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Abstract

Pain is one of the most common features of sickle cell disease (SCD) lacking effective
therapy. Pain in SCD is relatively more complicated than other conditions associated
with pain requiring understanding of the pathobiology of pain specific to SCD. The
characterization of  pain  to  define the  diverse  modalities  of  nociception in  SCD is
currently under progress via human studies accompanied by transgenic mouse models
of  SCD.  Sickle  pathobiology  characterized  by  oxidative  stress,  inflammation  and
vascular dysfunction contributes to both peripheral and central nociceptive sensitiza‐
tion via mast cell activation in the periphery, and reactive oxygen species and glial
activation and endoplasmic reticulum stress in the spinal cord among other effectors.
These effects are mediated via several  cellular receptors,  which can be targeted to
produce positive therapeutic outcomes. In this chapter, we will discuss the present
understanding of molecular mechanisms of SCD pain and outline the mechanism‐based
translational potential of novel actionable targets to treat SCD pain.

Keywords: pain, sickle cell disease, neurogenic inflammation, substance P, mast cell

1. Introduction

Pain is a hallmark feature of sickle cell disease (SCD), which can start in infancy, leading to
hospitalization, reduced survival and poor quality of life. Pain in SCD is unique because of
unpredictable and recurrent episodes of acute pain due to vaso‐occlusive crises (VOC), in
addition to chronic pain experienced by a majority of adult patients on a daily basis [1].
Treatment choices remain limited to opioids, which impose liabilities of their own including
constipation, mast cell activation, fear of addiction and respiratory depression [2]. Moreover,
significantly larger doses of opioids are required to treat pain in SCD as compared to other
acute and chronic pain conditions [1]. Pain can be lifelong in SCD and may therefore influence
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cognitive  function  and  lead  to  depression  and  anxiety,  which  can  in  turn  promote  the
perception of pain [1].

Treatment of chronic pain remains unsatisfactory overall, perhaps due to the diverse patho‐
biology in different diseases. Therefore, it is critical to understand the mechanisms specific to
the genesis of sickle pain to develop targeted therapies. Vascular dysfunction, inflammation,
ischemia/reperfusion injury and oxidative stress in the wake of VOC can each evoke activation
of the nociceptive nerve fibers leading to acute pain. On the other hand, constant endothelial
activation, inflammation and reactive oxygen species (ROS) generation may underlie the nerve
injury leading to chronic inflammatory and/or neuropathic pain. Endothelial activation,
inflammation and oxidative stress have been extensively characterized in the periphery [1] but
not in the central nervous system in SCD. Both peripheral and central mechanisms may
underlie the nociceptor activation leading to pain. In this chapter, we describe the sickle
pathobiology that may contribute to pain and define possible treatable targets.

1.1. Presentation of pain in SCD

Current research in characterizing pain in SCD patients indicates that both acute and chronic
pain are prevalent among the adult patients, while infants and children mostly suffer from
acute pain [3–5]. The shift from acute to chronic pain may therefore occur during the transition
from childhood to adolescence. Young children with a median age of 3.8 years (range 0.3–7.6
years) exhibited less frequent pain, occurring on 1.6% of a total of 141,197 days [3]. Yet, only
14% of these episodes required hospitalization, and infants between the age of 0 and 12 months
had the most pain (80%) associated with dactylitis [3]. In another study on 100 young subjects,
about 40% of children and adolescents in the age range of 8–18 years reported chronic pain
with another 40% exhibiting episodic pain, and the remainder had no pain [4]. Though the
pain intensity and quality of life were comparable among the young patients with chronic and
episodic pain, the patients with chronic pain suffered from greater functional disability,
depression and hospital admissions compared to the episodic pain group [4]. The adult
patients recruited in the Pain in Sickle Cell Epidemiology Study (PiSCES) reported chronic
SCD pain on 54.5% of 31,017 days at home [5]. Opioids have remained the major strategy to
treat acute sickle pain, while chronic pain is managed with the combination of non‐steroidal
anti‐inflammatory drugs (NSAIDs), opioids, anti‐depressants and anticonvulsant medica‐
tions [6]. However, to date no satisfactory therapy exists.

