisms. For instance, extensive research has
been conducted on the use of biosurfactants (BS) for enhanced oil recovery applications [11–
14].

Prior to the application of MEOR technologies, the projects are assessed to determine the
compatibility of the crude oil and reservoir properties with MEOR taking into account the
physicochemical properties of the crude oil, reservoir production performance, and reservoir
properties (i.e., temperature). At the preliminary stage, reservoir fluid samples are collected
and tested for compatibility with the MEOR systems. The first stage is the identification of the
indigenous hydrocarbon-consuming bacteria, which is already adapted to the in situ reservoir
conditions; after which the best action strategy for each project is designed and developed [4,
6].

MEOR can be applied on individual wells as follows: (1) from the well being treated or (2) from
the target well and adjacent wells of the same reservoir. The MEOR solution is injected into
adjacent wells in the same way as water is injected into the reservoir. The volume of the MEOR
biomaterial to be injected is calculated based on the pore volume of the target reservoir. The
solution is mixed and pumped through the injection well followed by the injection of water to
drive the biological solution into the oil saturated zones. Then, the treated well is shut in for
the required period of time (normally 24 h to 7 days) after which oil production is resumed.
This procedure is repeated every 3–6 months to enable microorganisms to move deeper into
the deposit to oil saturated zones [6].

Some of the general advantages of MEOR are outlined as follows:

• Increase of the productivity of the oil fields [9];

• Increase in the total oil produced and more efficient operation of wells and oil fields;
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• Increase of the viscosity of the formation water due to the upsurge of biomass concentration
and the microorganisms’ metabolic products, such as soluble biopolymers, which reduces
the mobility of the formation water within the formation rock [9];

• The MEOR set up is less expensive, because the injected bacteria and nutrients are inex-
pensive [15, 16];

• Low energy input requirement for microbes to produce MEOR agents [16];

• Reduced of the operations downtime [9];

• MEOR is environmentally friendly, because microbial products are biodegradable [15, 16].

In terms of the quality of the oil produced, some benefits are [9]:

• An increase of light alkanes <C20;

• Reduction of the average content of C20–C40 alkanes;

• Biodegradation of high molecular heavy hydrocarbon components;

• Splitting of aromatic ring structures;

• Splitting of phenolic ring chemical structures;

• Transformation of sulfur-containing organic compounds;

• Emulsification of crude oil that can be easily mobilized to the production well.

MEOR methods can be divided into two main groups:

1. Ex-situ production of the MEOR metabolites such as biosurfactants, biopolymers, and
emulsifiers using exogenous or indigenous bacteria. In this case, microorganisms are
grown using industrial fermenters or mobile plants and then injected into the oil formation
as aqueous solutions.

2. In-situ production of the MEOR metabolites. In this case, the formation of metabolites is
the result of the microbiological activity that takes place directly in the reservoir. The
MEOR metabolites are produced by indigenous bacteria or by exogenous bacteria that are
injected into the reservoir.

In-situ MEOR can be divided into two categories depending upon the method of injection of
microorganisms and nutritional media (e.g., molasses, whey, and other waste food or chemical
products) into the reservoir [17]. The first category consists in the in-situ stimulation of the
natural indigenous microflora of the reservoir by means of injecting nutrients into the reservoir.
The alternative (second category) is the injection of microbial cultures (exogenous or
indigenous) along with nutrients; which is the preferred mode of application in the field. In
any case, the development of these methods is impossible without the knowledge of the
physicochemical and microbiological conditions in the oil bed. Oil recovery by water flooding
is characterized at later stages by the formation of a mature biocenosis. The growth of this
integrated microorganism community depends on the availability of nutrients.
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The in-situ production of metabolites is carried out in two stages. First, water and oxygen are
pumped into the formation as a water-air mixture containing mineral salts, nitrogen, and
phosphorous to activate the indigenous microflora. In the presence of water and air, aerobic
bacteria oxidize hydrocarbons producing low molecular weight organic acids (acetic, pro-
pionic, butyric, etc.), alcohols (methanol and ethanol), biosurfactants, and carbon dioxide,
which increase the pressure in the reservoir [18–20].

