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Abstract

Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative
colitis (UC), is a group of debilitating disorders affecting patient’s quality of life and
with unknown aetiology. The collected evidence indicates that individuals can develop
IBD as a result  of  genetic  susceptibility,  a  dysregulated immune response and the
influence  of  certain  environmental  factors.  Common  symptomatology  includes
abdominal pain, fever and bowel diarrhoea with blood and/or mucus excretion. The
location and extent of disease differ between UC and CD, affecting the mucosal layer
in the colon in UC patients, whereas in CD patients, a transmural inflammation is
found anywhere in the gastrointestinal tract. Factors associated with IBD pathophysi‐
ology include alterations in immune responses, characterized by an atypically T helper
(Th)‐2 profile in UC, and a Th1/Th17 profile in CD, modifications in epithelial barrier
function and alterations in the commensal microbiota composition with blooming of
specific pathobionts, for example, adherent‐invasive Escherichia coli (AIEC), and with
diet. Recent research has uncovered that inflammation, per se, can activate the enteric
nervous system inducing neurogenic inflammation and increasing visceral sensitivity,
leading to pain. Similarly, alterations in the commensal microbiota composition/ligands
have also led to modifications in intestinal nociceptive markers and in visceral pain.
In  this  chapter,  we aim to  review the mechanisms implicated in  microbial  neuro‐
immune axis and its potential contribution to IBD pathophysiology and symptoma‐
tology. We focus on the findings identified in animal models and in IBD patients and
on the prospective translation of targeting the microbial neuro‐immune axis as future
therapeutic treatment for intestinal inflammatory conditions.

Keywords: IBD, microbiota, intestinal neuro‐immune interaction, visceral pain, mi‐
crobiota–gut–brain axis
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1. Introduction IBD

Inflammatory bowel disease (IBD) is a group of diseases comprising mainly two entities,
ulcerative colitis (UC) and Crohn’s disease (CD), of unknown aetiology. Ulcerative colitis
was described in the late nineteenth century by Wilks and Moxon [1] and CD was described
by Crohn et al. in the early 1930s as terminal ileitis [2]. Since the beginning of the twenty-
first century, the incidence of IBD is increasing worldwide, especially in Westernized areas
such as the United States, Europe, Australia and New Zealand as well as in South America,
Asia and the Middle East and in specific populations, for example, paediatric-onset IBD.
The prevalence in the Western World is currently up to 0.5% of the population [3].

IBD affects the patients’ quality of life and is characterized by unpredictable flares of re-
mission and relapses with symptoms of bloody diarrhoea, abdominal pain and rectal
bleeding. The onset of IBD is at a young age ranging initially from 20 to 39 years and
with a second onset in patients over 60 years of age [4]. IBD affects both males and fe-
males, with a higher prevalence of CD in females and no major differences in UC patients
[5]. The inflammation in UC is localized to the colonic superficial mucosa while the in-
flammation in CD is transmural and can be found anywhere along the gastrointestinal
(GI) tract, although the inflammation is predominantly located to the ileo-caecal area and
the proximal colon [6, 7]. Ulcerative colitis is characterized by the formation of crypt ab-
scesses, formed by extravasation of neutrophils through the intestinal epithelium while
CD is characterized by the presence of skip lesions, granulomas, fibrosis and strictures.
Extra-intestinal features in CD can result in major complications, for example, fibrotic
strictures, and a subsequently need for surgery [8, 9]. To date, there is no cure for IBD,
with most treatments primarily aiming to suppress disease severity and to keep the pa-
tient in remission by using biologics, anti-suppressants and steroids.

The cause of IBD is unknown but the collected evidence suggest that IBD can be manifested
in genetically susceptible individuals who mount inappropriate local immune responses
against microbial antigens after exposure to environmental factors [7, 10].

To date, genomewide association studies (GWAS) have identified at least 163 susceptible genes
for IBD, with loci associated to bacterial recognition (NOD2) and autophagy (ATG16L1, IRGM)
conferring a higher risk for CD. In contrast, genes involved in mucosal barrier function (e.g.
HNF4a, CDH1, LAMB1, ECM1), IL-10 signalling and HLA haplotype DRB1*0103 have been
associated with UC. Interestingly, genes linked with adaptive immune responses such as
IL-23R, IL-12B and STAT3 confer a higher risk for both CD and UC. Despite the large number
of loci identified, only approximately 20–25% of patients are linked to at least one of these loci
suggesting that there are most likely other factors potentiating its development [11–13].

Alterations in barrier function, dysregulation in tight junction proteins and increased bacterial
uptake has been reported in experimental models of colitis and in patients with UC and CD
supporting the GWAS identified genes on barrier function [14, 15]. Others have also suggested
that Peyer's patches are the sites of initial lesions in CD with M cells playing an important role
in sampling microbes from the gut lumen and presenting to immune cells to mount inflam-
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matory responses [16, 17]. Furthermore, unaffected relatives of CD patients have shown
increased intestinal permeability [14, 15].

2. Intestinal immune mechanisms and IBD

The main function of the intestinal immune system is to protect the host from harmful
signals, for example, pathogens, by mounting specific responses as well as to keep a toler‐
ance against A myriad of food and microbial antigens. A robust immune response against
invading pathogens is critical for their clearance but an excessive or uncontrolled inflam‐
mation can result in chronic inflammation and lead to the development of inflammatory
conditions such as IBD (Figure 1). The collected evidence to date suggest that the aberrant
immune response in IBD patients is attributed to the dysregulated adaptive and innate

