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Abstract

This  chapter  highlights  the  importance  of  fiber  digestibility  and  utilization  in
ruminants  and  to  summarize  the  main  factors  that  influence  fiber  digestibility  in
silages. Forage provides at least half of the diet of lactating cattle and greatly affects
energy and carbohydrate intake. It is important to maximize the intake of digestible
carbohydrate from forages, because energy requirements for maintenance and milk
production often exceed the amount of energy high-producing cows can consume,
particularly in early lactation. There are many approaches used for enhancing fiber
utilization in silage and subsequent maximizing energy intake and productivity of
dairy cattle. Out of these approaches are: selecting appropriate forages with high fiber
digestibility, applying the appropriate agronomic practices such as harvesting at the
proper stage of maturity, fertilization, and cutting height at harvest, along with using
of  esterase-producing  inoculants  or  fibrolytic  enzymes  have  been  proposed  as
approaches to improving the productivity of dairy cattle.

Keywords: feed additive, fiber utilization, nutrient availability, ruminants

1. Introduction

The global livestock industry faces an extensive challenge since a presumed dichotomy exists
between the increasing requirements for animal feeding conferred by population growth and
consumer concerns regarding the sustainability of livestock production [1]. Meanwhile, the
cost of feed grains for livestock has increased substantially in recent years [2]. Thus, there is
an increasing interest in using silages as a main source of forages in ruminant’s diets, with
high nutritive value as an alternative feed source. In high-producing dairy cattle, it is important
to maximize digestible carbohydrate intake or increase neutral detergent fiber digestibility
(NDFD) from silage because the energy needed for maintenance and milk production often
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exceeds  the  amount  of  energy  high-producing  cows  can  consume,  particularly  in  early
lactation [3].  One of the main factors that affect silage utilization is the proportion of its
potentially digestible fiber fraction, where silage having less than 60% of total fiber content is
available for digestion by the ruminant animal [4]. The first section of this chapter will discuss
the most important aspects of silage fiber digestibility. The chapter starts by the importance
of fiber digestibility, before considering the method used for evaluating fiber digestibility. This
is followed by fiber digestion and utilization in ruminants. The chapter ends with sections on
the factors that effect on fiber digestibility in silages.

2. Importance of fiber digestibility

Silages are considered the most cost-effective feed resource in ruminant nutrition. Grass and
small-grain cereal silages are the main sources of dietary energy, while leguminous silages are
considered important sources of protein for ruminant livestock [5]. The quality of silage is an
important determining factor in dairy cow performance as the forage accounts for a large
proportion of the diet about reaching from 35% up to 100% of dry matter (DM) [6]. For high-
producing dairy cows, high-quality silages with lower fiber and higher fermentable concen-
trates are usually used to meet energy requirements. Nevertheless, inadequate dietary fiber
reduces chewing activity, insalivation and rumen pH, and can cause rumen acidosis and
laminitis [7]. These can depress fibrolytic microbes and milk production by increasing
maintenance demands [8, 9]. National Research Council (NRC) stated that dairy rations should
have a minimum of 25% neutral detergent Fiber (NDF), 18.7% of which must come from forage
for adequate rumen health. Although rumen fermentation and function can cause negative
impacts on dairy cattle fed rations deficient in fiber, excessive level fiber of over 44% may also
have negative effects on intake and digestibility [9].

The National Research Council (NRC) recommendations regarding the total NDF and forage
NDF contents of dairy rations are presented in Table 1 [9]. In general, the minimum NDF
contents that are recommended for dairy ration will depend on the dietary contents of NFC,
a physical effectiveness of fiber, and the source of the fiber. It is well established that the fiber
from forage sources could induce the salivation and cud-chewing activity than nonforage fiber
sources. Consequently, the major factor for evaluating the efficiency of dietary NDF capability
is NDF content in forages. It has become very important to prevent acute and subacute rumen
acidosis and maintain milk fat level, evaluating the physical effective NDF (peNDF) in diets
due to the importance of peNDF in maintaining the rumen pH and fiber digestion. It is well
established that the amount of peNDF in the diet is dependent on the chop length of forages,
dietary NDF, and forage to concentrate ration content [10]. It has been reported that peNDF
intake can stimulate the chewing activity and can minimize the incidence of ruminal acidosis
[11]. Many studies have examined the effects of peNDF on lactation performance [12–19]. The
peNDF of feed could be calculated from the NDF content multiplied by a physical effectiveness
factor (pef). The pef ranges between 0 (not effective at stimulating chewing) and 1 (100%
effective at stimulating chewing). Numerous feed models such as Cornell Net Carbohydrate
and Protein System (CNCPS) presently use peNDF as an important input for the model to
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predict lactational performance. The forage and total mixed ration (TMR) particle size
distribution recommendation using Penn state particle separator as reported by Heinrichs and
Kononoff is presented in Table 2 [13].

