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Abstract

This chapter investigates the acoustic effects of platform screen doors (PSDs) in
underground stations using computer simulation and scale model testing. The
dimensions of underground stations with island and side platforms were determined
based on a field survey. Ray-tracing-based computer models and 1/25 scaled-down
physical models of these underground stations were used to simulate their sound field
characteristics. In the experiments, five types of PSDs were tested: mobile closed full-
height (MCFH), mobile open full-height (MOFH), mobile half-height (MHH), fixed half-
height (FHH) and fixed barrier (FB) doors. Four acoustic parameters, namely, speech
intelligibility, sound pressure level, reverberation time and the inter-aural cross-
correlation coefficient were used to understand the sound field characteristics from the
sound source of public address announcements. It was found that speech intelligibility
and the sound pressure level were increased by most types of PSDs apart from the
MCFH. The MOFH showed the highest levels of speech intelligibility and spatial
diffusivity. In addition, the noise reduction effects of PSDs for train noise were
discussed. PSDs on side platforms showed higher noise reduction performances than
PSDs on island platforms. The specific noise reduction levels for the MOFH type were
4.3 dB on island platforms and 5.0 dB on side platforms.

Keywords: platform screen door, underground station, computer simulation, scale
model testing, speech intelligibility

1. Introduction

Noise in train stations can annoy the passengers, reduce the speech intelligibility on public
address systems in the stations [1-3] and also pose the risk of causing noise-induced hearing
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loss in passengers, transit workers and operators [4-6]. The control of noise in train stations is
thusimportantfor the comfort, convenience and safety of passengers, transitworkers and station
staff. However, relatively few acoustical treatments are conducted in most train stations.

The architectural conditions of train stations are diverse, and their sound fields differ according
to the station type. The effects of the location, i.e. whether the station is located aboveground
or underground, and the platform style, which can be side (two platforms at the side and the
rail tracks at the centre) or island (one platform at the centre and rail tracks on both sides), on
the train noise in stations have been investigated recently [7]. The results show that the noise
level in underground stations is 6.4 dB higher than that in aboveground stations, and that noise
level in underground stations with island platforms, which are the most widely used types of
stations in Japan for economic reasons, is higher than those with side platforms. This indicates
that acoustic treatments are necessary for underground stations with island platforms.

Recently, platform screen doors (PSDs) have been widely applied in the platform areas in train
stations for passenger safety in Asian and European metro systems [8, 9]. PSDs help to prevent
falls from the platform onto the track area, reduce the risk of accidents being caused by service
trains passing through stations at high speeds and improve the climate control, e.g. heating,
ventilation and air conditioning, within the station. Railway companies in Japan are also
encouraged to install PSDs for safety reasons. There are approximately 9500 train stations in
Japan and approximately 4% of these stations have installed PSDs. More than 200 accidents
leading to injury or death occurred in these stations in 2008. Over a 2-year period from 2008
to 2010, 61 train stations installed PSDs. The number of accidents that occurred in stations
subsequently decreased by approximately 10%.

PSDs have a positive impact on safety in train stations, and they also have an effect on the train
noise in stations because they are a type of wall that blocks the noise generated by trains. Some
studies have reported that the acoustic environments in underground stations were improved
by isolating the train noises [7, 10-14]. The strongest effect of the use of PSDs is the reduction
of the train noise level. Reported noise reduction levels produced by the presence of PSDs in
underground stations ranged from 9 to 18 dB in field measurements [10-14]. In the case of
underground stations in the Seoul Metro, in South Korea, the equivalent sound pressure levels
of the train noise from the arrival to departure process in stations with PSDs were approxi-
mately 71 dB(A), whereas those in stations without PSDs ranged from approximately 78 to 82
dB(A) [10]. The differences between the in situ measured sound pressure levels inside and
outside PSDs were reported to range from 16 to 18 dB(A) [11]. In addition, reinforcement of
early reflections for sounds from the public address (PA) systems was also found [9].

