
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Potential Harm of Maltodextrin‐Coated Cadmium

Sulfide Quantum Dots in Embryos and Fetuses

Jorge Reyes‐Esparza, Janet Sánchez‐Quevedo,

Antonieta Gómez‐Solís, Patricia Rodríguez‐Fragoso,

Gerardo González De la Cruz and

Lourdes Rodríguez‐Fragoso

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64653

Provisional chapter

Potential Harm of Maltodextrin‐Coated Cadmium
Sulfide Quantum Dots in Embryos and Fetuses

Jorge Reyes‐Esparza, Janet Sánchez‐Quevedo,
Antonieta Gómez‐Solís, Patricia Rodríguez‐Fragoso,
Gerardo González De la Cruz and
Lourdes Rodríguez‐Fragoso

Additional information is available at the end of the chapter

Abstract

Over the past years, there has been significant interest in the study of nanoparticles for
clinical applications, particularly quantum dots (QDs). However, previous studies have
also shown that QDs can reach the embryo through the placenta, a natural barrier for
a large variety of organic substances with diverse molecular structures, and may cause
developmental deformities. Due to its essential role in a toxicological profile and its
relevance to human safety, knowledge regarding embryotoxicity is of great importance.
Previous studies by this research group have shown that CdS‐maltodextrin QDs are
biocompatible and nontoxic to cells and animals; however, QDs are able to induce
embryotoxic effects. Therefore, as an effort to further address the issue, we studied the
effects of CdS‐maltodextrin QDs on embryo and fetus development using an embryo‐
toxicity and teratogenicity assay on chicken embryos. Chicken embryos exposed to
CdS‐maltodextrin QDs (0.001, 0.01, 0.1 and 1 µg/kg) in ovo for 72 h showed growth and
developmental alterations during the early stage and at the end of their development
in a dose‐dependent manner. Decreased development was observed during early stages
(Stages 9/10 on the Hamburger‐Hamilton scale) when compared with untreated eggs
(Stage 13). Chicken embryos exposed to lower CdS‐maltodextrin QDs doses (0.01, 0.1
and 1 ng/kg)  and incubated in  ovo  for  21 h  also showed growth and development
alterations during the early stages and at the end of their development in a dose‐
dependent manner. However, reduced development was observed at the end of the
development period (21 days), and this was associated with death of the chick. Current
studies have also shown that CdS‐dextrin induces embryotoxicity and teratogenicity,
affecting mainly the CNS, the neural tube and somites in chicken embryos. The nature
of the observed abnormalities suggests that these effects could be directly associated
with nanoparticle concentrations affecting somitogenesis. Therefore, according to the
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results,  there is  a high probability that the prolonged accumulation of QDs in the
maternal organism may be potentially harmful on embryo and fetus development. This
study is limited to the analysis of embryotoxic and teratogenic effects induced by CdS‐
maltodextrin QDs.

Keywords: embryotoxicity, teratogenicity, nanoparticles, quantum dots, embryos

1. Introduction

Countless publications about of the in vitro and in vivo effects of nanomaterials have appeared
over the past years [1]. It is now well known that the same properties that make nanoparticles
so attractive to biomedicine may contribute to their toxicological profile in biological systems
[2, 3]. Nevertheless, there are still many unanswered questions about their toxicological aspects,
such as embryotoxicity and teratogenicity.

It is well known that embryos and fetuses are most sensitive to harmful factors during critical
periods [4]. Not only is differentiation during organogenesis a highly susceptible period to the
induction of malformations, but also the fetal/neonatal developmental phases are just as prone
to certain developmental deficits [5]. Therefore, embryotoxicity and teratogenicity assays are
of great importance given their indispensable role in the toxicological profile that must be
established for any new active substance relevant to human safety, including nanomaterials.
In recent years, different studies have explored the passage of nanomaterials through the
placenta, a natural barrier for a large variety of organic substances with diverse molecular
structures [6–8]. It is now known that the passage of nanomaterials through the placental
barrier may affect fetal cell proliferation, embryonic growth, and organ formation [9]. De‐
pending on the doses and time of exposure—from fertilization through the fetal period and
eventually during lactation—the consequences can range from embryotoxicity to gross
malformations, and a large variety of more subtle morphological, biochemical, and functional
abnormalities have been detected [10–12].