In the second step, oxygen-free water is injected into the reservoir to activate anaerobic
indigenous bacteria that metabolize crude oil to acids, and gas (i.e., methane, carbon dioxide).
The accumulation of these biogases increases the reservoir pressure. If the pressure in the
reservoir is high enough, methane could be dissolved into the liquid hydrocarbon phase
reducing its viscosity. Similarly, carbon dioxide could also reduce the oil viscosity if the
pressure in the formation allows the miscibility of CO2 into the bulk oil phase. A reduction of
the oil viscosity improves the oil-displacing properties through the reservoir increasing oil
production [14]. Furthermore, CO2 could react with the minerals in the rock and dissolve
carbonate increasing the permeability of the formation rock.

In the oil industry, MEOR has been applied for several uses besides enhanced oil recovery,
such as well stimulation; remediation of oil spills in soil and ground water; and to clean
borehole, down hole equipment, and piping, among others.

2.3. MEOR process components

The MEOR process consists of two essential components: hydrocarbon-consuming microor-
ganisms and a nutritional medium as the source of nitrogen and phosphorus. Hydrocarbon-
consuming microorganisms can be exogenous or indigenous. Indigenous are isolated for
characterization from the hydrocarbon deposit where they will be employed.

The use of industrial byproducts as nutritional media such as molasses [21–24], corn steep
liquor [25], and cheese whey [24] has been documented. The injection of nitrate aqueous
solution at a concentration of 1.5 g/l of injected water has been recommended to suppress the
activity of sulfate-reducing bacteria [22]. Reduction of the cost of nutrients during the appli-
cation of MEOR processes can be achieved by injecting only nitrogen and phosphorous
sources. Nitrogen is an essential nutrient for bacterial growth. Likewise, phosphorous is
another key nutrient. If phosphorous nutrients are lacking, microbial cells cannot synthesize
enough ATP for their metabolic activity [26].

2.4. Reservoir microflora

Microbial communities in oil rock formations are dated as the Earth’s most ancient biocenoses,
which sank to great depths along with organic residues and biogenic sludge.

Numerous varieties of microorganisms have been isolated and detected from different oil
reservoirs such as sulfate and sulfur reducers hydrogenotrophic and heterotrophic methano-
gens [27–30], fermentative bacteria [31, 32], hydrocarbon and oil-oxidizing bacteria [19, 33],
iron and manganese reducing microbes [34].
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The presence of indigenous microflora and exogenous microorganisms in water and oil-
bearing deposits has been demonstrated [3]. Exogenous microorganisms have been introduced
into the reservoirs during drilling and flooding (i.e., secondary and tertiary oil recovery)
operations. In the absence of molecular oxygen (i.e., absence of a terminal electron acceptor),
microbial hydrocarbon decomposition is possible through anaerobic respiration using nitrate,
iron oxide, carbon dioxide, or sulfate. Interspecific electron transfer is also possible with
methanogenic or sulfate reducing bacteria as biological acceptors. In oil strata with tempera-
tures between 20 and 80°C, there are complex microbial communities made up by fermentative
bacteria and methanogens that can oxidize hydrocarbons and reduce sulfur, sulfate, and iron.
The microbial count in high temperature oil reservoirs is low.