Figure 1. The gastrointestinal (GI) tract harbours up to 1014 bacteria, 10 times more than the number of cells of the hu‐
man body. These bacteria include up to 1000 bacterial strains but are covered in few phyla. The most important ones in
mammals are the Firmicutes (including Clostridium and Lactobacilli) and Bacteroidetes. Traditionally, it has been de‐
scribed that GI function is controlled by the intestinal immune system. Recent research has also highlighted that the
enteric nervous system (ENS) and the gut commensal microbiota system play a crucial and an active role in influencing
gut homeostasis. The ENS, mainly represented by the myenteric and the submucous plexus, Also known as the second
brain due to it can work alone. The gut is connected to the CNS by the brain‐gut axis, which maintains a bidirectional
communication. When these three systems are balanced, there is a physiological homeostasis. An imbalance in any
and/or all of these three systems can lead to the development of functional GI disorders and chronic inflammatory GI
disorders such as IBD.
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immune responses [7, 10]. The innate immune response is the first line of defence against
harmful agents. Pattern recognition receptors (PRRs) detect microbial ‘pathogen‐associated
molecular patterns’ (PAMPs)  or host‐derived ‘damage‐associated molecular patterns’
(DAMPs) inducing innate immune responses. Among PRRs, the intestinal Toll‐like recep‐
tors (TLRs) are critical both in keeping intestinal homeostasis and in mounting innate im‐
mune responses. In humans, a total of 10 TLRs have been described, with the majority of
them, except TLR3, signalling via the adaptor protein MyD88. Activation of TLRs via
MyD88 induces several pathways including the transcription factor nuclear factor‐kappa
light‐chain enhancer of activated B cells (NF‐κB), mitogen‐activated protein kinase
(MAPK) and AP1, while the MyD88‐independent pathway activates the interferon regula‐
tory factor 3/7 (IRF‐3/‐7) signalling pathway [18]. In recent years, it has become evident
that bacteria can penetrate/translocate through the intestinal barrier of IBD patients there‐
by inducing TLR‐induced responses both by mucosal non‐immune cells (e.g. epithelial
cells) and innate immune cells (e.g. macrophages, dendritic cells). TLRs are expressed by

Figure 2. Representative schema of some of the putative mechanisms involved in IBD pathophysiology associated with
microbial neuro‐immune changes. The intestinal microbiota and microbial‐derived products interact with the host bac‐
terial recognition systems (such as TLRs) (1) generating a signalling cascade (2) that will lead to a local immune activa‐
tion including mast cells, macrophages, T cells, neutrophils, dendritic cells and neuroendocrine systems (such as
enterochromaffin cells) that seems to persist even when the overt inflammation is resolved. This persistent activation
has the potential to influence sensory neural mechanisms within the gut depending upon the ENS (3) and the extrinsic
innervation. In addition, the bidirectional communication between the gut and the CNS (4) is also altered that can offer
an explanation for the altered perception of sensory signals and therefore altered manifestation of pain in patients suf‐
fering from IBD. Neutro—neutrophils; MΘ—macrophages; DC—dendritic cells; TLRs—Toll‐like receptors.

New Insights into Inflammatory Bowel Disease184



both epithelial and immune cells, and alterations in TLRs expression have been reported
in both UC and CD tissue including increase expression of TLR4, TLR2 and TLR5 [18].
Activation of TLRs, for example, TLR4, leads to the activation of NF‐κB pathway, which is
responsible for the transcription of various pro‐inflammatory cytokines and chemokines
associated with IBD pathology (Figure 2). Other PRRs involved in CD pathology include
NOD2, which is a cytosolic receptor belonging to the nucleotide‐binding domain and leu‐
cine‐rich repeat containing family (NLRs). NOD2 recognizes muramyl dipeptide (MDP),
present in both Gram‐positive and Gram‐negative bacteria and activates the NF‐κB path‐
way. NOD2 has also been identified as a susceptible gene for CD with 3 SNPs linked to
ileal CD, suggesting that a defect in recognition and clearance of bacteria might be associ‐
ated with CD development. However, the specific inflammatory mechanisms associated
with NOD2 mutations are still largely unknown [18].

The intestine of IBD patients presents a chronic inflammation that differs in terms of immune
cell subsets and cytokine profile. The colons of UC patients are heavily infiltrated with
neutrophils, T and B cells with high levels of several pro‐inflammatory cytokines including
IL‐1β, IL‐6 and TNF‐α and an atypical T helper (Th2) profile (IL‐5, IL‐10 and IL‐13) [7, 10, 19].
Other chemokines such as IL‐8 and GRO‐α are highly increased in UC mucosa, with IL‐8 levels
correlating with the degree of inflammation and disease activity [20, 21]. Although neutrophils
are indispensable for eliminating pathogens, their excessive presence in the tissue and their
resistance to apoptosis [22] can lead to extensive tissue damage in UC, which can be caused
by the persistent release of cytokines (IL‐17, IL‐6), reactive oxygen species (ROS) and proteases,
all of which highly associated with patients with active UC [7, 19, 23]. The intestinal wall of
CD patients is highly infiltrated by macrophages and T cells. It is acknowledged that CD is
primarily mediated by Th17/Th1 cells as well high levels of innate pro‐inflammatory cytokines
including IL‐1β, IL‐6 and TNF‐α [6, 10]. Further, the elevated levels of circulating and tissue B
cells as well as their activity have also been reported in IBD patients [24, 25].

3. Intestinal neural pathways and visceral pain in IBD

A particular characteristic of the GI tract is the presence of an intrinsic nervous system, the
enteric nervous system (ENS) also known as the second brain. Within the intestine, the ENS
presents a clear distribution in two neuronal plexuses localized within the submucosa
(submucosal or Meissner's plexus) and between the circular and longitudinal smooth muscle
layers (myenteric or Auerbach's plexus). The ENS can maintain GI functions alone by the
network around the gut wall formed by both plexi. It is composed by around 108 neurons
consisting of intrinsic primary afferents, interneurons and motor neurons [26–28]. Enteric
neurons are supported by glial cells (counterparts of the central nervous system (CNS)
astrocytes), which can communicate with the mucosal immune system and the intestinal
epithelium by producing different mediators including cytokines. The ENS controls intestinal
motility, secretion and absorption, mucosal growth, local blood flow, the immune and barrier
function and also carries nociceptive (painful) stimuli to the CNS [29–31] (Figure 2).
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The gut receives also extrinsic innervation from the autonomic nervous system (ANS) and the
spinal afferent nerve fibres that coordinate its activity. The ANS is composed of the sympathetic
nervous system (SNS) and the parasympathetic nervous system (PSNS). The extrinsic inner-
vation consists of vagal and spinal sensory nerves, vagal and sacral parasympathetic motor
neurons, and sympathetic neurons from prevertebral ganglia, and it plays a key role in
maintaining the bidirectional communication with the CNS as well as it is the anatomical basis
of the gut–brain–gut axis [32–34].