The changes in the sound field characteristics caused by the PSDs have rarely been studied. In
particular, the contributions of PSDs to the improvement of speech intelligibility are yet not
known. Also, the noise reduction effects of PSDs in a previous study [14] were derived from
field measurements in different train stations because it was impossible to change the PSDs,
after they have been installed. Different train stations have different acoustic characteristics,
including volume, reverberation and background noise. Also, many different types of trains,
which have different noise source characteristics, run through train stations that were meas-
ured, and thus it was impossible to eliminate the effects of the different noise sources in the
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field measurements. Therefore, the noise reduction performances of different PSDs can be
predicted more accurately through a simulation approach using reliable acoustic models and
different platform styles.

This study therefore investigated changes in the sound field characteristics including the noise
reduction effects for different types of PSDs using computer simulations and acoustic scale
modelling. It was hypothesized that the speech intelligibility and noise reduction performance
levels would be improved by the presence of PSDs, depending on the type of platform shape.

2. Methods

2.1. Target underground stations

The architectural conditions of train stations are diverse, and their sound fields differ according
to the station type. In terms of location, an aboveground station covered only by a roof is similar
to a free sound field, while a completely covered underground station is a reverberant sound
field [15]. To focus on the effects of reflections from the PSDs, the walls and the ceilings, only
underground stations were simulated in this study.

In terms of platform style, stations can be principally divided into side (two platforms at the
side and rail tracks at the centre) and island (one platform at the centre and rail tracks on the
sides) platforms. In underground stations, the train runs down the centre of a station with side
platforms, while it runs against the lateral wall of a station with an island platform. These
different architectural elements can also change the characteristics of the sound fields.

Figure 1 shows the two simplified underground stations with island and side platforms that
were selected for the study. Full details of the target stations, including their acoustic fitting to
real stations, have been described in previous studies [7, 14, 16]. The platform length for both
stations was 150 m, with a corridor height of 3 m. The width of a single track was 3.6 m. The
distance between the track and the platform floors was 1.1 m. The maximum station height for
both stations was 5.3 m at the position of the middle of the track. The maximum station width
was 14.8 m for the island platform-type station, and 17.2 m for the side platform-type station.
The cross-sectional area was 61 m? for the island platform-type station, and 68.2 m? for the side
platform-type station. Both stations were simulated without either passengers or background
noise.

2.2. Platform screen doors

Figure 2 shows the five types of PSDs that were used in this study: three mobile (MCFH: closed
full-height, MOFH: open full-height, MHH: half-height) and two fixed (FHH: half-height, FB:
barrier) types of PSD. The PSD dimensions were determined based on practical designs. The
doors and the lower walls of the PSDs were made from tempered glass. The upper walls of the
PSDs were made from sheet metal.
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Figure 1. Floor plan of the target underground stations with (a) island and (b) side platforms.

2.3. Simulation models using the ray-tracing method

Ray-tracing software (Odeon 11.23) was used to derive the acoustic parameters and the

binaural impulse responses. As shown in Figure 3, a total of 12 cases were simulated for the
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various PSD configurations, including the no-PSDs condition (NSD). For the simulation
parameters, the transition order was 1 with 120,000 rays. The environmental conditions were
20°C and 50% relative humidity (RH).

Type Module dimension Examples
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Figure 2. Modules of the five types of PSDs with their dimensions.
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Figure 3. Simulation configurations according to the types of PSDs.
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2.4. Physical models on 1/25 scale

A 1/25 scale model station with an island platform was built to validate the computer simu-
lation results. The main body of the scale model was made from 9-mm-thick medium-density
fibreboard with a varnish coating. The PSDs were made from 1-mm-thick Foamex plastic board

(a type of polyvinyl chloride plastic). Figure 4 shows the model testing configurations for the
different types of PSDs.