The studies of microbial communities conducted on samples of formation water from the
Zhetybay and Kulsary oil fields located in Western Kazakhstan gave total aerobic counts of 1.8
106 and 25.1 106 cells/ml, respectively. The number of aerobic microorganisms present in the
water samples from the Zhetybay field is lower than the bacterial count from the Kulsary field
by an order of magnitude. While the count of anaerobes is 0.38 105 cells/ml for the Zhetybay
field sample and 0.5 102 cells/ml for the Kulsary field. These observations correlate well with
the respective depth of each reservoir; the water samples from the Kulsary field were collected
at a depth of 250 m; while the water samples of the Zhetybay field were collected at a depth
of 1900 m, therefore it is expected that at deeper reservoirs conditions (i.e., Zhetybay field)
anaerobic microorganism would adjust better. It has been reported that in deep water and oil-
bearing strata the total bacterial count is as high as 10 million cells/ml [35].

The effect of microorganisms is significant if they are numerous and physiologically active.
An arbitrary threshold for bacteria is estimated at 1 million/1 g substrate since it is only in such
quantities that they can have significant ecological impact. For each ecological factor (temper-
ature, amount of nutrients, concentration of microcells, and trace elements), there are optimum
values which favor the growth of an organism and the extreme values at which growth is
suppressed. At values close to the extremes of the preferred range for a given organism, its
survival is still possible though its growth is limited because the organism is under physical
stress conditions. Microbiological studies on bacteria obtained from the Zhetybay and Kulsary
hydrocarbon deposits show that aerobes play an important ecological role since they are found
in large numbers and in physiologically active states [35].

Exogenous bacteria such as allochthonic bacteria are present in oil reservoirs, which were
introduced during water injection creating a mixture of exogenous and indigenous microflora.
At reservoir depths of 1–3 km, thermophilic microbial communities are found. These microbial
communities are made up of microorganisms commonly found in deep reservoirs and bacteria
normally encountered in shallow areas of the reservoirs (i.e., <1 km) but in lower numbers.

For instance, the Zhetybay and Kulsary oil reservoirs contain several groups of microorgan-
isms including spore-forming bacteria, Micromycetes, Pseudomonas, Bacillus, Enterobacteriaceae,
with the most prevalent being the spore-forming bacteria whose counts reach 0.12 105 cells/ml
[35].
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Total bacterial counts and the abundance of certain groups of aerobic and anaerobic bacteria
are remarkably lower in oil reservoirs than the count of bacteria determined in the water used
during waterflooding. The reason is that not all microorganisms survive extreme reservoir oil
conditions. Some bacteria may be immobilized on the surface of the rocks lowering the number
of bacteria in the liquid phase. Viable cells of methanogenic microorganisms have been found
in reservoir fluids (i.e., formation brine) with salinity as high as 200 g/l, however, these and
other microorganisms were also present in large numbers in substantially desalinated fluids
[35].

Microbial community in oil reservoirs can be considered as closed and semiclosed systems,
because they exist in an environment hindered from water exchange, which is characterized
by a slow mass transfer at constant temperature in the absence of atmospheric air and sunlight.
In this ecosystem, oil is the main source of energy for the microbial community. Molecular
nitrogen and ammonium nitrogen are sufficient to meet the needs of the microflora. The
phosphorus content is small, which limits the biogenic processes in this ecosystem. Therefore,
microbiological processes proceed slowly due to low water exchange and lack of nutrients.
The development of oil reservoirs by water injection introduces dissolved oxygen into the
system that activates microbiological processes and as result oil biodegrades [36].

Aerobic microorganisms have been found in formations with temperatures ranging from 20
to 70°C and pH ranging from 6.0 to 8.4. Some of these aerobic bacteria have been identified as
Rhodococcus ruber, Arthrobacter oxydans, Kocuria rosea, Gordonia rubropertincta, Cellulomonas
cellulans, Bacillus subtilis, B. cereus, Pseudomonas fluorescens [14, 22, 37–40]. Thermophilic
microorganisms can grow at oil reservoir temperatures ranging from 40 to 70°C, at pH ranging
from 6.0 to 7.8, and salinity concentrations from 0 to 5% NaCl. In high temperature oil
reservoirs, hydrocarbon-oxidizing bacteria are a common component of the biocenoses in the
bottom-hole areas of the water injection wells through which dissolved oxygen enters the
stratum. Hydrocarbon-oxidizing bacteria found in these locations are often spore-forming,
which allows survival in extreme environmental conditions [35].