The vagus nerve (cranial nerve X interfacing with the PSNS) has a motor and a sensorial
division and three different endings in the gut: the intraganglionic laminar endings within
the myenteric plexus, the intramuscular arrays within the smooth muscle layers and the
mucosal fibres within the mucosa [32]. The SNS suppresses GI functions under vagus ner-
ve’s activation, cell bodies arise from the paravertebral sympathetic chain ganglia, adjacent
to the spinal column and innervating the GI vasculature, as well as the prevertebral (cel-
iac and superior/inferior mesenteric) ganglia, which controls motility and secretomotor
neurons. Axons extend to the gut by the mesenteric nerves but also by the vagus nerve,
cranially, which also contacts with the ENS [32, 35]. The spinal innervation of the gut
comes directly from the dorsal root ganglia (DRG) of the spinal cord, and it is less exten-
sive when compared to the ANS. They extend to the gut by the splanchnic (cranially) and
the parasympathetic pelvic nerves (distally). The colon, which harbours large amounts of
bacteria, has specific DRG in their innervation [32].

4. Visceral hypersensitivity

Nociception is the neural processes of encoding and processing noxious stimuli that can be
accompanied, or not, with pain [26, 36]. Visceral pain originates from the internal organs and
is initiated by nociceptors, which can detect mechanical, thermal or chemical changes above a
basal threshold [37]. Perception of visceral pain relies mainly in spinal C and Aδ afferents fibres
from DRG although vagal afferent stimulation can also mediate pain [38]. The strong com-
pression, as well as chemical stimuli or irritation, of the colon generates afferent signals that
can hypersensitize afferent nerves and become nociceptive [39–41].

Although most of the intestinal functions can be carried out by the ENS, extrinsic innerva-
tion is necessary to maintain a coordinated activity with the rest of the body and for sen-
sory functions related to visceral pain perception within the gut. This is particularly
important because visceral pain and/or altered visceral sensitivity (hypersensitivity) are
frequent symptoms in several GI diseases including irritable bowel syndrome (IBS) and
IBD. Visceral hypersensitivity generally originates from a local inflammation leading to an
enhanced response to a painful stimulus (hyperalgesia) as a result of activation of the im-
mune system, stressful conditions and the intestinal microbiota [42–44] (Figures 1 and 2).
Alterations in sympathetic neural activity have specifically been implicated in IBD [25,
45]. A decrease in noradrenaline release from sympathetic varicosities in inflamed and un-
inflamed regions of the GI tract has consistently been reported in animal models of colitis,
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which appears to be due to the inhibition of N‐type voltage‐gated Ca2+ current in postgan‐
glionic sympathetic neurons [46]. However, specific alterations of sympathetic function
and its role in IBD remain unclear [25]. In the last two decades, numerous morphological,
pharmacological and molecular studies have characterized sensory‐related systems within
the gut, among them the serotonergic system, the endocannabinoid system, endogenous
opiates and the vanilloid system have received particular attention due to their potential
benefit as pharmacological targets for the treatment of visceral pain. A short description
of each of these systems is outlined below.

4.1. The intestinal serotonergic system

The serotonergic system involves the neurotransmitter serotonin (5‐hydroxytryptamine; 5‐
HT), which is mainly stored in mucosal enterochromaffin (EC) cells and in a lesser extent within
the enteric neurons (up to 95% of body 5‐HT is present in the gut). Tryptophan hydroxylase
(TPH) is the limiting enzyme mediating 5‐HT synthesis. Two TPH isoforms exist, namely
TPH1, mainly expressed in EC cells, and TPH2, expressed in central and enteric neurons. TPH
expression/activity is regarded as a reliable indicator of 5‐HT availability, whereby high
expression levels are indicative of a high rate of serotonin production and release [47–49].
Within the GI tract, 5‐HT participates in motor, sensory and secretory functions modifying gut
motility/sensation in several ways [50]. For example, 5‐HT present within the enteric nerves
and acting on 5‐HT3 receptors of the vagal afferent nerve fibres can stimulate intestinal
secretion and motor reflexes. 5‐HT can also act on the receptors 5‐HT3, 5‐HT4 and 5‐HT1P
present on enteric neurons, thereby contributing to peristalsis and stimulating intestinal
transit [51]. Expression of 5‐HT7 receptor has been found on intestinal immune cells and
demonstrated a key role in development of experimental colitis [52]. Intestinal inflammation
is accompanied by alterations in enteroendocrine cells, among which EC is the most abundant.
These cells are distributed throughout the GI tract, with many of them concentrated in the
small intestine and rectum and in between epithelial cells, where they act as sensors of the
intraluminal milieu. 5‐HT release from EC cells is mediated by luminal or neuronal stimuli
including mucosal stroking and endogenous chemical stimuli such as adenosine. Changes in
the content, release and reuptake of 5‐HT as well as increase numbers of EC cells have been
reported 8 in both inflamed and non‐inflamed gut of IBD patients and in experimental models
of IBD [53, 54]. Some studies have also shown that changes in the microbial composition or
stressful conditions can induce 5‐HT release from EC cells, leading to the initiation of intestinal
inflammation and the generation of abnormal sensory‐related responses (i.e. altered viscero‐
sensitivity) [48, 55–57]. The sodium‐dependent serotonin transporter (SERT), a member of the
Na+/Cl− neurotransmitter transporter family, is expressed by epithelial cells and neurons in the
gut [47] and is involved in the reuptake of 5‐HT. SERT expression is reduced in the inflamed
and in the healing colonic mucosa of UC patients, thereby increasing 5‐HT levels [25, 58].
Furthermore, deletion of SERT increases the severity of 2,4,6‐trinitrobenzenesulfonic acid
(TNBS)‐induced colitis in mice [59] and mice treated with the SERT inhibitor paroxetine
presented alterations in GI motility and sensitivity [60]. Interestingly, the regulatory cytokine
transforming growth factor‐beta 1 (TGF‐β1) was recently shown to stimulate SERT function
suggesting a novel neuro‐immune therapeutic strategy to treat GI disorders [61]. These
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findings implicate that 5‐HT signalling and its SERT‐mediated termination can contribute to
the symptoms associated with IBD pathophysiology and suggest that drugs targeting this
pathway may benefit patients suffering from IBD and other inflammation‐related gut disor‐
ders [25, 62].