Figure 4. Section of the scale model stations with PSDs (a) NSD, (b) MCFH, (c) MOFH and (d) MHH.
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2.5. Source and receiver position

In this study, two measurement configurations were used for the investigations. Figure 5 shows
the source and receiver positions for Configuration 1 in both the simulation and scale models
for evaluation of the sound field characteristics to determine the speech intelligibility of PA
sounds. A sound source at a height of 2.8 m (0.112 m in the scale model) was located 22.5 m
(0.9 m in the scale model) away from the rear wall of the platform in the longitudinal direction.
In total, 14 receivers were placed at a height of 1.6 m (0.064 m in scale model) on either side of
the sound source in the longitudinal direction. The distance between the receivers was 2.5 m
(0.1 m in the scale model).
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Figure 5. Source and receiver positions used to evaluate speech intelligibility of PA sounds (Configuration 1). (a) Island
and (b) side platforms.
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Figure 6 shows source and receiver positions of Configuration 2 for evaluation of the noise
level of an approaching train to determine the noise reduction effects of the PSDs. Nine sound
sources were located at a height of 0.5 m (0.02 m in the scale model) along the track with spacing
of 15 m between them. Sound sources S1 to S3 were located inside the tunnel area. At the S1,
54 and S7 source positions, additional source heights of 2.3 m (0.092 m in the scale model) and
4.1 m (0.164 m in the scale model) were considered. Thirteen receivers were located at a height
of 1.6 m with spacing of 5 m (0.2 m in the scale model) between them, in the same manner as
the above configuration for sound field evaluation. R1 to R8 are classified as the front receivers,
while R9 to R13 are classified as middle receivers.
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Figure 6. Source and receiver positions used to evaluate the noise level of an approaching train (Configuration 2).
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2.6. Acoustic parameters

Four acoustic parameters, namely, the speech transmission index (STI), the sound pressure
level (SPL), the reverberation time (RT, T30) and the inter-aural cross-correlation coefficient
(IACC) [17, 18], were used to quantify the sound field characteristics using Configuration 1.

The STI is an objective measure of speech transmission quality. The STI measures certain
physical characteristics of acoustic transmission in a room and is affected by the speech level,
the frequency response of the room, the background noise level, the reverberation and other
parameters. The STI ranges from 0 to 1. An STI of 1 indicates perfectly intelligible speech
conditions. In general, the intelligibility rating is determined according to the STI value: ‘ex-
cellent’ for an STI of more than 0.75, “‘good” for an STI of 0.6 to 0.75, "fair” for an STI of 0.45 to
0.6, ‘poor” for an STT of 0.3 to 0.45 and "bad” for an STT of less than 0.3.

The SPL is a logarithmic measure of the sound strength at a specific position. To calculate the
SPL, a reference value of 20 uPa and an A-weighted and octave band filters were commonly
used in consideration of the human hearing threshold. Therefore, an SPL of 0 dB(A) indicates
the minimum audible limit. The frequency range usually covers the range from at least 125 to
4000 Hz in octave bands.

The RT (T30) is defined as the time required for the SPL to decrease by 60 dB in a room, at a
rate of decay that is given by a linear least-squares regression of the measured decay curve
from a level 5 dB below the initial level to 35 dB below that level. The decay curve was obtained
by reverse-time integration of the squared impulse response in each octave band. A higher RT
value indicates a higher level of reverberation. To derive single number ratings, the SPL and
the RT were averaged in the 500 and 1000 Hz octave bands.

The cross-correlation function between the signals obtained from the left and right ears is called
the inter-aural cross-correlation function (IACF). The TACC is defined as the maximum
absolute value of the IACF within the maximum possible inter-aural delay range for humans
of 1 ms. The IACC correlates well with the subjective quality of ‘spatial impression’. The spatial
impression can be divided into two subclasses: Subclass 1 covers the broadening of the source,
i.e. the apparent source width (ASW); Subclass 2 covers the state of diffusion of the reverberant
sound field, i.e. the listener envelopment (LEV). To calculate the IACC, an A-weighted filter
was included without spectral filtering. The IACC value ranges from 0 to 1. An IACC of 1
indicates that the signals from the left and right ears are identical, whereas an IACC of 0
indicates that they have no correlation at all. Usually, a lower IACC value indicates more
diffused sound fields.

Also, the noise reduction level (NRL) overall bands was calculated as the SPL with the PSDs
subtracted from the SPL without the PSDs to evaluate the noise level of an approaching train
using Configuration 2.