However, knowledge concerning nanomaterial embryotoxicity and teratogenicity is yet
limited because the toxicity of each nanoparticle depends on size, shape, and even surface
cover, and so different nanomaterials may yield contradictory effects [13]. Because of this, in‐
depth knowledge of nanotoxicity and increased efforts devoted to the study of the toxic effects
of nanomaterials on embryos and fetuses should be considered mandatory, as is with other
investigational new drugs.

Our group is interested in the biomedical application of maltodextrin‐coated cadmium sulfide
QDs, semiconductor nanoparticles of about 3.5 nm in size with superior optical properties
when compared to conventional organic dyes [14]. Although the in vitro studies revealed that
these CdS‐maltodextrin QDs produced distinct dose‐dependent toxic effects, in vivo studies
demonstrated that, when administered to rodents, CdS‐maltodextrin QDs were biocompatible
and nontoxic after 5 and 15 days [15]. Moreover, the pharmacokinetic data clearly showed that
CdS‐maltodextrin QDs were not completely cleared from in vivo systems after 360 h. Then,

Toxicology - New Aspects to This Scientific Conundrum66



although CdS‐maltodextrin QDs appear to be nanomaterials with favorable pharmacokinetic
properties to develop novel therapeutic and diagnostic modalities, according to previous
results, CdS‐maltodextrin QDs seem to be allowed into the body through several barriers and
then pass into the blood stream, from where they can reach organs and tissues and interact
with biological structures [16].

Early results by this group demonstrated that CdS‐maltodextrin QDs were embryotoxic in a
chicken embryo model [14]. The nature of the observed abnormalities suggests that these
effects could be directly associated with nanoparticle concentrations. The observed effects
indicate that prolonged accumulation of QDs in the maternal organism may increase the risk
of adverse effects on embryo development. Since nanotoxicity studies targeting the reproduc‐
tive and developmental aspects are rather scant, and considering that QD mechanisms of action
during embryogenesis are not fully understood, this study aims at further addressing the issue.
We studied the effects of CdS‐maltodextrin QDs on embryo and fetus development using an
embryotoxicity and teratogenicity assay on chicken embryos.

2. Materials and methods

2.1. Embryotoxicity study

Fertile White Leghorn chicken eggs were obtained from A.L.P.E. S.A. (Puebla, Mexico) and
stored at 6°C. One hundred fertilized eggs were weighed, sterilized, and divided into nine
groups. The first group served as a nontreated control and was considered the negative control.
The second group was treated with 1 mL of Ringer solution. The third group was treated with
caffeine (10 mg/mL) and was considered a positive control. The remaining six groups received
CdS‐maltodextrin QDs in different concentrations (0.001, 0.01, 0.1, 1 µg/kg). One of these
groups received caffeine (10 mg/mL) and was considered the positive control. An embryotox‐
icity assay was carried out as described by Jelinek and Marthan [17]. Test solutions (1 mL) were
added to the air sac under sterile conditions. Each solution was injected after drilling into the
shell at the blunt end of the egg; after injection, the holes were immediately sealed with melted
paraffin wax. The eggs were then transferred to and maintained in a forced draft incubator at
37.5°C with a relative humidity of 65% until the desired stage of development was reached
(72 h).