2. Characteristics of pain in SCD

Based on transgenic mouse models of SCD and presentation of pain in patients, four major
characteristics of pain have been described (Table 1). These characteristics include increased
sensitivity to (i) mechanical, (ii) heat and (iii) cold stimuli and (iv) decreased grip force ([3, 7–
12, 14–17, 22–27], Lei et al., 2016, under review). Characterization of SCD pain in patients has
been quite challenging due to the episodic and sudden nature of the acute pain, often requiring
hospitalization. The characterization of chronic pain is challenging owing to the complex and
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intractable nature of SCD pain, which may have a combination of inflammatory, nociceptive
and/or neuropathic origin. Clinical studies have used the patient‐reported questionnaire‐
based assessment and quantitative sensory testing (QST) approaches to evaluating the nature
and characteristics of pain in patients [7, 15, 28–30]. In a recent QST of 48 children with SCD,
13 individuals exhibited increased mechanical allodynia and also decreased sensitivity to heat
or cold detection (hypoesthesia) [7]. A similar study of 27 SCD patients aged 10.3–18.3 years
with race‐matched control patients corroborated the heat‐cold sensation features but demon‐
strated an increased cold‐pain feature in SCD patients [15]. In contrast, Brandow et al. [8].

Characteristics

of pain

Pain phenotyping method

Subjects with SCD Transgenic mice expressing sickle hemoglobin

Mechanical hy‐

peralgesia

QST—tactile sensation using a cotton ball, hand‐

held soft brush and non‐penetrating pin‐pick on

the left/right forearm [7] and reported via visual

analog scale

QST—using von Frey filaments at the thenar emi‐

nence of non‐dominant hands and lateral dorsum

of randomly selected foot [8]

Paw withdrawal responses to von Frey monofila‐

ments in NY1DD & S+Santilles mice [9], in BERK mice

[9–13] and in Townes mice [Lei et al., communicat‐

ed]

Heat hyperalge‐

sia

QST—using Thermal Sensory Analyzer (Medoc:

Israel) which employs cold temperature to the

skin via a peltier‐based thermode [7, 8]

Paw withdrawal latency and frequency in response

to static heat stimuli in BERK mice [9, 11–13] and in

Townes mice [14], Lei et al., 2016, under review]

Cold hyperalge‐

sia

QST—using Thermal Sensory Analyzer (Medoc:

Israel) which employs cold temperature to the

skin via a peltier‐based thermode [7, 8, 15]

Case‐crossover study and retrospective statistical

analysis of occurrence of pain/VOCs in relation to

weather conditions [16–20]

Paw withdrawal latency and frequency in response

to static cold stimuli in S+Santilles mice [9], in BERK

mice [9, 10, 12, 13] and in Townes mice [[14], Lei et

al., 2016, under review]

Temperature preference assay for BERK mice [21]

Deep‐tissue/

musculoskeletal

hyperalgesia

Questionnaire‐based assessment using the Nordic

musculoskeletal symptoms questionnaire and the

SF‐36 Health Survey [22] 

Tensile force of peak forelimb exertion measured

using grip force meter—in NY1DD & S+Santilles mice

[9], in BERK mice [9–12] and in Townes mice [Lei et

al., 2016, under review]

Observer‐based

Quantification

Not documented Observer‐based quantification of facial expression

measured by action units and body parameters

from changes in the back curvature [23]

Table 1. Characteristics of pain in SCD.
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found a decreased threshold for cold and heat detection in a cohort of 55 SCD patients (≥7 years
old) compared to 57 race‐matched healthy controls [8]. In contrast, no significant differences
were observed in these patients in response to mechanical stimuli [8]. Cold hypersensitivity
under cold weather conditions has been found to be associated with pain and VOC in pedia‐
tric [18]. and adult patients [19, 20]. Musculoskeletal/deep‐tissue pain has been found to be
present at multiple sites including the arms, chest and lower back in a questionnaire‐based
study of 27 adult patients with mean age of 31.77 years [22].

In parallel, transgenic mouse models expressing human sickle hemoglobin, which mimic the
SCD pathobiology and pain, have been highly instructive in developing the understanding of
sickle pain [9]. Transgenic sickle mouse models have been able to recapitulate the features of
SCD with variable severity depending upon the extent of expression of human sickle hemo‐
globin (HbS) and the presence/or absence of mouse hemoglobin α and β [31]. NY1DD sickle
mice developed by Fabry et al. contain a single copy of the human α and βs transgene with
deletion of mouse major β genes, but express mouse α chains and express about 26% HbS
leading to a mild phenotype [32]. S+Santilles mice carry an additional mutation and express about
42% of human βs showing a stronger phenotype than NY1DD mice [33]. These mice with milder
pathology do not show significant characteristics of chronic or acute pain [9], which can be
induced by hypoxia/reoxygenation. On the other hand, homozygous Townes [34] and Berkeley
(BERK) [35] transgenic mice express exclusively human α and β hemoglobins without mouse
α or β chains and express >99% human HbS. Consequently, these mice demonstrate a severe
SCD phenotype including excessive hemolysis, inflammation, organ damage and shorter life
span [26, 31, 34–37]. BERK and Townes models show constitutive chronic hyperalgesia early
in life ([12], Lei et al., 2016, under review). Moreover, hypoxia/reoxygenation treatment evokes
a further increase in hyperalgesia simulating acute pain during VOC, compared to their
specific background strains expressing normal human hemoglobin A ([12], Lei et al., 2016,
under review). Therefore, BERK and Townes homozygous sickle mice exhibit human sickle
pathology as well as pain similar to patients with SCD. Hence, both of these models are well
suited to understand how sickle pathobiology leads to the genesis and progression of pain in
SCD recalcitrant to therapy.