2.7. Measurement setup in the scale model

Because the scale factor of 1/25 was used, a limited frequency range of up to 3840 Hz was
measured through a tweeter loudspeaker (Clarion dome tweeter SRH294) and an analogue-
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to-digital/digital-to-analogue (AD/DA) converter (Roland Cakewalk UA-101) with a sampling
rate of 192 kHz. Therefore, the STl in the scale model test was averaged from 500 to 1000 Hz.
In addition, the IACC was not derived in the scale model test because of the use of a monaural
microphone (B&K 1/4-inch microphone Type 4939-A-011, and B&K NEXUS conditioning
amplifier Type 2690). During the measurements, the air temperature and the RH ranged from
21 to 26°C and 61 to 65%, respectively. The air absorption was corrected to calculate the RT as
a real-scale condition at 20°C and 50% RH [19].

3. Results

3.1. Sound field characteristics by PSDs

The acoustic parameters were averaged for a single sound source and 14 receivers using
Configuration 1. The parameters were expressed as relative values with reference to the NSD
condition without any PSDs. Therefore, as an example, ASPL indicates the SPL without the
PSDs subtracted from the SPL in each case.

3.1.1. Speech transmission index

Figure 7(a) shows the results for the STI values that were changed by the presence of the
different types of PSDs from computer simulations and scale model testing. Apart from the
case of the MCFH in the computer simulation, the STI was increased by the PSDs. In the MOFH
case, the STI was maximally increased in both stations, by 3% in the island platform type and
by 6% in the side platform type. The MHH cases showed similar STI increments to the MOFH
cases. Because the fully closed cases (MCFH) showed the worst performance, it was found that
the lower walls of the PSDs were important for improved speech intelligibility. The scale model
results also confirmed the effectiveness of the PSDs in increasing the STI. However, the MCFH
in the scale model showed increased STI values because the absorption properties of the model
PSDs were slightly higher (0.07 in the mid-frequency range) than those of the real PSDs (0.03
in the mid-frequency range, tempered glass pane). In addition, the PSDs on the side platforms
were more effective in increasing the STI than those on the island platforms, although the STI
of the NSD case in the side platform-type station was 0.01 higher than that in the island
platform-type station.

3.1.2. Sound pressure level

Changes in the SPL for the various types of PSDs from the computer simulations and scale
model tests are shown in Figure 7(b). In the computer simulations, the MCFH cases showed
the highest increases in SPL of more than 3 dB for both island and side platforms. The MOFH
cases showed relatively high SPL reinforcements. This tendency was also confirmed by the
scale model results, although the SPL in the scale model was increased by approximately 1 dB
because of the different absorption properties of the PSDs. However, the other cases showed
only small changes in the SPL. In fact, the SPL was reduced in the FB case in particular.
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Therefore, it was found that the upper walls of the PSDs were important for reinforcement of
the SPL. Similar to the results for the STI, the side platform-type station was more effective in
increasing the SPL than the island platform type.

3.1.3. Reverberation time

Figure 7(c) shows the results for the RT difference for the various types of PSDs from the
computer simulations and scale model testing. In the computer simulations, the two full-height
cases (MCFH and MOFH) showed greater RT reductions due to the PSDs in both the island
and side platform cases. It seems that the reduction of the effective room volume by the PSDs
was the main cause of the reduced RT. The MOFH cases in particular showed similar results
to the MCFH cases, despite their upper walls being open. The scale model results confirmed
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Figure 7. Differences in acoustical parameters between NSD and the other cases with PSDs. (a) STI, (b) SPL, (c) RT and
(d) IACC.
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that the RT was reduced by the PSDs. Also, the side platforms only showed greater RT
reductions than the island platforms in the MCFH and MOFH cases. The FB also showed a
reduction in RT when compared with the results of the SPL.

3.1.4. Inter-aural cross-correlation coefficient

The differences in the IACC for the various types of PSDs are plotted in Figure 7(d). The MOFH
showed the greatest IACC reduction for both station types. It seems that the coupling effects
of the upper opening in the MOFH promoted the diffusion of reflections. The MCFH in the
island platform type and the MHH in the side platform type also showed a reduction in the
IACC values. However, the IACC increased in the FHH and FB cases on island platforms.