Embryos in each group were fixed in buffered formal saline (pH 7.4), dehydrated, and
embedded in paraffin blocks. Paraffin tissue sections of 6 µm were stained with acetocarmine
for routine histological examination. The embryo was examined and staged according to
morphological criteria previously outlined by Hamburger and Hamilton [18]. Malformations
were considered for the following specific structures: central nervous system (CNS), lens
placode, otic placode, cardiovascular system (CVS), neural tube, as well as number of somites.
Embryonic stages at the time of the CdS‐maltodextrin QD application varied from 14 to 16,
which corresponds approximately to developed somites numbered 22–28. In order to monitor
their uptake and distribution, we observed the embryos under a confocal microscope (Zeiss
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LSM510, USA). CdS‐Dx QDs were excited with 488 nm laser, and their signals were collected
from 515 nm.

2.2. Teratogenicity assay

Fertile White Leghorn chicken eggs were obtained from A.L.P.E. S.A. (Puebla, Mexico) and
stored at 6°C. One hundred fertilized eggs were weighed, sterilized, and divided into four
groups. The first group served as a nontreated control and was considered the negative control.
The other groups received CdS‐maltodextrin QDs in different concentrations (0.001, 0.01, 0.1,
1 µg/kg). A teratogenicity assay was carried out as described by Jelinek and Marthan [17]. Test
solutions (1 mL) were added to the air sac under sterile conditions. Each solution was injected
after drilling into the shell at the blunt end of the egg; after injection, the holes were immedi‐
ately sealed with melted paraffin wax. The eggs were then transferred to and maintained in a
forced draft incubator at 37.5°C with a relative humidity of 65%. To determine the teratogenic
effect of CdS‐maltodextrin QDs, we allowed the chicks to fully develop until they were able
to hatch by themselves). Developmental stages and the presence of malformations were
measured according to the Hamburger‐Hamilton scale.

2.3. Statistical analysis

Results are expressed as means + standard error of the mean (SEM). Significant differences
were detected by one‐way analysis of variance using GraphPad Instat V2.03 (GraphPad
Software Inc., San Diego, CA). The Tukey–Kramer multiple comparisons test was used when
significant variations were found. Differences were considered significant at p < 0.05.

3. Results

A chicken embryo model was used to assess CdS‐maltodextrin QDs embryotoxicity. Figure 1
shows a representative chicken embryo treated with different doses of CdS‐maltodextrin QDs.
As we can see, QD‐treated chicken embryos showed developmental delays in a dose‐depend‐
ent manner. Nonmalformations were found with doses of 0.001 µg/kg QDs. However, embryos
treated with 0.01 µg/kg of CdS‐maltodextrin QDs showed significant changes in the CNS; 38%
of embryos showed malformations that included morphological alterations and anencephaly
(Figure 2). Embryos treated with 0.1 µg/kg of CdS‐maltodextrin QDs showed a significant
developmental arrest at Stage 13 of the Hamburger‐Hamilton scale, and 50% of embryos
showed various malformations. Those embryos showed several alterations in structures
including lens placodes (10%), otic placodes (10%), CNS (50%) and neural tube (29%) (Figure 2
and Table 1). These embryos had a smaller number of somites than nontreated embryos. The
dose that produced the most critical alterations was 1 µg/kg; it produced 50% of embryo
mortality at Stage 12 of the Hamburger‐Hamilton scale. Besides that, 71% of embryos had
malformations, including lens placode 55%, otic placode 75%, CNS 71% (anencephaly and
morphological alterations), lower number of somites, and 50% presented alterations in the
neural tube (see Figure 3 and Table 1).
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Figure 1. Effect of CdS‐maltodextrin QDs on embryogenesis. Embryos were staged in accordance with the Hamburger‐
Hamilton scale (S), and a dose‐dependent delay in embryo development was observed. Several deformities are evi‐
dent. Ot. p.: otic placode; Op. p.: lens placode; S: somites; NT: neural tube (Magnification 4×).