3. Sickle pathobiology underlying pain

Sickling of RBCs under low oxygen due to a point mutation in the beta hemoglobin chain of
hemoglobin is the primary pathogenic condition in SCD [13]. Sickle RBCs have impaired
oxygen‐carrying ability and cause jamming of micro‐capillaries via adhesion to endothelial
walls in the event known as VOC [21]. Resultant SCD pathobiology is characterized by
inflammation, oxidative stress, ischemia reperfusion injury and organ damage [21], all of
which can independently and/or cumulatively lead to activation of the nociceptive system
(Figure 1). For example, the increased levels of inflammatory cytokines, such as TNFα and IL‐
6 [38] in the periphery and the central nervous system (CNS) can activate nociceptors and
spinal nociceptive neurons, which may in turn be an outcome of activated macrophages or
mast cells in the periphery and glial cells in the CNS driving a vicious cycle of inflammation
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and pain (Figure 1). Decreased oxygenation and reduced blood supply due to vascular
occlusion during VOC may impair oxygenation and nutrient supply to the nerve fibers, thus
causing nerve damage and activation of nociceptors. Hematologic, inflammatory and vascular
dysfunctions have been well characterized in the periphery, but not in the CNS in subjects with
SCD and in sickle mice [21, 39]. Our laboratory demonstrated oxidative stress, increased
inflammatory cytokines and neuropeptides in the spinal cord of sickle mice as compared to
control mice [12, 40]. Thus, sickling of RBCs affects the periphery and the CNS, which may
lead to a complex pathobiology of pain in SCD leading to inflammatory, nociceptive and
neuropathic pain. SCD is also characterized by phenotypic heterogeneity and unpredictable
episodes of VOC, which may vary in frequency, recurrence and intensity among patients [21].
Therefore, SCD pain displays a marked heterogeneity in the context of neurobiology.

Figure 1. Sickle pathobiology evoked peripheral and central mechanisms of pain: Sickle pathobiology comprising
vaso‐occlusive crises, hypoxia/reoxygenation injury, hemolysis, inflammation and organ damage can sensitize nerve
fibers in the periphery. Activated mast cells release neuropeptide substance P (SP) and other mediators in the skin fur‐
ther sensitizing peripheral nociceptors. Pain signals are transmitted from periphery through dorsal root ganglion
(DRG) and spinal cord to the brain. Increased reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress,
inflammatory milieu, glial activation accompanied by increased toll‐like receptor 4 (TLR4) phosphorylation of
p38MAPK with correlative nociceptor sensitization in the spinal cord of sickle mice suggest persistent central sensitiza‐
tion. Sustained and enhanced central sensitization contributes to antidromic release of neuropeptides and nociceptive
mediators in the periphery, which in turn accentuates peripheral nociception without noxious stimuli. Thus, a vicious
feed‐forward cycle of peripheral and central sensitization continues and chronic pain persists in sickle pathobiology.
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4. Peripheral and central mechanisms of pain in SCD