Minimum NDF from forage NDF from forage (% of total NDF) Minimum NDF in diet

19 75 25

18 66 27

17 58 29

16 51 31

15a 45 33

a Not recommended because of depression of milk fat test.

Table 1. Recommended minimum NDF concentration based on the proportion of NDF coming from forage sources [9].

Sieve size Type

Corn silage Haylage TMR

>19.0 mm 5 ± 3 15 ± 5 5 ± 3

19.0–8.0 mm 55 ± 10 60 ± 15 40 ± 10

8.0–1.18 mm 40 ± 10 30 ± 10 40 ± 10

<1.18 mm <5 <5 <20

Table 2. Forage and TMR particle size distribution using Penn state particle separator as reported by Heinrichs and
Kononoff [13].

3. Evaluating of fiber digestibility in ruminants

Understanding the mechanism of fiber digestion is very important to accurately estimate the
digestible energy of fiber and to improve animal performance. Fiber is digested primarily in
the rumen as the result of the dynamic operation that is affected by the chemical nature of the
fiber and by the passage and digestion rate of fiber within the digestive tract of the animal. The
potentially digestible NDF (pdNDF) and the digestion rate (kd) vary greatly between and
within different silage types [14, 17]. The passage rate of fiber (kp) is in the first place influenced
by the animal, where the digestion of fiber increases along with increased retention time of
feed in the rumen [15, 18]. Several models have been developed to describe the process of
digestion in the rumen; some models are simple or complex. Most of these models have been
developed by fractional schemes to correlate the disappearance or gas production curves with
rumen digestibility of feed components, which assume that the feed component includes at
least two portions: a potentially degradable fraction and an undegradable fraction. The
potentially degradable portion will be degraded at a fractional rate (per hour), after a discrete
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lag time (h). The undegradable fraction is calculated from the longer time of incubation as
proposed by Waldo et al. [19] (Figure 1). By using this model, Allen and Mertens [21] educed
mathematical equations to define fiber digestibility and rumen fill. For fiber digestibility, the
following equations were educed:

( )( )D= pdNDF dFINTAKE/dt /(kd+kp) (1)

( )( ) ( )I fi dFINTAKE / dt / kp= (2)

Finally, the rumen fill would be estimated as the sum of the digestible (D) and indigestible (I)
fiber pools in the rumen

Fill D I= + (3)

Eq. (1) shows that digestibility is directly related to (pdNDF) and (kd), and inversely propor-
tional (kd + kp; the rate of total fiber digestibility). Thus, as the ruminal retention time increases
(1/kp), the extent of ruminal digestibility increases [22]. The fiber weight in the rumen is
dependent on fiber intake per unit of time (dFINTAKE/dt), and parts that are digestible (fd),

Figure 1. Schematic model of total-tract fiber digestibility. Redrawn from Waldo et al. and Jung and Allen [19, 20].
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and indigestible (fi), as well as digestion rates (kd) and passage (kp). Jung and Allen ranked
the factors that influence ruminal fill, and the most important element was the fiber content,
followed by kp, the fraction that is indigestible, and the lowest factor was the kd [20]. The
digestion kinetics of fiber can be measured in vivo using rumen evacuation technique, where
cannulated animals are used for measuring the digestible and indigestible fiber pools that flow
from the rumen [23]. In spite of the high precision for rumen evacuation technique to estimate
rumen digestion kinetics, this technique is unwieldy for routine forage analysis. It has been
proved that the use of other biological methods, that is, in vitro or in situ techniques, could
give better characterization to degradation kinetics of fibrous fraction of forages. Over the last
50 years, the in vitro system has not been widely used in farm to implement analysis on forages
because of its difficulty to perform in farm. This situation has changed in recent years with the
use of a shorter digestion time (30 or 48 h) along with the enhancements that occurred in
spectral analysis using near-infrared spectroscopies, where the laboratories were facilitated to
assess the digestion of forages without the need to obtain rumen fluid. Some mathematical
equations have been developed, which can use single time points like 24 or 30 h in vitro NDFD
along with fixed lag time and lignin in the forages to calculate the kd rates [24].