3.2. Noise reduction effects of PSDs

The NRLs were averaged from the nine sound sources and 13 receivers of Configuration 2.
Figure 8 shows the NRL results for the PSDs in the island and side platform configurations.
The MOFH showed the highest NRL values for both island and side platforms. For the front
receivers (R1 to R8), the NRL produced by the MOFH was 4.3 dB on the island platform and
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Figure 8. NRL values for each of the types of PSDs for (a) island and (b) side platforms.



5.0 dB on the side platform. These results show good agreement with those of the previous
study that used field measurements [14]. The NRL produced by the MHH was 1.1 dB on the
island platform and 1.4 dB on the side platform. The NRL values produced by the FHH and
the FB were 0.8 dB on the island platform and 0.9 dB on the side platform. Therefore, the side
platform-type stations showed higher NRL values than the island platform-type stations. This
difference seems to be caused by the different boundary conditions of the platform sound
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fields when surrounded by the PSDs and the lateral walls.
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In contrast, the middle receivers (R9 to R13) showed NRL values of 0.1-0.6 that were slightly
higher than those of the front receivers. Smaller PSD profiles produced larger NRL differences
between the front and middle receivers. The NRL seems to be affected by the presence of more
diffusive interior elements in the middle platform area than in the front platform area.

3.2.1. Effects of receiver positions

To assess the effects of the receiver positions, the NRL distributions were plotted as shown in
Figure 9. In the frontal platform area, stable NRL values were observed, with slight decay at
the R4 and R5 positions. However, in the central platform area, dramatic changes in the NRL
were observed. In particular, the R10 position beside the elevator shaft showed peak NRL
values. The island platforms showed more fluctuating NRL values than the side platforms.
These fluctuations seem to be caused by the opposite PSD walls in the island platform-type
station, whereas the side platform-type station has only one PSD wall.
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Figure 10. Variation NRL values according to source positions in case of MOFH for (a) side and (b) island platforms.
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3.2.2. Effects of source positions and heights

Figure 10 shows the results for the NRL values according to the source positions in the MOFH
case. Each NRL value for each receiver position was averaged for S1, S4 and S7. The MOFH
showed higher NRL values for sound sources in the tunnel area than for the other source
positions. This means that the PSDs are helpful in reducing relatively low level train noises.
Particularly, large fluctuations in the NRL were observed in the middle platform area of the
island platforms. Side platforms tend to show more relatively stable NRL values than island
platforms.

Figure 11 shows the results for the NRL values based on the source heights in the MOFH case.
Each of the NRL values for each receiver position were averaged for heights of 0.5, 2.3 and 4.1
m and were also averaged for S1, 54 and S7. On the island platform, the frontal receivers
showed stable NRL values with respect to source height variation. However, the middle
receivers on the island platform and the frontal receivers on the side platforms showed
relatively large variation in their NRL values for different source heights. Lower sources tended
to show higher NRL values.
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Figure 11. Variation of NRL values with source height in the MOFH case for (a) side and (b) island platforms.
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4. Concluding remarks

In this study, the effects of PSDs on the sound field characteristics of underground stations and
their noise reduction effects were investigated using both computer simulations and scale
model testing. As a result, it was found that most types of PSDs were effective in increasing
the STI with a higher SPL and reduced RT, apart from the MCFH type. Specifically, the MOFH
was found to be the most effective type of PSD in terms of maximizing the STI with the lowest
IACC. In addition, the noise reduction levels of these PSDs for train noise were derived for
each type of PSD. PSDs on side platforms generally showed higher noise reduction perform-
ances than PSD on island platforms. In particular, the noise reduction level demonstrated by
the MOFH type was 4.3 dB on island platforms and 5.0 dB on side platforms. Middle platform
areas showed more unstable NRL values than frontal platform areas because they contained
diffusive interior elements such as elevators or stairways. In conclusion, PSDs are helpful in
reinforcing speech intelligibility and loudness for public address announcements while
reducing train noise. As a potential future approach, the presence of background noise levels
and the absorption effects of the passengers could also be considered to provide more realistic
simulation results.
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