Transgenic mouse models described above have been highly instructive in examining the
mechanisms specific to sickle pain. Pain can be both chronic as well as acute following VOC
and the underlying mechanisms may or may not vary between the two. BERK sickle mice show
significantly higher chronic hyperalgesia as compared to age‐ and gender‐matched Townes
sickle mice (Lei et al., 2016, under review). Most of the mechanisms have been examined in
BERK sickle mice for both chronic hyperalgesia constitutively existent in these mice and acute
pain following hypoxia/reoxygenation to simulate VOC [9]. Structural analysis of the skin of
homozygous BERK mice (expressing human sickle hemoglobin) compared to control mice
(expressing normal human hemoglobin) showed alterations in nerve fibers and blood vessels
[12]. Vascular and nerve plexi as well as normal branching is diminished in BERK sickle mice
skin, showing nerve sprouting indicative of inflammatory and neuropathic pain [12]. These
structural changes are accompanied by increased expression of neuropeptides substance P (SP)
and calcitonin‐gene‐related peptides (CGRP) in the skin [12]. Concomitantly, skin in BERK
sickle mice is significantly thinner with a comparatively thinner epidermis, similar to that
observed in other murine models of pain such as diabetes [41]. These structural and neuro‐
chemical alterations in association with well‐known inflammatory milieu may likely activate
nociceptors on the peripheral nerve terminals as demonstrated by activation of transient
receptor potential cation channel subfamily V member 1 (TRPV1) in the skin of BERK sickle
mice [11]. This peripheral nociceptor activation leads to the activation of glial cells and
neuronal activating transcription factor 3 (ATF3) in the dorsal root ganglion (DRG) [10], which
may lead to the transmission of increased action potentials to the second‐order neurons of the
spinal cord. Indeed, second‐order neurons in the dorsal horn of the spinal cord show constit‐
utive nociceptor sensitization in electrophysiological recordings in the BERK sickle mice [42].
Nociceptive neurons in the dorsal horn of sickle mice show increased excitability and an
increased rate of spontaneous activity [42]. These electrophysiological responses are accom‐
panied by higher response to mechanical stimuli and prolonged after‐discharges following the
mechanical stimulus, suggestive of central sensitization [42]. This sustained and continuous
activation of spinal neurons may lead to increased release of neuropeptides and nociceptive
mediators, which may be released into the periphery antidromically, in turn activating the
peripheral nerve terminals without noxious insult. This vicious feed‐forward cycle of periph‐
eral and central sensitization may underlie chronic pain recalcitrant to therapy. Also, increased
phosphorylation of mitogen‐activated protein kinases related to neuronal hyper‐excitability is
supportive of central sensitization in sickle mice [42]. Concurrently, Darbari et al. evaluated
brain connectivity in 25 adolescent and young patients using functional magnetic resonance
imaging (fMRI), and these patients were divided into low and high pain groups based on their
hospitalization frequency [25]. In the fMRI analysis, the high pain group exhibited excessive
pronociceptive connectivity while the low pain group displayed greater association with brain
regions implicated in anti‐nociception [25]. In this study, although all the patients were on
hydroxyurea, the expression of fetal hemoglobin (HbF) was higher in the low pain group and
was in positive correlation with anti‐nociceptive connectivity [25]. These results suggest
involvement of central mechanisms in sickle pain. Moreover, central sensitization in sickle
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patients was recently evaluated using QST, questionnaires and daily pain diaries [29]. Those
patients with higher scores for central sensitization exhibited worse manifestations of SCD.
Therefore, understanding the molecular mechanisms that drive peripheral nociceptor and
central nociceptive neuronal activation is cardinal to developing effective therapies.

We found that mast cells, a tissue‐resident granulocyte, are activated in the skin of sickle mice
and contribute to neurogenic inflammation, inflammation and pain [43]. Mast cells from sickle
mouse skin show significantly higher transcripts for toll‐like receptor 4 (TLR4) as compared
to mast cells from control mice [43]. Moreover, heme, the product of excessive hemolysis, a
significant feature of SCD, can activate mast cells in the periphery. Additionally, spinal TLR4
expression and cell‐free heme are significantly higher in sickle mice compared to control mice
(Lei et al., under preparation). It has been shown that excess heme can induce spinal microglial
activation via TLR4 in vitro [44], and thus, this may be a mechanism contributing to central
sensitization in sickle patients. In this regard, spinal microglial activation is suggested to be a
contributor to central sensitization leading to pain [45]. Spinal microglial and astroglial
activation is correlative to increased ROS production and SP in the spinal cord of sickle mice
[40]. Spinal microglial activation and ROS production via TLR4 can also be an accessory to the
central sensitization process [44]. Most of these studies were performed in male mice. Recently,
Sorge et al. have demonstrated that nerve injury‐induced pain in male mice (not in female
mice) are mediated via TLR4 (possibly via microglial activation) [46], but via T‐lymphocytes
instead of microglial cells in female mice [47]. Though the PiSCES report (from extensive multi‐
center human study on sickle pain) found no significant difference in pain sensation and
intensity according to gender differences [48], it is yet to be demonstrated/verified whether
sickle pain is mediated via gender‐specific pathways.