Figure 2. Gross abnormalities associated with CdS‐maltodextrin QDs. Application of 0.01, 0.1 and 1 µg/kg QDs in ster‐
ile chicken ringer solution to chicken embryo in ovo induced overall growth delay, as well as defects in the brain, neural
tube and somites, as opposed to embryos treated with sterile chicken ringer alone (arrows). Embryos treated with 0.01 
µg/kg QDs showed evident brain defects. 0.1 µg/kg QDs produced brain and neural tube defects; besides those defects,
1 µg/kg QD treatments resulted in malformations. The somites formed after QD treatment lack uniform rectangular
alignment and border an abnormally formed neural tube. The localization of the asterisks represents neural tube de‐
formities. Applications of QDs caused multiple abnormalities in the otic and lens placodes. (Magnification 4×).
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Figure 3. Fluorescence microscopic images showing the distribution and localization of CdS‐maltodextrin QDs in em‐
bryos. These images correspond to embryos treated with 0.1 and 1 µg/kg. The distribution and localization of CdS‐
MDx QDs were identified by a bright green imaging in the analyzed embryos. There is an evident presence of
abnormalities in the brain, placodes, neural tube and somites. (Magnification 4×).

Parameter Controls CdS‐maltodextrin QDs (µg/kg)

Control1 Ringer Caffeine 0.001 0.01 0.1 1

Viability (%) 100 100 100 100 100 100 50

Stage2 16 ± 0.9 16 ± 0.5 12 ± 0.8* 15 ± 1.0 14 ± 1.2 13 ± 1.1* 12 ± 2.6*

Malformations (%) 0 0 100 0 38 50 71

Type of malformations

Optical placode (%) 0 0 100 0 0 10 55

Otic placode (%) 0 0 100 0 0 10 75

CNS (%) 0 0 100 0 100 100 100

Somites (#) 26 ± 1.1 25 ± 1.5 20 ± 2.1 25 ± 1.8 24 ± 1.9 20 ± 4.3 15± 2.1

Heart (%) 0 0 100 0 0 0 0

Neural tube (%) 0 0 100 0 13 29 50

N = 14; CNS = central nervous system.

1Nontreated embryos.

2Hamburger‐Hamilton scale.

*p < 0.05 as compared to control group.

Table 1. Effect of CdS‐maltodextrin QDs on embryos viability and development.
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The fluorescent properties of CdS‐maltodextrin QDs allowed us to monitor their uptake and
distribution directly by observing the bright green light they emit. CdS‐maltodextrin QDs
uptake and bioimaging experiments were performed with a fluorescent microscope. Figure 3
shows CdS‐maltodextrin QD distribution in chicken embryos. The uniform distribution of QDs
in embryonic tissues was evident. The presence of malformations on the CNS, placodes and
somites with doses of 0.1 µg/kg was evident too. However, more severe malformations were
witnessed with doses of 1 µg/kg, such as absence of head, brain, otic placode and somites.
Somites, mainly the ventral ones, were affected in size, morphology and number in a dose‐
dependent manner (Figures 2 and 3).

The teratogenic effect of CdS‐maltodextrin QDs was also evaluated using a chicken embryo
model. Thus, we observed several malformations in embryos with QD doses of 0.01–1 µg/kg;
for the teratogenicity study, we employed lower doses (0.01, 0.1 and 1 ng/kg) in order to allow
for chick development. However, although lower doses were used as compared with the
embryotoxicity study, the lack of development and birth defects was clear, and even with the
same doses there were variations in embryo development. For example, embryos treated with
0.1 ng/kg QDs were at Stages 23 and 41, and embryos treated with 1 ng/kg were at Stages 20
and 32.

Figure 4. Morphological aspects of chicken after CdS‐maltodextrin QD treatment. Chicken treated with QDs showed
different deformities. Full development was only observed with the lowest dose (0.01 ng/kg). Severe malformations
were observed with 0.1 and 1 ng/kg. Effects on fetus development at Stages 20 and 23 were also observed.