4.2. The intestinal opioid system

The endogenous opioid system is composed by three G protein‐coupled receptors: μ, δ and k
opioid receptors. Within the GI tract, intestinal opioids, ligands and receptors are found in
myenteric and submucosal neurons and in epithelial, endocrine and immune cells (including
myeloid and CD4+ T and CD8+ T cells). Opioids have a well‐characterized analgesic activity in
visceral sensitivity [63, 64], which is mainly linked to the activation of μ and, to a lesser extent,
k receptors. The expression of δ opioid receptor together with μ receptor is increased after
administration of the inflammatory irritant mustard oil, thereby evoking allodynia and visceral
hyperalgesia [25, 65]. μ‐Opioid receptors (MOR) are overexpressed in active IBD mucosa, most
likely as a compensatory analgesic mechanism generated in states of potentially increased
sensitivity. MOR are also significantly enhanced by pro‐inflammatory cytokines and repressed
by NF‐κB inhibitors in myeloid and lymphocytic cell lines [66]. Increased numbers of β‐
endorphin immunoreactive CD4+ T cells and CD11b+ macrophages are found in murine colonic
lamina propria in chronic dextran sodium sulphate (DSS)‐induced colitis, where the release of
endogenous opioids decreases nociceptive signalling through the activation of μ‐opioid
receptors [67]. Therefore, it is speculated that the anti‐nociceptive actions of peripheral opioids
in colitis may indirectly result from a reduction of the neurogenic ‘pro‐nociceptive’ compo‐
nents of inflammation, by decreasing CGRP and Substance P (SP) release that could counteract
the pro‐nociceptive effects of inflammatory mediators such as TNF‐α during inflammation
[68]. Recent studies have suggested that probiotics and microbial‐related products can also
module the intestinal expression of MOR [66, 69–72].

4.3. The intestinal endocannabinoid system

The endocannabinoid (CB) system comprises of two main receptors, CB1 and CB2, their
endogenous ligands and their metabolizing enzymes, Mainly the fatty acid amide hydro‐
lase, FAAH. Because of their chemical characteristics, endocannabinoid ligands are diffi‐
cult to determine; therefore, the expression of CB1, CB2 and the enzyme FAAH, are used
to assess endocannabinoid functionality. Within the GI tract, the endocannabinoid system
controls intestinal motility, nociception and intestinal inflammation. CB1 and CB2 recep‐
tors are expressed on intestinal ganglionic neural cells within the ENS, in epithelial cells
and immune cells in the gut [73–76]. The CB1 receptor is predominantly found in neural
and epithelial cells, whereas the CB2 receptors are predominantly expressed in immune
cells [77]. Upon activation, both receptors mediate analgesic effects and appear to have
anti‐inflammatory properties [75, 77–80]. Probiotics, bacterial products and stressful stim‐
uli have been postulated to influence the endocannabinoid system [70, 81–83]. In IBD, an
increased in CB1 expression has been identified in inflamed mucosa, while a reduction in
the endocannabinoid agonist anandamide and no increase in CB2 expression were found.
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Ex vivo cultures of IBD biopsies and immune cells with the non‐hydrolysable AEA ana‐
logue methanandamide (MAEA) resulted in a reduction in IFN‐γ and TNF‐α secretion
[84]. In animal models of colitis, the CB2 agonist JWH‐133 attenuates colitis in IL‐10−/−

mice and in DSS‐induced colitis by decreasing the number of mucosal immune cells (in‐
cluding CD4+ T cells, neutrophils, Mast cells and natural killer cells) [85]. Recent studies
in humans and animals have identified a new strategy for the endocannabinoid system,
whereby targeting of the enzyme FAAH can prove to be a better approach due to the
potentially less side effects when compared to the currently available CB compounds [86–
88]. Overall, the preclinical findings indicate that manipulating the endocannabinoid sys‐
tem can have beneficial effects in IBD patients, and therefore, the use of Cannabis sativa
has also been studied, although further research is necessary in this context [89, 90].

4.4. The intestinal vanilloid system

The vanilloid system consists of one of six subfamilies of the transient receptor potential (TRP)
channel family, with six types of transient receptor potential vanilloid (TRPV1‐6) [91]. These
receptors are calcium permeable, non‐selective cation channels involved in thermo‐ and
chemo‐sensitive transduction [92]. In the intestine, TRPV1, 3 and 4 have been linked to
viscerosensitivity and are characterized as pro‐algesic receptors [79, 92–94]. TRPV are mainly
expressed in intestinal afferent nerves, although they can also be found in EC cells as well as
epithelial and immune cells [95–97]. In agreement with their pro‐algesic effects, TRPV are
upregulated in states of intestinal inflammation and visceral hypersensitivity; for example,
TRPV1 is highly increased in immunoreactive nerves in IBD tissue and in quiescent IBD with
IBS‐like symptoms such as pain [98–102]. TRPV1 deletion prevented the development of post‐
inflammatory visceral hypersensitivity and pain‐associated behaviours, while SP can sensitize
TRPV1 function leading to a pro‐algesic state [101, 103]. TRPV1 has been linked to the crosstalk
between the microbiota and the neuro‐immune response in the gut, because TRPV1 and CGRP
can modulate cytokine response to lipopolysaccharide (LPS) independently of the adaptive
immune response. It has been proposed that TLR4 can activate TRPV1 via intracellular
signalling thereby inducing the subsequent release of anti‐inflammatory CGRP to maintain
mucosal homeostasis [104]. In addition, blocking of TRPV4 has also been shown to alleviate
colitis and pain associated with the intestinal inflammation induced by TNBS in mice [105].
Similarly, intrathecal injection of antisense oligonucleotides to TRPA1, another member of the
transient receptor potential channel family, decrease its expression and attenuates visceral
hyperalgesia in TNBS‐induced colitis [25, 65].

4.5. Neurotransmitters, neuropeptides and neurotrophins

More than two dozens of putative neurotransmitters have been described to date, with neurons
usually expressing a combination thereof. Most of these mediators have been implicated in the
neuro‐immune communication associated with gut homeostasis and in the pathophysiology
of intestinal inflammation but their specific functions are still to be established [106]. A short
description of the most relevant mediators is outlined under this section.
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Substance P (SP), an 11‐amino acid peptide secreted by nerves and immune cells (including
monocytes, macrophages, eosinophils and lymphocytes) belongs to the tachykinins family and
acts by binding to the neurokinin‐1 (NK‐1) receptor. It functions in smooth muscle contraction,
vasodilation and epithelial ion transport. It is a mediator of neurogenic inflammation due to
stimulation of cytokine release from immune cells (e.g. macrophages, mast cells) and endo‐
thelium causing tissue damage and neurodegeneration [25, 107]. High expression of SP and
NK‐1 receptor was reported in the myenteric plexus and inflamed mucosa of patients with
IBD. This is associated with a shift from mainly cholinergic innervation to a more extensive SP
innervation, which correlates with the severity of UC and may be part of the neuronal basis
for the observed altered motility disturbance seen in these patients [106, 108–110]. Antagonists
of NK‐1 receptors have been shown to ameliorate inflammation and protect from T‐cell‐
induced colitis. Based on these findings, tachykinin antagonists have been proposed as
potential anti‐inflammatory treatment for IBD [25, 108, 111, 112].