Peripheral injury due to acute VOC evokes acute pain, but it is likely that the chronic inflam‐
matory state, oxidative stress, vascular dysfunction and nerve injury lead to sustained
sensitization of both peripheral and central nociceptive neurons. SCD pain can also be of
neuropathic origin, which has been demonstrated in patient‐reported [49, 50] and QST‐based
studies [30]. Circulating glial fibrillary acidic protein (GFAP) and SP expression are signifi‐
cantly higher in subjects with SCD as compared to normal healthy subjects [51, 52]. In a group
of 2–18‐year‐old SCD patients, serum SP levels were found to be elevated, which increased
further during VOC [52]. SP possibly acts on neurokinin 2 (NK2) receptors to sensitize TRPV1
leading to an enhancement of afferent excitability and an increase in peripheral nociception
[11]. SP can further contribute to plasma extravasation due to its vasodilatory effect leading to
neurogenic inflammation, in addition to activating mast cells [43, 53]. The painful dactylitis in
children with SCD [3] may be due to neurogenic inflammation in response to increased release
of SP from the peripheral nerve terminals. Increased GFAP has been associated with stroke in
children with SCD and supports increased glial cell activity observed in the DRG and dorsal
horn of the spinal cord of sickle mice [12, 40, 51]. Zappia et al. found that cold hyperalgesia in
sickle mice increases with age [54], and these data are in accord with the finding that sickle
patients experience increased thermal hypersensitivity as they age [8]. Additionally, the
expression of endothelin 1 and tachykinin receptor 1 were increased by 2.7‐ and 1.6‐fold,
respectively, in the DRG of sickle mice, compared to control mice [54]. Endothelin 1 may
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contribute to cold hyperalgesia via endothelin receptors [55], and SP can contribute to
hyperalgesia via tachykinin 1 [56] located in the peripheral nervous system. These findings
suggest that diverse SCD pathobiology underlies the genesis and progression of recalcitrant
pain in SCD. Therefore, multimodal targeting may be required in a case‐specific manner to
achieve satisfactory analgesic outcomes.

5. Treatable targets for ameliorating sickle pain

5.1. Opioid receptors (ORs)

The current mainstay of treatment for acute and chronic pain in SCD is opioids. To assess
opioid effects on chronic SCD pain in adult patients, 15,778 home pain days of 219 patients
were monitored [57]. On 78% of the pain days, the patients used opioids—38% of the total
patients used long‐acting opioids and 47% used short‐acting opioids. The striking outcome of
this study was that the opioid usage significantly correlates with the severity of pain intensity
and other manifestations of SCD—suggestive of negative impact of the opioids on the
pathophysiology of chronic SCD [57].

Although the analgesic action of morphine is vital for pain remission, the effects of morphine
can be multifactorial leading to opioid‐induced hyperalgesia [58] and possible exacerbation of
other complications of SCD [2]. Morphine exacerbates renal pathology in sickle mice [59], and
its interaction with TLR4 may promote neuroinflammation [60]. Morphine‐induced angio‐
genesis and co‐activation of receptor tyrosine kinases may influence organ pathology includ‐
ing retinopathy, nephropathy, stroke and pulmonary arterial hypertension [2].

Among four different opioid receptors, mu opioid receptor (MOR) facilitates analgesic action
of opioids [2]. Repeated activation of MORs can lead to tolerance to opioids. Morphine
transactivates platelet‐derived growth factor receptor—beta (PDGFR‐β) [61]—and inhibition
of PDGFR‐β by imatinib (a tyrosine kinase inhibitor) attenuates morphine tolerance [62].
Reversal of tolerance to morphine by Imatinib can also be a consequence of reduced activation
of mast cells as discussed below. Therefore, strategies to ameliorate the side effects and reduce
tolerance are required to optimize pain control with opioids.

Nociceptin opioid receptor (NOP/OR) is another member of opioid receptor family which
contributes to nociceptive signaling [63]. The endogenous ligand of NOP/OR is nociceptin/
orphanin FQ (N/OFQ), and it is known to attenuate secretion of neuropeptides (SP and CGRP)
from peripheral nerve endings [64] and from mast cells [65]. Our recent findings demonstrate
that a small molecule agonist of NOP/OR, AT200, is able to decrease hyperalgesia in sickle
mice by reducing inflammation and mast cell activation [66]. Continuous treatment of sickle
mice with AT200 did not produce any tolerance, suggestive of a feasible opioid drug devoid
of tolerance. This approach of targeting other ORs with potential to attenuate underlying sickle
pathobiology needs to be investigated further.
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5.2. Mast cells

Mast cells are tissue resident granulocytes, well known for their role in pruritis and anaphy‐
laxis [67]. We (Gupta et al.) found that mast cell activation contributes to pain in sickle mice
[43]. Constitutive mast cell activation leads to inflammation characterized by the release of
inflammatory cytokines in the skin and neurogenic inflammation in sickle mice. Cromolyn
sodium, a mast cell stabilizer, and imatinib, an inhibitor of mast cell c‐kit, attenuated these
mast cell associated effects in mice [43]. Neurogenic inflammation characterized by excessive
plasma leakage from the vasculature in response to SP released from the nerve terminals is
reminiscent of painful dactylitis in children with SCD. Activated mast cells release tryptase,
which activates protease‐activator receptor 2 (PAR2) on peripheral nerve endings stimulating
the release of SP [43]. In turn, SP then stimulates vascular leakage and vasodilation as well as
further activation of mast cells, leading to a vicious cycle of inflammation, neurogenic
inflammation and hyperalgesia [43]. Pharmacological and genetic inhibition of mast cells
contributes to reduction in sickle pain in mice [43].