These results showed that the treatment of chicken embryos with CdS‐maltodextrin QDs for
21 days caused reduced chicken viability (Figure 4 and Table 2), and a dose‐dependent
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developmental delay was also observed. Only 35% of the chicks were alive and able to hatch
when they were treated with 0.01 ng/kg of CdS‐maltodextrin QDs. The chicks were able to
hatch by themselves and did not show apparent malformations, but these chicks did not attain
full development (32–36 on the Hamburger‐Hamilton scale) and had a lack of lower limb motor
coordination. Mortality was as high as 70% among chicks treated with 0.1 ng/kg of QDS. Of
the chicks that were alive, only 20% were able to hatch by themselves, and 25% showed
malformations consisting of lack of abdominal wall closure. The group of chickens treated with
the highest doses (1 ng/kg) resulted in 100% mortality. These chicks showed a very early
developmental stage (26–32 of the Hamburger‐Hamilton scale), and it was not even possible
to detect specific organs. Chicks in advanced stages presented anencephaly and a lack of
abdominal wall closure (Figure 4 and Table 2).

Parameters Controls CdS‐maltodextrin QDs (ng/kg)

Control1 Ringer 0.01 0.1 1

Viability (%) 100 100 35 18 0

Hatch (%) 100 100 67 20 0

Stage (S)2 46 45 42 ± 3* 30 ± 7* 26 ± 6*

Malformations

(%)

0 0 0 25 44.4

Type of malformations

Malformations None None Nonmalformations

Lack of

development

Lack of

motor

coordination

of lower

limbs

Lack of closure

of abdominal

wall with

exposed viscera

Lack of closure

of abdominal

wall with

exposed viscera

Anencephaly

N = 20.

1Nontreated embryos.

2Hamburger‐Hamilton scale.

*p < 0.05 as compared to control group.

Table 2. Effect of CdS‐maltodextrin QDs on chicken viability and development.

4. Discussion

Over the past years, there has been significant interest in the study of nanoparticles for clinical
applications, particularly quantum dots (QDs). One of the most valuable QD properties is their
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fluorescence spectrum, which renders them optimal fluorophores for bioimaging applica‐
tions [19]. Due to their fluorescent features, QDs can be conjugated with bioactive moieties
(e.g., antibodies or receptor ligands) to target specific biological events and cellular structures
[20]; however, due to their small size and physical resemblance to physiological molecules,
particular attention has being focused to potential risks of human beings. Understanding
quantum dot potential toxicity should require a fundamental grasp of QDs properties.
However, the most important problem is that each individual type of QD possesses its own
unique physicochemical properties, which in turn determine its potential toxicity or lack
thereof [21, 22].

Many research groups have contributed with evidence that supports the application of a
precautionary approach when creating products containing nanoparticles, such as QDs [23–
25]. According to their reports, there are several aspects to be considered. Firstly, QD size down
to the nanoscale (between 1 and 100 nanometers); a small size allows nanoparticles to enter
the body through several cellular barriers and pass into the bloodstream, from where they can
reach organs and tissues and fully interact with biological structures, thus damaging normal
functions in different ways [26]. Secondly, a potential source of confusion in assessing QD
toxicity is that QD toxicity depends on multiple factors derived from both individual QD
physicochemical properties and environmental conditions: QD charge, concentration, outer
coating bioactivity (coating material, functional groups), as well as oxidative, photolytic, and
mechanical stability have each been shown to be determining factors in QD toxicity [27]. The
third aspect is that most nanomaterials enter the market without a toxicity analysis, and
currently available testing is not suitable for a thorough assessment of its potential risks. The
fourth aspect derives from several in vitro studies conducted on animals, which have shown
that certain nanomaterials are toxic to subjects, and most likely are so to humans [28, 29]. The
fifth and last aspect is that there are no regulations for nanomaterial synthesis, handling, use,
and proper disposal in all countries.