Vasoactive intestinal polypeptide (VIP), a 28‐amino acid peptide belonging to the pituitary
adenylate cyclase‐activating polypeptide (PACAP)/glucagon superfamily, is highly expressed
in the myenteric plexus of the colon. VIP inhibits the peristaltic reflex in the circular muscle
layer, controls intestinal blood flow and modulates the immune system by binding to both G
protein‐coupled VIP receptors 1 and 2. VIP is released from nerve terminals that contain nitric
oxide synthase (NOS). These two peptides are thought to be the primary intestinal components
of non‐adrenergic, non‐cholinergic nerve transmission. VIP expression is increased in colonic
neurons of CD patients but not in UC patients [25, 113–115]. Treatment with VIP in murine
TNBS‐induced colitis reduces colitis severity and Th1‐cell response [116, 117]. In addition,
glucagon‐like peptide 2 (GLP‐2), a regulator of absorption with anti‐inflammatory properties,
decreases mucosal inflammation in TNBS‐induced colitis in rats by activating VIP neurons of
the submucosal plexus [118]. Neurotrophins are a family of proteins regulating neuronal
activity in the CNS and PNS, belonging to a class of growth factors and playing a major role
in visceral hypersensitivity in the inflamed gut. This is, partly linked to the effects of peripheral
neurotrophic factors (NTFs) on local afferent neurons. Among these, nerve growth factor
(NGF) is primarily involved in the regulation of growth, maintenance, proliferation and
survival of certain target neurons and in innate and adaptive immune responses; brain‐derived
neurotrophic factor (BDNF) links the commensal microbiota and the CNS [119, 120]; and the
family of glial cell line‐derived NTFs (including GDNF, artemin and neurturin) are implicated
in sensorial alterations observed in inflammatory and functional GI disorders [112].

5. Intestinal neuro-immune interactions

Intestinal inflammation, even if mild, causes significant alterations in neurally controlled gut
functions including pain and altered motility. These symptoms are caused, in part, by persis‐
tent hyperexcitability of enteric neurons that can occur even after the resolution of colitis.
Among cells generating inflammatory signals within the gut mucosa and affecting neural
signalling in the ENS, mast cells and enterochromaffin cells seem to play a big role. Both of

New Insights into Inflammatory Bowel Disease190



them are increased in the colonic mucosa of IBD patients [25]. The ENS and the mucosal
immune system have the ability to regulate each other functions. In the intestinal wall, nerve
cells are localized in close proximity to immune cells and they share several chemical media‐
tors. The collected evidence point towards a major role of inflammatory signals affecting the
enteric neurons and most likely generating IBD‐associated symptoms [25, 121, 122] (Figure 2).

Inflammation‐related alterations in the ENS are divided into those that alter the structural
morphology of neurons and glial cells of the ENS and those that modify enteric neuro‐
transmitters [25, 122–124]. During intestinal inflammation, morphological and functional
alterations, including remodelling of visceral afferents, are also observed outside the pri‐
mary region affected by the insult [112]. ENS structural changes are more marked in CD
than in UC patients and are often associated with the extent of inflammatory infiltrate. In
fact, it has been suggested that severe and extensive necrosis of gut axons may be a dis‐
tinct feature in CD [25]. In support of this notion is the ablation of myenteric neurons,
accompanied by a high neutrophil infiltration and an excessive production of the Th1 cy‐
tokines IFN‐γ, TNF‐α and IL‐12 present in models of colitis. Interestingly, neuronal loss
persisted for up to 56 days, that is when the inflammation had resolved in these models
[125–128]. Others proposed mechanisms implicated in neuron loss, arisen from animal
models and IBD patients, Which involve an increase in immune cell infiltrates, including
eosinophils, lymphocytes, plasma cells and mast cells, in myenteric ganglia [25, 123, 126,
128, 129] as well as the activation of apoptotic pathways [130]. Furthermore, enteric glial
cell ablation induces a significant decrease in the number of myenteric neurons, which
appear to be associated with the loss of NOS‐containing neurons in the myenteric plexus,
likely underlying the alterations observed in smooth muscle relaxation and intestinal
transit time [25, 131]. It is also believed that the reduced availability of neuroprotective
factors due to neuronal cell loss may increase the susceptibility of enteric neurons to in‐
sults such as oxidative stress, which can have an important role in IBD pathophysiology.
Overall, the collected data indicate that the loss of nerve cells is dependent on the time
needed to develop inflammation, the type of inflammatory cells and the mediators profile
required for nerve–immune interactions [107].

Immune cells found in the intestine, including dendritic and mast cells, lymphocytes and
macrophages, express receptors for small molecule neurotransmitters and neuropeptides and
produce cytokines targeting the enteric neurons [106]. Neuro‐immune regulation includes
degranulation of mast cells and influx of neutrophils due to neuronal activation. Neuropepti‐
des released by enteric nerves including SP and VP can stimulate lymphocytes to induce their
differentiation and alter immunoglobulin production. Signalling between immune cells and
enteric neurons can also evoke alterations in gut function. Hyperexcitability of intrinsic
primary afferent neurons may be secondary to activation of cyclooxygenase (COX)‐2 and
production of prostaglandins (PGE2) from inflamed colon [25, 132]. Intestinal kinases have also
been involved in intestinal inflammation. Protein kinase A activity in nerve terminals increases
in previously inflamed colon and facilitates a fast synaptic transmission and the release‐ready
pool of synaptic vesicles [25, 133, 134]. There is also evidences that pro‐inflammatory cytokines
such as IL‐1β and TNF‐α exhibit pro‐secretory effects in the human distal colon. Both IL‐1β
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and IL‐6 are reported to increase excitability in submucous and myenteric neurons and to
mediate effects on cholinergic and non‐cholinergic transmission [135–137].