Wang et al. isolated three thermophilic hydrocarbon-degrading species, such as Bacillus sp.,
Geobacillus sp., and Petrobacter sp. that could tolerate 55°C of temperature [41].

Thermophilic bacteria were isolated from a reservoir, located at Maracaibo Lake, Venezuela,
which has temperatures ranging from 60 to 80°C and pressures ranging from 1200 to 1500 psi
[42]. Moderately, thermophilic spore-forming sulfate-reducing bacteria (Desulfotomaculum and
Bacillus) have been identified in the Zhetybay high temperature oil field in Kazakhstan [35].

The anaerobic microflora present in oil reservoirs are commonly bacteria of the genera Bac-
teroides, Clostridium, Thermoanaerobacter, Thermococcus, Thermotogales [43], Petrotoga [44], Ther-
motoga [45], Desulfotomaculum [46], Caminicella [47], Geosporobacter [48]. Screening for
microbial consortia from some Omani oil wells by Al-Bahry et al. [49] showed a total of 30
genera and 69 species of microorganisms. In this study, most of the detected genera were
found to be anaerobic, thermophilic, and halophilic and some of them were documented to
be suitable candidates for MEOR.
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2.5. MEOR oil recovery mechanisms

During the MEOR process, the components are mixed at surface facilities and injected into the
oil reservoir. Inside the reservoir, MEOR-bacteria are transported by the injected water and
accumulate in porous zones at the oil/rock and oil/water interfaces. Bacteria utilize very small
amounts of oil and produce metabolites such as solvents, surfactants, acids, and carbon
dioxide. These bioproducts interact with the oil in the reservoir to reduce the oil viscosity,
interface tension at the oil/rock and oil/water interfaces, improve rock permeability by
removing paraffin, mud, and other debris that plug the porous media [15, 50]. Microbial cells
are continuously generated as well as the in-situ production of metabolites. The prolong
interaction of metabolites with the oil in the reservoir, changes the oil properties in such a way
that immobile unrecoverable oil is converted into movable oil that can flow to the production
wells increasing oil output accordingly.

Microbial degradation of oil, which is a complex chemical compound, is the result of comet-
abolism of microorganisms where the metabolism’s products of the hydrocarbon-oxidizing
bacteria serve as the substrate for other physiological groups in the reservoir. Hydrocarbons
are decomposed to produce fatty acids that can be utilized by other microorganisms [51].

The main mechanisms acting on oil recovery by MEOR are summarized as follows:

a. Formation of bioacids that could dissolve some of the minerals (i.e., clays, carbonates, etc.)
contained in the formation rocks. Rock dissolution increases the porosity and permeability
of the reservoir [52–54];

b. Production of solvents and biogases, leading to lower oil viscosity that facilitates oil
displacement through the porous media [55–58];

c. Formation of biosurfactants, biopolymers and other compounds, that could interact with
the crude oil by emulsifying the oil, reducing its viscosity, and reducing the interfacial
tension at the oil-water interface [59–63];

d. Production of microbial biomass that could change the wettability of the oil rock [55, 64].

One of the most important functionalities of oil-oxidizing microorganisms is their capability
of using hydrocarbons to produce biosurfactants, which emulsify hydrocarbons. The hydro-
carbon-oxidizing microorganism’s strains that are very active in producing biosurfactants are:
Pseudomonas aeruginosa, Bacillus subtilis, Mycobacterium rhodochrous, Rhodococcus erythropolis,
Candida lipolytica, and Torulopsis gropengiesseri. Microorganisms belonging to different genera
have the ability to metabolize hydrocarbons including more than 300 fungal, bacterial, yeast,
and actinomycetes strains. The hydrocarbon-oxidizing ability is quite common in bacteria
belonging to the genera Mycobacterium, Rhodococcus, Pseudomonas, Micrococcus, and Bacillus. In
fungi and yeast-like organisms, this faculty is often found in nonsporogenic Candida, Tricho-
sporon, and Exophialia. The vast majority of Rhodotorula species is also capable of oxidizing
hydrocarbons [65–69].