We recently synthesized maltodextrin‐coated cadmium sulfide QDs (CdS‐maltodextrin) [14].
Although the in vitro studies revealed that these CdS‐maltodextrin QDs produced distinct
dose‐dependent toxic effects, in vivo studies demonstrated that, when administered to rodents,
CdS‐maltodextrin QDs were biocompatible and nontoxic after 15 days of exposure. Never‐
theless, the CdS‐maltodextrin QD pattern of biodistribution and accumulation in tissue was
different after repeated doses [15]. The pharmacokinetic study of those QDs clearly showed
that CdS‐maltodextrin QDs were not completely cleared from in vivo systems after 360 h after
a single dose [16], suggesting that QDs may remain for long periods of time in some organs.

It is well known that biological barriers play an important role to determine QD biodistribu‐
tion [30, 31]. This group has demonstrated that CdS‐maltodextrin QDs are able to cross the
blood–brain barrier (BBB) and spread into the brain after repeated doses in rodents without
inducing morphological and functional changes [15]. However, the pharmacokinetic analysis
showed that CdS‐maltodextrin QDs could remain in the brain for a very long period of time.
On the other hand, we have also demonstrated the presence of CdS‐maltodextrin QDs in the
blood–testis barrier (BTB) adjacent seminiferous tubules. The BTB was found to be intact and
functional after a single dose as well as after repeated doses in rodents [15, 16]. Those results
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suggest that CdS‐maltodextrin QDs might also be able to cross the placental barrier, affecting
embryos or fetuses. Therefore, concerned about the safety of CdS‐maltodextrin QDs and as an
effort to further address the issue, the present work studied the effects of CdS‐maltodextrin
QDs on the development of embryos and fetuses by using a chick embryo model. We used this
model because it has long been appreciated that studying the embryonic chick in ovo provides
a variety of advantages, including the potential to control the embryo’s environment and its
movement independently of maternal influences.

Exposure to chemicals during different stages of development—such as the preconceptional,
periconceptional, embryonic, fetal and perinatal periods—has a varying impact on health.
However, the embryonic period is the most critical period for embryogenesis, when mortality
or different congenital anomalies are highly possible. NP direct embryotoxicity firstly depends
on the ability of the compound to cross the maternal–fetal barrier, how much nanomaterial is
accumulated in embryonic tissues, and its ability to induce damage [32]. Several reports have
demonstrated contradictory effects of nanomaterials on embryos or their development. A
decrease in embryonic weight after QD injection on the sixth day of embryogenesis (CdSe/ZnS
QDs, 9.6%; CdT QDs, 6.2%) has been reported [33], whereas others have found that nanoma‐
terials did not produce embryotoxic or teratogenic effects during embryogenesis [34]. It has
been shown that NPs (nSP and TiO2s 70 and 35 nm in diameter, respectively) can cross the
placental barrier in pregnant mice and cause neurotoxicity in their offspring, and then remain
in the placenta, fetal liver, and fetal brain [35]. Some authors argue that some NPs (CdSe and
CdTe/CdS) in different sizes, at different dosages, and with different outer capping materials
can increase the rate of early‐stage blastocyst death in mice and can be potentially transferred
across the placenta to the fetus [32, 36]. On the other hand, some researchers have reported
that the embryotoxic effects of some NPs can be modified if they are coated with silanes or by
using a gold shell [37].