Mast cells are a major player in the innate immune response. Apart from their prominent
role in immunoglobulin E (IgE)‐dependent hypersensitivity, mast cells can release and
modulate the release of several mediators including cytokines, growth factors, chemokines
as well as histamine, proteases, and probably serotonin 22 receptors that regulate multiple
important biological processes including neural actions in the human ENS [137]. Neuro‐
peptides released from enteric and visceral afferent nerves regulate human intestinal mast
cell mediator’s release. In healthy individuals, mast cells are generally located in the lami‐
na propria, in fewer amounts in the submucosa and sporadically found in the muscle lay‐
ers or in the serosa. An estimated 70% of intestinal mucosal mast cells are in direct
contact with nerves, and another 20% are within a 2‐μm distance. Mast cells respond to
neurotransmitters and nerves and can thereby regulate their activation threshold [137,
138], submucous neurons would respond with a transient excitation mediated primarily
by 5‐HT3 receptors [139]. Cytokines and chemokines can have different effect on mast cell
functions. For example, the chemokine, macrophage inflammatory protein‐1α (MIP‐1α) is
required for optimal mast cell degranulation in mice [140]. In contrast, the regulatory cy‐
tokine TGF‐β1 can dose dependently inhibits stem cell factor‐dependent growth of human
intestinal mast cells by both enhancing apoptosis and decreasing proliferation [141] as
well as it can influence mediator secretion by reducing histamine, cysteinyl leukotrienes
and TNF‐α release while prostaglandin D2 (PGD2) generation and COX1 and 2 expres‐
sions are upregulated. Mucosal mast cells can also respond to other mediators including
adenosine triphosphate (ATP), somatostatin, calcitonin gene‐related peptide (CGRP) and
SP. Colorectal biopsies from patients with active CD or UC incubated with SP induce
mast cell degranulation and histamine release [30, 142].

Histamine, proteases and TNF‐α are stored as granules in mast cells and can be released within
seconds. Other mediators such as lipid mediators and most cytokines are synthesized once the
mast cells are activated. The most important mast cell mediator identified so far is histamine.
Histamine influences fluid and ion transport, which is partly nerve mediated and directly
excites submucous extrinsic sensory neurons [137, 142, 143]. There are four histamine receptors
(H1, H2, H3 and H4), which are found as receptor clusters on submucous neurons, with the
most frequent clusters being H1/H3 (29%), H2 (27%) and H1/H2/H3 (20%), respectively. The
implication of histamine on sensory neurons comes from studies in rodents [142]. Rat dorsal
root ganglion cells with projections to the viscera increased Ca2+ responses to a TRPV4 agonist
and enhanced TRPV4 expression, when adding histamine or serotonin [144]. The pathophy‐
siological relevance of histamine in both allergic and non‐allergic conditions including IBD
and IBS is established [141, 145]. In IBD, it has been reported that histamine secretion is
increased in the jejunum of active CD and in urine of UC patients [146], although in a recent
study, no differences in serum levels of histamine were identified [147].

Proteases, in particular the serine protease tryptase, are prominent mediators released from
mast cells. Tryptase is present in almost all human mast cells, comprising up to 25% of their
total proteins [148]. Proteases signal to nerves is mediated through protease‐activated recep‐
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tors (PARs), with four cloned PAR receptors identified in humans. PAR1, PAR3 and PAR4 are
predominantly activated by thrombin, and PAR2 is activated by trypsin and mast cell tryptase
[137]. In patients with UC, tryptase induces the release of inflammatory cytokines and
chemokines, some of which may exert their effects through nerve pathways as outlined above
[149]. Supernatants from stool of IBS and UC patients contain increased protease levels and
when supernatants from UC patients were injected to mice, it promoted hypoalgesia, which
was dependent on cathepsin‐G‐PAR4 activation [150]. PAR2 activation in mice increases
intestinal permeability, which is mediated by SP and capsaicin‐sensitive spinal afferent nerves
while in rats PAR2 evoked visceral hypersensitivity [151]. Interestingly, PAR positive cells were
increased in mucosa of UC patients and preferentially co‐localized with tryptase+ cells
suggesting that mast cells activation via PAR2 might be involved in the pathogenesis of UC
[149]. Similarly, mucosal biopsy supernatants from UC patients can activate mouse DRG
neurons innervating the colon, via TNF‐α regulation [137, 152].

6. Microbial alterations in IBD

The microbial community of the GI tract is composed by bacteria, virus, fungi, protozoa and
yeasts. Gut colonization starts at birth and, when completed, it harbours about 100 trillion
microbial commensals and symbionts belonging approximately to 5000 distinct species
divided in the phyla Firmicutes, Bacteriodetes, Proteobacteria, Verrucomicrobia, Actinobac‐
teria, Fusobacteria and Cyanobacteria [153–155]. The intestinal microbiota is not homoge‐
nously distributed along the GI tract. For example, Proteobacteria spp. (mainly Enterobacteria)
and Lactobacillales preferentially populate the small intestine while Bacteroidetes and
Clostridia populate the large intestine. The density of bacterial cells in the gut increases
caudally with the maximal counts (1011–1012 cells/g of content in both human and rodents)
localized in the ceco‐colonic region [156–159]. Intestinal bacteria can be transient i.e. bacteria
introduced during adult life; they do not permanently colonize the gut and can have positive
(probiotics) or negative (pathogens) effects on the host, or be innocuous, or permanent. The
latter ones are long‐term colonists of the gut, the true commensals, and they can have immu‐
nostimulatory effects (so called authobionts), or they can confer detrimental effects under
certain specific conditions (so called pathobionts) [160].

Overall, the commensal microbiota serves the host with protection against pathogens,
metabolizing complex lipids and polysaccharides and neutralizing drugs and carcinogens; but
it can also modulate intestinal motility, influence the maturation of the intestinal immune
system and modulate visceral perception [33, 161]. Changes in the normal composition of the
microbiota, termed generally in the literature as dysbiosis, have been associated with chronic
inflammatory and functional GI disorders such as IBD and IBS [154, 162] (Figure 1). Dysbiosis
can occur in parallel to intestinal pathogenesis and can be either a consequence or a cause of
the disease [163]. In fact, the causal effects of the microbiota in IBD are still a matter of
discussion, with some authors considering that dysbiotic state a consequence and/or a
perpetuating factor, rather than a cause of the disease [164, 165].