The implementation of MEOR requires low capital investment; while it offers high efficiency,
and environmental friendliness. The initial phase of the MEOR process is the partial oxidation
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of residual oil in the bottom-hole area that yields bioproducts such as carbon dioxide, low-
molecular-weight fatty acids, and other organic compounds. Further, when these bioproducts
are transported by the injected water into the anaerobic zones of the reservoir, methanogenic
microorganisms are activated. Production of methane is important because this is an easily
extractible gas that can be dissolved into the oil phase (i.e., if the reservoir pressure is high
enough) improving the oil mobility [70].

During waterflooding, dissolved oxygen in the water is delivered to the strata. This oxygen is
rapidly consumed at the bottom-hole area during the microbial oxidation of residual oil, which
causes the stimulation of anaerobic bacteria, particularly, methanogens, in the oxygen-free
zone of the stratum [70]. The number of aerobic hydrocarbon-oxidizing and oligocarbophilic
bacteria grows to a less extent, however, at the same time the content of anaerobic metabolism
products in oil formation waters increases significantly. During this process, carbonate and
sulfate content increases.

Foam-forming organic substances that reduce the interfacial tension at the oil/water interface
by a factor of 100 have been identified to be caused by microbiological oil oxidation products
in the bottom-hole area [71].

Oil recovery by waterflooding can be viewed as a natural fermenter, where continuous
microbial cultures could be maintained. These microbial cultures could be activated by the
injection of microorganisms and nutritional medium components. In this case, residual oil
serves as the main substrate for microorganisms; while in the bottom-hole area, a specific
microbial community is formed whose activity can be regulated [71].

The temperature of the oil reservoirs determines the types of microbial communities. In the
bottom-hole areas of the injection wells, the temperature corresponds to the temperature of
the injected water. In high temperature reservoirs, as is the case of the Zhetybay oil field, cold
water is injected, therefore mesophilic bacteria prevail at these conditions compared to the
thermophilic communities of the Uzen oil field in Kazakhstan, where hot water is injected [71].

The implementation of MEOR starts with the addition of biological materials to the injection
water. Microorganisms enter the reservoir mixed with the injected water through the existing
flooding system without affecting the injection rate or pressure. The implementation of MEOR
process requires very small modifications, if any, to the existing water injection equipment, so
that the flooding process is not interrupted [6].

After the implementation of the MEOR project, it is continuously monitored through bacteria
population growth and the oil output rate within certain period of time. The hydrocarbon-
oxidizing bacteria population is kept under continuous surveillance after the injection of
MEOR fluids. The population size is compared to that of the indigenous hydrocarbon-
oxidizing bacteria before the beginning of the process. Normally, such population starts to
grow slowly. In addition, the fluids produced are also monitored for the presence of hydro-
carbon-oxidizing bacteria in order to assess how far the microorganisms have moved into the
reservoir after injection [6].

Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview156



2.6. Field tests applications of MEOR

There is extensive MEOR published literature on laboratory research data and pilot field trials.
Although at present widespread commercial use of the MEOR technology has not taken place
yet.