In recent times, the feeding studies have found the indigestible neutral detergent fiber (iNDF)
after longer incubation time (240 h in vitro or 288 h in situ) was highly correlated with dry
matter intake (DMI) and would be used to predict pdNDF [25]. Furthermore, there were
sufficient data being created by commercial laboratories. Thus, the iNDF was applied as a new
approach rather than using lignin × 2.4 to calculate pdNDF (CB3) and indigestible NDF (CC)
using the updated CNCPS 6.5 [25]. It has been found that the model, which could accurately
predict NDF digestibility, should partition NDF into iNDF and pdNDF, fractionate feed
particles by their retention and passage in the rumen, using a predicted kd by an in vitro
system [26]. Based on this approach, Combs developed a new method for predicting fiber
digestibility; he used shorter incubation time (24, 30, and 48 h) along with iNDF (240 h) to
predict kd (kdCB3) of pdNDF [27]. The CB3 kd rates derived from in vitro analysis were
entered in the updated CNCPS model to calculate the ruminal fiber digestibility according to
this equation; rumen degradability for pdNDF = CB3 × (kdCB3/(kdCB3 + kp). Finally, they
calculated the in vitro total-tract NDFD (ivttNDFD) assuming that the intestinal digestibility
of available NDF (CB3) amount escaping rumen digestion was 5%. Lopes et al. have found that
in vivo total-tract NDF digestibility was highly correlated with the ivttNDFD. The regression
equation to describe the relationship was described as follows: in vivo total-tract NFDF
(%) = −3.62 + 1.11 × ivttNDFD (%) with R2 = 0.70, RMS = 4.27, P-value < 0.01; n = 21 diets. The
differences between two methods (ivttNDFD and in vivo total-tract NDFD) were not signifi-
cant, and mean values varied by only 1% unit, showing promise for this approach [28].

The use of high-resolution spectroscopic techniques (e.g., high-field nuclear magnetic reso-
nance, mid-infrared, Raman spectroscopy, and pyrolysis mass spectrometry) is finding
increased usage in forage assessment. These advanced technologies would provide more broad
information about a primary nature [29]. A spectroscopic method such as Fourier transform
infrared (FT/IR) spectroscopy has been developed as rapid, direct, nondestructive and
noninvasive bioanalytical technique [29–37]. Thereby, this technique paves the way to better
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understand the quantity, composition, structure, and distribution of chemical constituents and
functional groups in a tissue (feed and ingredients) [38–42]. Intrinsic chemical structures were
found to effect on nutritive value, degradation characteristics, utilization, and availability of
feed [43, 44]. Many studies have reported that AT/IR would accurately predict rumen degrad-
ability of DM, NDF, concentrations of lignin, ferulic, and coumaric acids in forage samples [45–
47].

4. Fiber digestion and utilization in ruminants

4.1. Plant cell-wall carbohydrates

The forages are diverse in its characteristics, and this uniformity results in variations in quality
as an animal feed. Plant cell-wall carbohydrates are the most important components in forages
that influence silage quality. There is higher complexity in the utilization of silages due to
diversity among forage plants, diversity in the ruminal microorganisms, and interaction
between the forage plant cell-wall carbohydrates and microorganisms [48]. Ruminants can
digest and degrade plant cell-wall polysaccharides. The plant cell-wall chemistry and ana-
tomical structure will determine the digestion characteristics of cell types [49]. The fiber
fraction for the main silages is presented in Table 3.