Microbial Neuro-Immune Interactions and the Pathophysiology of IBD
http://dx.doi.org/10.5772/64832

193



Many pathogenic organisms have been investigated as causing agents of IBD, including
Mycobacterium avium subsp paratuberculosis Helicobacter spp, non-jejuni/coli campylobacter and
Escherichia coli as well as viruses including Epstein–Barr virus, cytomegalovirus, paramyxo-
viruses and others [166, 167]. However, to date any pathogenic organism has proven to be a
causative agent or even correlate to IBD severity. Recently, the focus has shifted with the
conception that the gut commensal microbiota as a whole and/or in relationship to the host
can influence disease outcome. This shift has arisen from reports showing that distal ileum
and colon (containing the highest microbiota loads) are most susceptible to inflammation and
that germ-free animals do not develop inflammation. Similarly, antibiotics and certain
probiotics have shown therapeutic efficacy in certain IBD cohorts. An altered bacterial
composition (dysbiosis) is associated with IBD patients, characterized by a reduction in
bacterial diversity, especially the alpha diversity, which denotes the numbers of bacterial
species and their abundance [168, 169].

Pathobionts have been identified and linked to intestinal pathology. For example, Bacteroides
vulgatus can induce colitis in HLA/B27-β2m rats, but not in IL-10−/− mice and it can even prevent
colitis in IL-2−/− mice [170, 171]. In stool samples and mucosal specimens from IBD patients, an
increased abundance of Enterobacteriaceae (belonging to Proteobacteria), especially E. Coli, is
repeatedly observed. Among this, the adherent-invasive E. coli (AIEC), which selectively
colonizes the ileum of up to 40% of CD patients, has been suggested to be a strain-specific
microbial factor in the pathogenesis of CD (Figure 1). The definition of AIEC was based on the
ability of the AIEC-LF82 strain to adhere and invade epithelial cells and to persist within
macrophages without induction of cell death and by inducing the secretion of pro-inflamma-
tory cytokines such as TNF-α [169, 172–175].

In terms of commensals, a reduction in Firmicutes and a spatial reorganization of the Bac-
teroidetes has been described in patients with IBD [176–178]. For example, Bacteroides fra‐
gilis is responsible for a greater proportion of the bacterial mass in these patients. Some
specific strains of Bacteroidetes and their polysaccharide A have been linked to harbour
immunomodulatory potential, as shown by their protective effect on intestinal inflamma-
tion by suppressing IL-17 production and enhancing the production of IL-10 by intestinal
CD4+Foxp3+ T regulatory cells [156, 179–181]. A higher abundance of Actinobacteria and a
loss of Prevotella spp are identified in CD patients. A loss of the commensal Faecalibacteri‐
um prausnitzii (belonging to Clostridia) abundance has been described in IBD [177, 182]. F.
prausnitzii was shown to have beneficial immune-regulatory effects on the host, with the
A2-165 strain ameliorating inflammation in experimental models. F. prausnitzii has also
been linked with a new subset of CD4+CD8αα+ T cells with regulatory/suppressive func-
tions, a cell type that is less abundant in IBD patients. In addition to the anti-inflammato-
ry properties, F. prausnitzii is an important supplier of butyrate to the colonic epithelium
and it is found adherent to the gut mucosa where oxygen diffuses from epithelial cells
thereby improving barrier function [183]. The loss of F. prausnitzii is speculated to be an
indicator for increased IBD risk [184–187]. Clostridium spp. constitutes one of the largest
families of the commensal microbiota and, probably due to C. difficile infections, it has
traditionally been regarded as a pathogenic bacteria. However, recent data suggest that
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some members of the Clostridia group, , Clostridium IV and Clostridium XIVa, might have
an anti‐inflammatory potential in immune responses [180, 188] (Figure 1). Moreover, the
Clostridia‐related group of segmented filamentous bacteria (SFB) has been associated with
both intestinal inflammation and immune regulation [180], but their role in human IBD
pathogenesis is uncovered. Other commensal strains such as Lactobacilli and Bifidobacte‐
ria strains are typically considered to confer health benefits to the host and are frequently
used as probiotics [189]. Interestingly, L. acidophilus seems to modulate sensory mecha‐
nisms leading to visceral analgesia [70] while Bifidobacteria can act as immunostimulants
[190]. Probiotic treatment in IBD patients has, to date, not being as successful as in, for
example, patients with pouchitis when compared to current treatments in UC patients. In
CD patients, probiotic treatment appears to be even less beneficial [191–193]. Verrucomi‐
crobia are a mucus‐degrading group of bacteria that seems to affect intestinal barrier
function through the degradation of the epithelial mucus layer [194] and some Verruco‐
bacteria spp such as Akkermancia muciniphila alleviate experimental colitis and can also
mediate intestinal immune tolerance [195, 196]. A reduction in Akkermansia spp has been
identified in IBD patients [197] (Figure 1).

Recent research has identified diet as a major factor influencing commensal microbiota
composition. Dietary fibres are often associated with reducing the risk of IBD as well as
alterations in bacterial carbohydrate metabolism [177]. Fibres are metabolized to short‐chain
fatty acids (SCFA) by commensal microbiota in the distal GI tract. SCFA can influence the
growth of pathogens, increase intestinal barrier function, influence visceral sensitivity and
serve as energy source for colonocytes, and they can facilitate the generation and differentia‐
tion of intestinal regulatory T cells [198, 199]. Patients with CD and UC are associated with
impairment in SCFA production [185], which is linked to a reduction in butyrate‐producing
bacteria, including Roseburia inulinivorans, Ruminococcus torques, C. lavalense, B. uniformis and
F. prausnitzii as well as a reduction in butyrate levels. Less butyrate is linked to changes in
visceral hypersensitivity [169, 200]. In contrast to dietary fibres, Westernized high‐fat diet, full
of refined carbohydrates, is strongly associated with the development of colitis in different IBD
animal models, contrary to a diet highly based on fruits, vegetables and polyunsaturated fatty
acid‐3, which has a protective effect against disease progression in these models. Recent data
have also revealed that specific changes in dietary intake, for example, feeding of milk‐fat diet,
can modify the composition of the gut microbiota, resulting in the emergence of pathobionts
(Bilophila wadsworthia). The correlations of these ‘Westernized’ diets and blooming of patho‐
bionts in human IBD onset, development and/or relapse are Still to be further investigated
[201–203].