Biotechnological methods for increasing oil recovery have to solve a number of practical
problems [72], which are summarized as follows:

a. The preparation of suitable microorganisms and microbial associations highly active at
the specific conditions of the reservoir, including the composition and properties of the
crude oil. Most of the microorganisms that adapt to the conditions of the field could have
little effect on the composition and properties of the crude oils. Industrial applications
require new strains of microorganisms with the following qualities: tolerant to high
temperatures and salinities concentration, as well as capable of synthesizing surfactants
and polysaccharides.

b. The establishment of techniques to create appropriate reservoir conditions to favor the
growth and activity of specific microorganisms. This requires further exploration of ways
to introduce additional nutrients, primarily nitrogen and phosphorus compounds.

c. The development of cost-effective methods for sulfate reduction. Reservoir conditions are
ecological niches for sulfate-reducing bacteria. It is necessary to control the generation of
hydrogen sulfide because it creates the problem of a toxic aggressive environment,
corrosion, higher sulfur content in the crude oil, toxic products, and other undesirable
consequences.

Maudgalya et al. [73] reviewed 407 MEOR field trials worldwide. The field trials were classified
according to the following parameters: reservoirs’ lithology and properties, microorganisms,
nutrients, type of test, and type of recovery mechanism. From the total 407 field trials, 333 field
trials were applied following the well stimulation method, 26 of the trials were conducted
using the waterflooding and 44 field trials were conducted as single well (huff-puff scheme)
applications; while details of the application method for the remaining four field trials were
not provided. This survey indicated that the primary mechanisms for MEOR were permea-
bility profile modification, increase of capillary number (i.e., biosurfactants, alcohols, biopol-
ymers, and acids), biodegradation of heavy crude oil components making the oil less viscous,
and the swelling of the oil due to the absorption of biogas (i.e., CO2 and CH4) within the bulk
oil phase.

Careful review of the common characteristics and results observed from these 407 MEOR field
trials indicate that successful field trials were obtained at the following conditions:

• Minimum reservoir permeability of 75 md to ensure propagation of bacteria and nutrients
deep into the reservoir;

• Reservoir temperature <200°F;

• Brine salinity <100,000 ppm;
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• Bacteria species commonly used: anaerobic bacteria (i.e., Clostridia). The bacterium Clostri-
dium showed to be effective in both sandstone and carbonate reservoirs. Bacillus (i.e., aerobic)
species were also used or combination of them. The use of indigenous bacteria is strongly
recommended because they only need the supply of nutrients and have a greater chance of
growing at reservoir conditions, making the process less costly;

• Nutrient: the most common organic nutrient used was molasses; while phosphorus and
nitrogen fertilizers were the most common inorganic nutrients;

• Oil saturation: ranging between 45 and 70%;

• Candidate fields most suitable for MEOR are waterflooded fields with relatively high oil
saturations [73].

The Activated Environment for Recovery Optimization (AERO) technology has been devel-
oped for improving waterflood performance. The AERO system is a microbial process
designed to increase oil recovery during waterflooding by the following mechanisms: im-
proved sweep efficiency due to microdiversion of fluid pathways at the pore level, interfacial
tension reduction, and residual oil mobilization (i.e., biosurfactants). This technology has been
successfully implemented by Statoil offshore Norway and in the Stirrup field in southwest
Kansas, USA. Highlights of this technology are minimum to none capital investment with very
low risk for implementation and high performance efficiency at low operational costs [74].

Research conducted to establish the potential for MEOR application at the heavy oil Schrader
Bluff formation on the North Slope of Alaska indicated that the viable mechanisms for driving
incremental heavy oil recovery are:

• Wettability alteration;

• Permeability modification causing improvement of reservoir conformance;

• Some reduction of the interfacial tension between oil and water.

This study also demonstrated that the most important criteria for selecting a reservoir for
MEOR applications are the reservoir temperature and formation brine salinity, which must
favor bacterial growth. Furthermore, an effective MEOR application depends on the optimal
use of the appropriate microbes and nutrients and their proper application in the reservoir [75].