Forage % DM ADF NDF Hemicellulose Lignin
Legume silage 37 39 47 8.9 7.7

30–43 33–44 40–55 4.1–13.6 5.3–10.0

MM legume silagea 35 39 52 13.4 6.8

27–42 35–42 45–59 7.8–18.9 5.4–8.3

MM grass silage 36 39 56 17 6.9

28–45 35–44 50–63 22 4.7–9.0

Grass silage 31 41 62 21 6.4

21–41 37–44 55–68 15–27 4.9–7.8

Corn silage 33 26 45 19 2.8

25–40 22–30 38–51 15–23 2.2–3.5

Winter cereals 29 31 52 21 4.3

35 39 59 20 6.3

aMM legume refers to mixed mainly legume forage; MM grass refers to mixed mainly grass forage.

Table 3. Fiber fraction for NDF concentrations based on the proportion of NDF derived from forage sources

The main groups of plant cell-wall carbohydrates are hemicelluloses and cellulose. Cellulose
is a water-insoluble β-glucan composed of a linear molecule of d-anhydroglucopyranose
residues linked by a β-(1→4) bond. In contrary to cellulose, hemicellulose has various groups
of polymers that are characterized with the heterogeneous composition. Xylan is the main
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component of hemicellulose and compromises about 30–35% of the cell-wall material of annual
plants. The main chain of xylan is composed of 1,4-β-linked d-xylopyranose units [50, 51].

The collaborative activity of the cellulolytic and noncellulolytic microorganisms in the rumen
is critical in fiber digestion [52]. Rumen cell-wall degradation initiated by the attachment of
rumen microbes to fiber and the bacterial species specialized to start this attachment/coloni-
zation process are the cellulolytic species Ruminococcus albus, R. flavefaciens, and Fibrobacter
succinogenes. Rumen fungi and protozoa also colonize and degrade plant fragments to differing
degrees [48]. The fermentation of structural carbohydrates by cellulolytic consortium results
in the progressive process where volatile fatty acids (VFAs) are liberated at a lower rate than
starch fermentation. The fermentation of structural carbohydrates is associated with an
increase in the proportion of acetic and butyric acid [53]. Following absorption, the large
proportion of acetate is not changed by hepatic metabolism and may be augmented by
endogenous acetate production in the liver. The posthepatic supply of acetate to peripheral
tissues constitutes a major part of the total energy available to the animal and may be either
oxidized to produce adenosine triphosphate (ATP) or used as a substrate in the production of
long-chain fatty acids [54]. While ruminally derived butyrate is quantitatively metabolized to
b-OH-butyrate during absorption through the rumen epithelium, in posthepatic tissues it has
a similar metabolic fate to that of acetate [54].

4.2. Lignin and phenolic acids

Lignin is an indigestible polymer in plants that plays an important role in the structural
integrity of plant tissue. Although lignin comprises little of the total structural carbohydrate
system in plants, it has been recognized to exert the negative effect on cell-wall polysaccharide
digestibility by coating the plant cell-wall polysaccharides from enzymatic hydrolysis [55].
Lignin arises from an enzyme-initiated dehydrogenative polymerization of three originators:
p-coumaryl alcohols, coniferyl, and sinapyl. The phenylpropanoid metabolism and shikimic
acid pathway lead to the synthesis of lignin intermediates like p-coumaric acid, ferulic acid,
and diferulic acid [56], which are converted into coniferyl, sinapyl, and p-coumaryl alcohols
and ultimately to guaiacyl, syringyl, or p-hydroxyphenyl lignin, respectively [55].

With the maturation of forage cell walls, the guaiacyl-type lignin changes to lignin-rich
syringyl units, and the digestibility of mature cell walls decreased. Taboada et al. found that
guaiacyl and syringyl have negative correlation with organic matter or dry matter digestibility
in ruminants fed on silages. They concluded that guaiacyl and syringyl could be used as
predictors of digestibility than total lignin content in silage [57].

The brown midrib (BMR) mutation in annual C4 grasses such as corn and sorghum results in
both a reduction in lignin concentration and a shift in lignin composition to a more guaiacyl-
rich polymer [20]. Jung and Deetz have suggested that the improved digestibility of cell walls
in BMR mutants is a result of both the reduced lignin concentration and the reduction in
syringyl lignin content [58].