Morphine is an activator of mast cell degranulation [67]. Sickle mice pre‐treated with cromolyn
or imatinib show increased analgesic response to a sub‐optimal dose of morphine [43]. It is
therefore likely that morphine acts on the CNS to induce analgesia but promotes hyperalgesia
by simultaneously activating mast cells, resulting in reduced analgesic efficacy. Therefore, co‐
treatment strategies with mast cell stabilizers or imatinib may improve analgesic outcomes
and reduce tolerance (as discussed above) and may even minimize the side effects of opioids.

Products released from activated mast cells include SP, cytokines and growth factors, such as
PDGF and VEGF, which can directly act on the vasculature in the vicinity [67]. We have recently
observed that mast cell‐derived mediators cause increased permeability in monolayers of
mouse brain microvascular endothelial cells by stimulating endoplasmic reticulum (ER) stress
[Luk et al., communicated]. Additionally, ER stress has been shown to mediate pain in diabetic
neuropathic rats [68]. Thus, inhibiting mast cells in combination with ER stress inhibitors may
have an impact on endothelial dysfunction and pain—two critical characteristic features of
SCD. Therefore, common targets influencing vascular, inflammatory and nociceptive mecha‐
nisms may provide comparatively more effective treatable targets that reduce pain, inflam‐
mation and vascular complications without inadvertent effects on SCD.

5.3. Cannabinoid receptors (CBRs)

Cannabinoid receptors (CBRs) CB1R and CB2R are 7‐transmembrane G‐protein coupled
receptors, expressed in the CNS, as well as on vascular and inflammatory cells [69]. Like
opioids, cannabinoids that bind to CBRs have been used for centuries for medical and
recreational purposes. Cannabinoids have remained controversial due to their misuse for
recreational and euphoric effects [69]. Moreover, the schedule 1 status and stringent regulatory
requirements have been a major deterrent in the development of these drugs for analgesia. The
presence of CB1R and CB2R in the neuro‐immune system makes them an attractive target for
treating sickle pain. Several specific CB2R agonists have been developed to prevent the adverse
effects of cannabinoids on CB1R, which is known to promote the euphoric and CNS‐related
effects. We found that CP55,940, a non‐selective CBR agonist, which binds to both CB1R and
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CB2R, ameliorates chronic and hypoxia/reoxygenation evoked hyperalgesia in sickle mice [9,
12]. However, subsequent studies targeting the contribution of individual CBRs in sickle mice
show that CB1R agonists reduce mechanical, thermal and deep tissue hyperalgesia, while
CB2R agonists reduce deep tissue hyperalgesia only in both chronic and acute hypoxia‐/
reoxygenation‐evoked hyperalgesia [24]. Importantly, CB1R agonists ameliorated neurogenic
inflammation, while CB2R agonists reduced mast cell activation in sickle mice, suggesting that
both CB1Rs and CB2Rs are potentially critical to treat sickle pain and its underlying pathobi‐
ology.

Recently, multiple sclerosis patients experiencing spasticity and neuropathic pain exhibited
significantly improved response to Sativex, a cannabis‐derived oromucosal spray [70, 71].
Efficacy of Sativex for treating cancer pain is currently being tested [72], and use of cannabi‐
noids also potentiates and improves the analgesic action of opioids in chronic pain conditions
[73]. Additionally, cannabinoids attenuate ischemia/reperfusion injury [74], which is a
hallmark feature of VOC in SCD.

Collectively, these results suggest that targeting CBRs may provide analgesia via not only anti‐
nociceptive mechanisms but also due to its potential to ameliorate the complex pathobiology
of SCD—consequently improving the overall efficacy of the treatment. A questionnaire‐based
study found that 52% of the sickle patients, who self‐administered marijuana, used it to relieve,
reduce or prevent acute or chronic pain [75]. Therefore, CBRs offer an effective target to
ameliorate pain in SCD.

5.4. Toll‐like receptor 4 (TLR4)

TLR4 is the first discovered cell surface receptor of this family, which is essential for pathogen
detection in innate immunity via lipopolysaccharide (LPS) recognition [76]. TLR4 has been
shown to be associated with several modalities of pain including inflammatory pain [46, 77],
neuropathic pain [46, 78–80], post‐operative cognitive dysfunction [81], cancer pain [82], etc.
Recent studies in the SCD field suggest that TLR4 activation may be a significant contributor
to the multifactorial effects in SCD ranging from vaso‐occlusion and inflammation to pain [83].
Heme is a product of excessive hemolysis in SCD, and heme acts as an activator for TLR4 [84].
In transgenic sickle mice, heme‐activated TLR4 signaling contributes to acute lung injury (a
major feature of SCD) [85] and heme‐induced endothelial TLR4 activation contributes to VOC
[86].