DuPont possesses a solid expertise in MEOR and considers it a low-risk and low-cost tech-
nology to produce incremental oil from mature fields. DuPont has established a set of reservoir
criteria for its successful application as follows:

• Reservoir temperatures <160°F;

• Moderate salinity levels up to 100,000 ppm;

• Reservoir permeability above 30 md to ensure the propagation of the microbes and nutrients
deep into the reservoir;

• The reservoir must be under a waterflooding recovery.
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According to DuPont’s experience, the main mechanisms for oil recovery are permeability
modification due to the formation of a biofilm on the rock surface and wettability modification.
Successful field trials conducted by DuPont indicate that oil recovery from mature fields can
be increased up to 25% with a cost of $10 per incremental barrel of oil. Furthermore, DuPont
considers the MEOR technique to be more cost effective compared to other EOR processes,
such as CO2 flooding or polymer flood [76].

A biopolymer, Schizophyllan, has been developed by Wintershall. The unique properties of
this biopolymer are tolerance to high salinity (up to 19 wt%), tolerance to temperatures as high
as 275°F, mechanical stability, and high viscosity. Therefore, the Schizophyllan biopolymer
would make possible the application of polymer flooding in harsh reservoir environments.
The main downside of this biopolymer is its susceptibility to bacterial degradation; however,
this has been prevented by the addition of biocides. A pilot test has indicated that the per-
formance of polymer flooding using this biopolymer has rendered oil recoveries ranging from
20 to 25 % higher than the oil recoveries expected from conventional waterflooding [77].

Successful MEOR application in a mature waterflooded reservoir in Saskatchewan, Canada
has been reported [78]. This MEOR application consisted in the stimulation of indigenous
bacteria through the injection of the appropriate nutrients. Production data obtained from this
MEOR field application indicate higher oil production rates, incremental oil recovery, and
decreased water cuts (up to 10%), which decreased operating costs due to reduced lifting and
water treatment costs. In this field application, it was considered that the main MEOR
mechanism was modification of the oil and water relative permeability driven by the interac-
tions at the oil-water-microbes interface. Several benefits of this MEOR approach compare to
other MEOR applications schemes and other EOR processes are as follows [78]:

• Low application costs;

• Low process cost per incremental oil production, on average it was US$ 6 per barrel of oil
produced;

• No capital outlay required to implement the MEOR project;

• Low risk to implement;

• Environmentally friendly.

Numerical modeling has been used to attempt the quantitative prediction of the performance
of the MEOR process [73]. A study conducted by Eduarda et al. [79] in which a finite difference
method was applied, indicated that appropriate bacterial growth within the reservoir is the
determining variable affecting the oil recovery factor.

3. Conclusion

MEOR technology makes use of special indigenous or exogenous microbial strains and nu-
trients that are injected into the reservoir to enhance oil production. The metabolic action of
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the injected exogenous microbial strains and the indigenous reservoir microflora produce
metabolites such as gases, alcohols, and surface active compounds (biosurfactants) that in-
teract with the crude oil. Biogases provide additional reservoir driving pressure; while bio-
alcohols and biosurfactants reduce oil viscosity and surface tension between oil-water and
oil-rock, respectively. Under the effect of metabolites, the crude oil flowing properties are
modified causing its release and mobilization toward the production wells enhancing the oil
flow output.

The following metabolites interact with the crude oil changing its physicochemical properties:

• Organic acids (i.e., acetic, propionic, and butyric acids);

• Solvents (i.e., acetone, aldehydes, low-molecular-weight alcohols, ketones, etc.);

• Biomass (i.e., cell debris);

• Biopolymers (i.e., xanthan, scleroglucan, polysaccharides);

• Biosurfactants (i.e., rhamnolipid, surfactin);

• Biogases (i.e., methane, CO2, etc.).

MEOR is an easy-to-use process which requires minimum, if any, upgrade of the existing
process equipment and facilities. This process has the potential to recover oil reserves that
otherwise would remain immobile and unrecoverable. This process overcomes natural and
chemical barriers in oil deposits that hinder microbial growth. MEOR is safe and environ-
mentally friendly that does not cause any threat to plants, animals, and humans.
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