Cross-linking of lignin to cell-wall polysaccharides has been reported as additional mecha-
nisms limiting fiber digestibility [20]. In grasses, ferulate and p-coumarate molecules are
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esterified to arabinoxylans, and some of p-coumarates are the ester or covalent linked to lignin
[59]. As forages mature and lignin concentrations increase, ferulates that were esterified to
arabinoxylan become etherified to lignin via cross-links between lignin and the cell-wall
polysaccharides [60]. The degree of lignin/arabinoxylan cross-linking by ferulates negatively
influences cell-wall digestibility to the polysaccharides, which prevents physical access by
hydrolytic microbial enzymes to polysaccharides [49]. Model studies utilizing isolated
cellulose and xylans, and forage NDF to which phenolic acids have been synthetically
esterified, obviously demonstrated that the presence of these phenolic esters negatively effects
on cell-wall degradability [61]. However, the reduction in digestibility caused by esterified
ferulic acid only limits the degradation rate of polysaccharide, rather than extent, because fungi
and ruminal bacteria possess phenolic acid esterases to ultimately remove these impediments
to cell-wall digestion [62].

5. Enhancing fiber digestibility and utilization of silage

Ruminal digestibility of forage neutral detergent fiber can range from less than 25% to over
75% for different forage types [9]. Most research with brown midrib mutant corn silage found
that lactating dairy cows will consume more DM and produce more milk when fed corn silages
that have greater NDFD [63–65]. Oba and Allen found a relationship between NDFD and
animal performance and they reported that a 1-unit increase in forage NDFD after 30 h of in
vitro incubation was associated with increases of 0.17 kg d−1 of dry matter intake, 0.23 kg d−1

of milk yield, and 0.25 kg d−1 of 4.0% fat-corrected milk [66]. Using high-quality silage in dairy
cattle rations could reduce physical rumen fill, allow cattle to consume more feed, and produce
more milk [63]. There are many factors that would influence the quality of silage. Such factors
include silage species, silage varieties, stage of harvest, cutting height, growing conditions,
silage additives, and enzymes.

5.1. Silages species

The most practical approach for increasing NDFD is based on increasing the amount of pdNDF
in forages. Grass silages often have a greater proportion of pdNDF to indigestible NDF (iNDF)
and higher in NDFD than legume silages, but the rate of digestion of legume pdNDF is
frequently faster and could increase the total amount of NDF digested in vivo [63, 64]. The
chemical and structural features have been identified, which may reduce the fiber digestion.
Of these, lignin is the most notably reported [67]. Lignin is supposed to constrain ruminal fiber
digestion, which acts as a physical barrier. The involvement of cross-linking of lignin to
polysaccharides by ferulate linkages as an additional factor that inhibits the digestion of grass
fibers has been identified [20]. However, a similar lignin cross-linking to fiber polysaccharides
in legumes has not yet determined. There is an important role for plant anatomy on fiber
digestibility [68]. The vascular tissue, sclerenchyma, and stem epidermis are degraded at a
slower rate in rumen where they contain a higher amount of indigestible or highly lignified
components. Leaf blades C4 grasses are typically less digestible than those in C3 grasses due
to the existence of mesophyll cells. In C3 species, stem tissue cell such as parenchyma bundle
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sheath, mesophyll, phloem, and epidermal cells are totally degraded, but these tissues are
partially or slowly degraded in C4 species. In an earlier study by Akin and Burdick, they found
that C4 grasses are less digestible than C3 species due to the existence of vascular tissue and
parenchyma bundle sheath cells in larger amounts than in C3 grasses [69].

The total-tract digestibility of whole-crop cereals silage, legumes, and maize silage is often
lower than for grass silage. However, the lower digestibility is mostly alleviated by higher feed
intake such that energy intake is maintained [70]. Many studies have shown that the partial
replacement of grass silage with whole-crop cereals may not have a negative impact on milk
production in cows [71]. However, the effects of barley silage on DMI have been inconsistent,
which are probably attributable to differences in the quality of the forages between studies.
For example, Ahvenjärvi et al. noted a reduction in fiber digestibility when grass silage was
replaced with whole-crop barley silage. This reduction in NDFD was related to a lesser pdNDF
concentration in the rumen and higher iNDF pool size of barley silage compared with that of
grass silage [70].