We (Gupta et al.) found that in transgenic sickle mice TLR4 expression is elevated in the spinal
cord compared to control mice [12]. Spinal microglial cells are known to be involved in
nociceptive signaling [46]. These cells isolated from sickle and control mice, when stimulated
with hemin, exhibited activation dependent on TLR4, and this activation was mediated via
ROS production and ER stress [44]. Additionally, we have observed increased expression of
TLR4 in cultures of skin mast cells from sickle mice vs control mice [43]. Subsequently, genetic
[87] and pharmacological [88] inhibition of TLR4 in sickle mice led to amelioration of hyper‐
algesia and neurogenic inflammation in transgenic sickle mice. Morphine tolerance exhibited
by the SCD patients may also be a result of morphine’s potential for TLR4 activation [2, 89,
90]. However, it is suggested that TLR4 may be involved in pain processing only in males [46],
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whereas knocking out TLR4 affected cisplatin‐induced mechanical allodynia in both male and
female mice [91]. No adverse off‐target effects of targeting of TLR4 in other disease conditions
have been observed so far [92, 93]. Therefore, the contribution of TLR4 in sickle pain needs to
be evaluated.

5.5. Other targets

A calcium‐modulating serine/threonine protein kinase present in the CNS, Ca2+/calmodulin
protein kinase IIα (CaMKIIα), has been of recent interest as a modulator of neuropathic pain
and is an important contributor to initiation and maintenance of opioid‐induced hyperalgesia
[94]. Recently, in a limited clinical trial, 18 SCD patients were treated with single dosage of
trifluoperazine (a CaMKIIα inhibitor) going up to 10 mg, and eight subjects reported almost
50% reduction in their chronic pain. This study established 10 mg as the toxicity limit, and the
improvement in patients’ health without any adverse effect warrants a randomized clinical
trial to evaluate efficacy of this treatment strategy in SCD patients [95].

Dexmedetomidine, a specific α2‐adrenoreceptor agonist, provides anti‐nociception independ‐
ent of opioid receptor action and via inhibition of sensory neurons [96]. This molecule also
provides protection from ischemia/reperfusion injury [96]. These properties of dexmedomi‐
dine led to a study of its efficacy in sickle mice, and Calhoun et al. found that transgenic sickle
mice receiving dexmedomidine had improved analgesia [97]. This may provide an adjuvant
to existing analgesic treatment strategies used for reducing pain in SCD patients.

5.6. Integrative approaches

We observed that curcumin, an active ingredient of turmeric and Coenzyme Q10 independ‐
ently ameliorated chronic hyperalgesia in sickle mice when used over a period of 4 weeks [40].
These treatments also reduced oxidative stress, microglial activation and SP in the spinal cords
of sickle mice. In a clinical study on sickle patients, treatment with Coenzyme Q10 reduced
the incidence of VOC [98]. In rheumatoid‐ and osteo‐arthritis, curcumin or Theracurcumin
with higher bioavailability was effective in reducing pain, inflammation and oxidative stress
and symptoms of osteoarthritis in separate studies, including a randomized, double‐blind,
placebo‐controlled trial [99, 100]. Curcumin lowered the oxidative stress and iron overload in
the spleen and liver of rats with chronic iron overload [101]. Importantly, in thalassemia
patients, curcumin reduced oxidative stress [102]. Thalassemia often co‐exists with SCD [103],
and increased iron in the tissues due to hemolysis is a characteristic feature of SCD [104].
Therefore, these dietary supplements may provide an advantage in treating sickle pathobiol‐
ogy and pain without the inadvertent side effects of pharmacologics discussed above.

Acupuncture has been evolving as a promising approach to relieve chronic pain. Along with
several case reports [105–107], a retrospective study of 47 adult SCD patients demonstrated
significant improvement in analgesia using acupuncture treatment [108]. Therefore, we
developed a novel electroacupuncture (EA) method to treat awake/conscious mice to elucidate
central and peripheral mechanisms contributing to acupuncture‐induced analgesia without
the influence of anesthesia. We found that EA in awake sickle BERK mice significantly reduces
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mechanical, deep tissue and cold hyperalgesia [Wang et al., in preparation]. Response to EA
was variable, but majority of sickle mice showed a high analgesic response, exhibiting reduced
systemic inflammation, in addition to reduced peripheral inflammation and neuroinflamma‐
tion. Integrative approaches such as acupuncture for pain control could be potentially
beneficial in treating pain in SCD.

5.7. Co‐treatment strategies

Mechanism‐driven understanding of SCD pain pathology from basic research provides us
with a variety of treatable targets as mentioned above. The promise of these different modu‐
lators of SCD pain is quite exciting; but to become viable treatment options for the SCD patients,
they require systematic and rigorous clinical trials for evaluating their efficacy and any side
effects that they may pose.