The composition of the gut microbiota has recently been linked to the uptake and signal‐
ling effects of bile acids. Some members of the Eubacterium and Clostridium XIVa clusters
possess the ability to 7α‐dehydroxylate which are involved in secondary bile acid produc‐
tion. In fact, alteration in bile acid profiles may have the potential to protect against
pathogens (such as C. difficile) [204] or pathobionts (such as B. wadsworthia). The latter one
exacerbates colitis in IL‐10−/− mice and is known to respond to alterations in bile acid pro‐
files [201, 205].
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Apart from bacteria, there are also alterations in the commensal fungi composition as well as
the virome. Fungal microbiota is skewed in IBD; for example, CD patients show reduced fungal
diversity together with an increased Candida taxa [206] and an increased Basidiomycota/
Ascomycota ratio, and a decreased proportion of Saccharomyces cerevisiae has also been
reported. Overall, the data indicate that the IBD gut environment might favour fungi at the
expenses of bacteria [207]. An increase abundance of Caudovirales bacteriophages has also been
reported in IBD patients. Some authors are suggesting that viral dysbiosis per se contributes to
IBD pathology and changes in the bacterial ecosystem due to their predator–prey relationship
[207, 208] (Figure 1).

7. Microbiota–gut–brain axis and IBD

There is a bidirectional signalling pathway between the GI and the brain, mainly through the
vagus nerve, in which the commensal microbiota have an active role, denoted as the ‘micro‐
biota‐gut‐brain axis’. This axis is vital for maintaining homeostasis and it may be also involved
in the aetiology of intestinal dysfunctions/disorders (Figures 1 and 2). There are evidences of
the ability of the gut microbiota to communicate with the brain and thus modulate behaviour
and pain and also transfer and eliminate micro‐organisms for selecting the commensal profile.
The proposal of a ‘microbiota‐gut‐brain’ implies that through a dynamic alignment, the
microbiota inhabiting the intestinal lumen will affect the host’s superior functions by changing
CNS activity and vice versa, that is the brain activity and will also impact on microbiota
development and composition. Apart from cognitive and vegetative functions, the ‘microbio‐
ta‐gut‐brain axis’ has been studied in visceral pain [209–212]. Although it has been traditionally
studied in the context of IBS pathology, some of those findings can be translated to IBD, since
IBD shares some overlapping mechanisms with IBS [161, 213, 214]. This includes the dysfunc‐
tion of the brain‐gut axis, the implication of TNFSF gene, the abnormal microbial composition
and altered host functions, the low‐grade inflammation and the presence of IBS symptoms in
patients with IBD in remission [215]. Overall, there is evidence that host–microbe alterations
might be not only divergent regarding the abundance of microbial community members but
also in their metabolic activity.

The intestinal TLRs are critical for bacterial recognition and initiation of innate immune
responses. In particular, TLR2, 4 and 7 have been directly implicated in the modulation of
nociceptive markers and visceral hypersensitivity and pain [72, 104, 210, 216–221]. It has also
been proposed that a neurochemical ‘delivery system’ exists whereby gut bacteria can send
messages to the brain. This delivery system links the commensal gut microbiota to a number
of neurotransmitters including GABA, serotonin, noradrenaline, dopamine, acetylcholine and
melatonin, all of which are crucial for brain‐regulated functions including visceral pain, brain
development, anxiety or behaviour [33, 222, 223].

Some of the mechanisms described in the microbiota‐gut‐brain axis imply the activation of
TLRs. Among them, TLR2, expressed in enteric neurons, glia and smooth muscle cells of the
intestinal wall appear to regulate intestinal inflammation by controlling ENS structure and
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neurochemical coding, along with intestinal neuromuscular function. Colitis in Tlr2−/− mice is
more severe compared to wild-type mice that is associated with altered ENS architecture and
neurochemical profile, intestinal dysmotility, abnormal mucosal secretion, reduced levels of
GDNF and impaired signalling via Ret-GFR-α1. Treatment with GDNF to Tlr2-/- mice led to
improved colitis [219].

TLR4, increased in IBD patients, has also been associated with severe colitis with impaired
epithelial barrier, altered expression of anti-microbial peptide genes and altered epithelial cell
differentiation [221]. A putative LPS–TLR4–TRPV1 axis has been described, directly implicat-
ing microbiota in changes of the nervous system by means of the innate immune system, that
is the TLRs. In line with this notion, the local stimulation of TLR4 but also TLR7, both expressed
in epithelial, immune and neural cells, can induce an immune activation that leads to changes
in different nociceptive markers, implicating mainly the cannabinoid and the vanilloid system,
without having an overt inflammatory response [216, 217]. These findings address some of the
putative mechanisms associated with microbial neuro-immune responses, which can contrib-
ute to IBD pathophysiology (Figure 2).

8. Conclusions and perspectives

The intestinal immune system has as its main function to protect the host against invading
pathogens as well as to tolerate the myriad of our commensal micro-organisms. If this crosstalk
is altered due to genetic predisposition and/or environmental factors, the steady state will be
broken and it will result in the development of chronic inflammation such as IBD. Recent
research has also identified a third player, the nervous system consisting of both the ENS and
the CNS, which can directly regulate the intestinal immune system (Figure 1). In this chapter,
It is summarized the findings linking the intestinal neuronal pathways with the intestinal
immune system and the microbiota in IBD patients. In several cases, the degree of inflamma-
tion appears to determine the alteration in neuronal pathways, for example, serotonin, the
endocannabinoid system, the loss of neural axons, or the increase in EC and lía cell numbers
[25, 26, 84, 106, 224–226]. However, it is worthy to note that an altered neuronal signalling can
persist long after inflammation is apparently resolved in patients with inactive disease and in
animal models after disease is resolved [227].

In conclusion, further studies addressing the triad gut microbiota nerves will be a major
challenge in the future. Fundamental understanding of neuronal pathways in inflammatory
conditions such as IBD is crucial for the discovery of future target strategies. These will in
particular target the regulation of functional bowel symptoms such as abdominal pain, visceral
sensitivity, which are prevalent in IBD patients with quiescent disease and are regulated by
several of the outlined pathways. To date, the evidence on the gut–brain–microbiota axis in
human IBD is scarce but future research will aim to delineate this axis in depth, with the goal
to evolve our understanding on GI function, to elucidate the complex interaction of this axis
with systemic organs and to cover new potential treatments.
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