Whole-crop cereals species also varies in their quality and digestibility, for example, barley
and oat silages when harvested at the same maturity stage (milk to soft dough stage) have
found to enhance the feed intake and average daily gain in heifers when compared with
triticale silage [72]. Furthermore, dairy cows that fed on barley silage have had higher intake
than cows fed on oat silage when harvested at the maturity stage (early to a mid-dough stage
of maturity). Such difference in feed intake is a consequence of variation in chemical compo-
sition and ear:stalk ratio of whole-crop cereals. Barley has more starch than oats and triticale
because of the higher ear:stalk ratio in barley. Since most fibers exist in plant stalk, barley
contains a lower fiber than oats and triticale when they are harvested at the stage of maturity.
The higher starch resulted in a lower fiber content in barley silage, and hence barley can
enhance the OM digestion when compared with oats and triticale silages when fed to dairy
cows [72].

5.2. Selecting varieties with enhanced NDFD

Another potential method to increase pdNDF is by the use of genetic mutations in forage crops
that reduce iNDF and increase the pdNDF fraction of the plant. The brown midrib mutation
mutants were discovered for the first time at the University of Minnesota in 1924; the BMR
genes have been found in sorghum, Sudan grass, millet, and corn. The BMR corn forage has
about 25% less lignin and lower cross-linkages with lignin. Corn silage with the brown midrib
mutation has a higher NDFD (34% less lignin and had 19% higher IVNDFD than conventional
corn silage) [73–75]. Several studies confirmed the positive effect of feeding BMR corn on DMI
and productivity of dairy cattle [76, 77], but responses have not been consistent in all experi-
ments [78]. Ivan et al. compared corn silage with low and high cell-wall content on milk
production, and reported that the hybrid with high cell-wall content had greater IVNDFD,
increasing DMI and milk yield [79]. Data collected from a Journal of Dairy Science (number of
treatments n = 22; Table 4) between the year 1999 and 2010 showed a non-significant correlation
between IVNDFD in BMR corn silage and milk yield or DMI (P > 0.05, Figures 2 and 3).
Inconsistent results between experiments may be attributed to various factors such as includ-
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ing cows at a different stage of lactation and duration of experimentation or the lack of effect
of forages with enhanced NDFD on DMI [82]. Recently, Ferraretto and Shaver performed a
meta-analysis to study the effect of corn silage hybrids with different stalk characteristics
(conventional, dual-purpose, isogenic, or low-normal fiber digestibility, brown midrib,
hybrids with greater NDF but lower lignin contents or high in vitro NDF digestibility, and
leafy corn silages) on lactation performance [85]. They found that for every 1-unit increase in
ivNDFD the DMI can increase by 0.09 kg/d, although this correlation was not significant
(DMI = 0.09ivNDFD + 19.531; R2 = 0.72, p = 0.40); additionally, they found that for every 1-unit
increase in ivNDFD the milk yield would increase by 0.14 kg/d (milk yield = 0.14 ivNDFD + 31;
R2 = 0.87, P = 0.06). It has been reported that the total-tract NDFD response to feeding bm3 corn
silage is influenced by the DMI response due to enhanced ivNDFD as reported by Oba and
Allen [64]. On the other hand, corn silage type, that is, bm3 versus near-isogenic or conven-
tional corn silage hybrids by dietary forage NDF [82], starch [65], and CP [76] concentration,
or supplemental corn grain endosperm type [80] interactions were undetected.

Publication Treatments (n = 22)a

Ballard et al. [81] Mycogen corn silage

Cargill (brown midrib corn silage)

Castro et al. [82] Normal corn silage

Brown midrib corn silage

Ebling and Kung, Jr. [83] Conventional corn silage

Brown midrib corn silage

Gehman et al. [78] Dual-purpose corn silage

Brown midrib corn silage

Ivan et al. [79] Corn silage with lower cell-wall content

Corn silage with higher cell-wall content

Oba and Allen [65] Control corn silage

Brown midrib corn silage

Oba and Allen [66] Control corn silage

Brown midrib corn silage

Taylor and Allen [80] Control corn silage

Brown midrib corn silage

Thomas et al. [84] Dual-purpose corn hybrid

Leafy corn silage hybrid

Weiss and Wyatt [76] Dual-purpose corn silage

High fiber corn silage

Weiss and Wyatt [76] Dual-purpose corn silage

Brown midrib corn silage

aCorrelation analysis between the two variables was performed using the CORR procedure of SAS with the Pearson
correlation method, because the variable data are normally distributed. Average of milk yield (38.2 ± 4.360), average of
IVNDFD (50.39 ± 9.162).