6. Translational potential of treatable targets‐based pharmacologics

From the discussion above, it is clear that targeting sickle pain may require multiple pharma‐
cologics due to the complex nature of SCD pathobiology and associated nociceptive mecha‐
nisms. In this regard, we can first evaluate FDA approved drugs for sickle pain based on
preclinical data. Imatinib is approved by the FDA for managing chronic myeloid leukemia
systemic mastocytosis [109]. Thus, mast cell inhibition via imatinib can reduce morphine‐
induced mast cell activation and may also enhance the efficacy of sub‐optimal doses of
morphine. A small study in a cohort of 17 patients using a nasal spray form of the mast cell
stabilizer, cromolyn, in combination with hydroxyurea indicated that these patients experi‐
enced reduced pain when compared to placebo or to the use of cromolyn or hydroxyurea
alone [110]. Thus, FDA‐approved mast cell stabilizers available for reducing airway inflam‐
mation can be potentially effective as adjuvants for sickle pain.

SP acts via NK‐1 receptors and NK‐1 receptor antagonists have been effective in different pain
pathologies in animal models, but have failed to show efficacy in clinical trials [111]. Aprepi‐
tant, an FDA‐approved NK‐1 receptor antagonist for chemotherapy‐induced nausea and
vomiting, has been assessed for the effects on electrical hyperalgesia models of human
volunteers, but did not show any efficacy [112]. However, in a separate study acute doses of
aprepitant were shown to significantly increase the magnitude of mu agonist signs and
symptoms in response to oxycodone [113]. Considering the role of SP in sickle pain and
neurogenic inflammation, NK‐1 receptor antagonists require further examination in pre‐
clinical models of SCD as co‐drugs.

Additionally, TLR4 inhibitors such as TAK‐242 and eritoran showed promising responses in
animal studies for severe sepsis, but failed to show any efficacy in reducing 28‐day mortality
in phase III clinical trials [114, 115]. Though these molecules are still being evaluated for other
pathologic conditions such as obesity in type 2 diabetic subjects [116], no clinical trials have
been undertaken using these compounds to ameliorate chronic pain conditions. Interestingly,
a nonspecific phosphodiesterase (PDE4) inhibitor, ibudilast, has been shown to inhibit TLR4
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and microglial activation in animal models [117] and is currently in separate clinical trials for
migraine pain, multiple sclerosis and opioid abuse [118–120].

Stemming from our animal research, we are currently conducting a trial to evaluate the effect
of vaporized cannabis on pain in human subjects with SCD [121]. Vaporized cannabis offers
an advantage over systemically administered cannabis, because it is not metabolized by the
liver and may therefore not influence organ pathology in SCD.

Apart from the targets discussed in this section, other targets such as calcium signaling and
oxidative stress can be managed using pharmacologics such as trifluoperazine and curcumin/
CoQ10, respectively. Curcumin and/or CoQ10 showed reduction in pain in sickle mice and
CoQ10 showed reduced “crises” in a small cohort of sickle patients [40, 98]. Other integrative
approaches including arginine therapy and acupuncture show reduced pain/crises in patients
with SCD [108, 122]. Thus, in addition to pharmacologics, integrative approaches offer the
potential to reduce sickle pain. Finally, gene therapy vectors are a new tool for the development
of molecularly selective pain therapies, which have been shown to provide reliable analgesia
in preclinical models [123]. The use of gene therapy may lead to a new class of analgesic
treatments based on the molecular selectivity of analgesic genes.

7. Future directions

Sickle cell disease comprises highly complex pathobiology and the associated pain involves a
complicated pathophysiology that we are only beginning to appreciate. Therefore, treatment
strategies solely targeting the nervous system do not promise pain remission in an effective
manner. Rather, as discussed in this chapter, as our understanding of the mechanistic biological
targets that potentiate pain and neurogenic inflammation in SCD increases, we must incorpo‐
rate multiple approaches towards alleviation of this morbid pain syndrome. The tortuous
nature of SCD pain involving both central and peripheral nervous systems requires co‐
treatment strategies, which will ameliorate simultaneously RBC pathology leading to vaso‐
occlusion, mast cell activation leading to neurogenic inflammation and pain, microglial
activation via increased oxidative stress, heme‐induced TLR4‐mediated neuronal and vascular
complications, hemolysis‐driven high iron/calcium‐mediated pathologies, etc. Translational
and clinical studies are required to evaluate the physiological relevance of these targets in order
to develop effective analgesics devoid of inadvertent adverse effects. The issue of transition
from acute to chronic pain is an unanswered question in SCD and other pathologies, which
remains to be understood.
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