In the present study, we used different doses of 3.5‐nm‐sized CdS‐maltodextrin QDs, and the
dose‐dependent embryotoxic effect was evident. Observation by fluorescence microscopy
revealed the homogeneous distribution of QDs into the embryos. A significant concentration‐
related decline in embryonic growth was observed, as well as an increase in developmental
defects, including various neuronal abnormalities. It has been reported that some nanomate‐
rials induce neuronal alteration, which suggests an NP capacity to interfere with normal
neurotransmission pathways [35, 38]. Recent studies have demonstrated QD‐related neuro‐
toxicity in the CNS, as well as synaptic transmission and plasticity impairments, and deterio‐
rated brain functions in tested animals [39–41]. Another important finding from the present
study was the presence of marked anomalies on somites. Somites are transient embryonic
structures of the paraxial mesoderm that give rise to all off the striated muscular tissue in the
adult body, the axial skeleton, and dermis during later embryogenesis. We found a significant
reduction in the size of the somites n embryos treated with CdS‐maltodextrin QDs, which
correlates with the overall body shortening observed. When we analyzed the size of each
somite separately, we observed that the somites in treated embryos tended to have a different
size, morphology or absence, contrary to controls.
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Birth defects result from errors during embryonic development. Normal development involves
careful orchestration of multiple events, including changes in gene transcription, cell shape,
cell proliferation and tissue morphogenesis. Alterations in the developmental program may
have dramatic effects on the organism. Sometimes, these effects are so drastic that lethality
occurs early in the development, while others may cause birth defects. We found several defects
in chicken after normal periods of development: chicks with poor development; CNS altera‐
tions or even anencephaly; lack of limb motor coordination; spasticity; and a lack of abdominal
wall closure. Some limited data from animal reproductive studies and nanomaterials suggest
a potentially increased risk of early miscarriages, impaired growth and birth defects [42, 43].
A particular birth defect may be caused by several mechanisms, including folate antagonism,
neural crest cell disruption, endocrine disruption, oxidative stress, vascular disruption and
specific receptor or enzyme‐mediated teratogenesis. In addition, some drugs may be involved
in multiple mechanisms leading to birth defects [44].

Somitogenesis, in particular, is a reiterated process occurring over time with strict periodicity.
A pair of somites is formed every 90 min in the trunk of the chicken embryo from the anterior
tip of the presomitic mesoderm (PSM). As development proceeds, ventral somitic cells migrate
around the axial organs, giving rise to segmented structures such as vertebrae, intervertebral
disks, and trunk and limb developments, whereas more dorsal somitic cells give rise to the
dermis and all of the striated muscles of the adult body [45]. Somitogenesis can be achieved
only by the integration of multiple signaling pathways involving intricate molecular machi‐
nery, cell proliferation and the genetic clock [46]. It has been reported that the use of transcrip‐
tion factor chemical inhibitors or genes induces severe defects in somite formation due to
segmentation clock desynchronization [47]. Recent reports have shown evidence that the
presence of reactive oxygen species (ROS) may affect the metabolic regulation of the ultradian
biological oscillator with important pathophysiological implications for somitogenesis [48].

In our study, although higher doses were used in the embryotoxicity study, the lack of
development and birth defects was clear, and even with the same doses there were variations
in embryo development, which could be explained by individual susceptibility. Mortality was
high, and the malformations and stages of development were not compatible with life.
However, the presence of defects in limb neuromotor coordination, the lack of abdominal wall
closure and neuronal alterations suggest that CdS‐maltodextrin QDs might be affecting the
early stages of somitogenesis. We suggest that CdS‐maltodextrin QDs primarily affect the
number of cells that segment together to form individual somites in chicken embryos and that
this is responsible for the mortality and all the observed effects on the fetuses. It has been shown
that CdS‐maltodextrin QDs are able to induce cytotoxicity and cell death, alter cell proliferation
and induce the production of radical oxygen species (ROS) in a dose‐dependent manner [14].
QD‐induced perturbations of cellular mechanisms may cause different pathophysiological
processes depending on concentration and duration of exposure [49–51].

In conclusion, our data indicate that CdS‐maltodextrin QDs induce embryotoxic and terato‐
genic effects with all doses used. QDs induced abnormalities associated with structures
derived from somites in embryos and fetuses. Therefore, according to the results, there is a
high probability that the prolonged accumulation of CdS‐maltodextrin QDs in the maternal
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organism may be potentially harmful to embryo and fetus development. However, further
studies using mammalian species are needed in order to discard more toxic effects.
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