Table 4. Effects of silage varieties with enhanced 30-h IVNDFD on milk yield. Data have been taken from a number of
publications in Journal of Dairy Science (JDS from 1999 to 2010).
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Figure 2. Relationship between in vitro NDFD (30 h) and milk yield with the prediction equation.

Figure 3. Relationship between in vitro NDFD (30 h) and DMI with the prediction equation.

5.3. Agronomic practices to enhance fiber digestibility

Fiber digestibility is largely dependent on plant maturity. The effect of harvest maturity of
whole-crop annual forages is more variable concerning fiber content. Rosser et al. reported a
reduction in NDF content by advancing the maturity of barley and oat forage from head
elongation to fully ripe, with a reduction in NDF content from 13.8 to 9.6% [86, 87]. By contrast,
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the NDF concentration of whole-crop barley was not changed during the milk and soft dough
stages, but it increased somewhat between the soft and hard dough stages while this change
was not observed in whole-crop oat forage [88]. Bolsen and Berger reported a reduction in
total-tract DM digestibility of barley silage at milk stage, compared to advanced, mature stage
due to the increasing grain content [89]. By contrast, Rustas et al. found no changes in DM or
NDF digestibilities for wheat forage ensiled at milk and dough stages. However, the response
regarding NDF digestibility varied for barley forage that was ensiled at milk and dough stages
depending on location [89].

With advancing the maturity of grasses silage, their digestibility dramatically drops because
the tensile strength of stems increases to support the weight of the plant, besides the leaf-to-
stem ratio declines [15, 18]. In grass silage, organic matter digestibility dropped from 79% in
early growth to 73% in late growth, and NDFD decreased from 73% in early growth to 66%
when the plant maturity reached late growth stage. In legumes, NDFD is less than the grasses
or small grains during the early vegetative stage of growth but drops slower with advancing
maturity.

In corn silage, the stage of maturity has an impact on fiber fraction. The fibrous content has
been observed to decline with increasing maturity in whole-corn plants, but no significant
change in lignin concentration from early dent to black layer [90]. Coors et al. suggested the
observed drop in fiber concentration with increasing maturity to the dilution effect with
increasing percentage of grain as the corn plant matures [91]. Fiber concentration of corn stover
increases as maturity increases [92, 93].

Increasing the height of cutting, which results in leaving a larger proportion of less digestible
stalk in the field, may increase the feeding value of silage for lactating dairy cows. It has been
reported that corn silage digestibility was enhanced at cutting heights of 45–50 cm. but this at
the expense of DM yield [94, 95]. Kruczyńska et al. reported a reduction in hemicellulose,
cellulose, and lignin and greater effective degradability of silage that was cut at 50 versus
10 cm [96]. Neylon and Kung examined the effects of corn plant-cutting height and maturity
on silage nutrient value. Plants were cut at 12.7 and 45.7 cm as well as harvested between one-
third and two-third milk line and then again at black layer [97, 98]. As anticipated, NDF tended
to be less in silages that were cut higher, and ADF content decreased significantly. At later
maturity, the lignin contents were not influenced by increasing cutting height. The cutting
height only influenced in vitro NDF digestibility, with the higher cut being more digestible.
By increasing the cutting height of corn silage, the nutritive value was increased by decreasing
NDF, ADF, and acid detergent lignin concentration and increasing the starch concentration.
They also found that as corn plants were cut higher, there was a tendency for increased milk
production and increased feed efficiency in dairy cows. Kung et al. also observed a decrease
in fiber fraction concentrations, as well as an increase in starch, and crude protein concentra-
tions as cutting height, was increased [97, 98]. These observations are all logical, because when
cutting height is increased, more lignified and less digestible stems are left in the field while
increasing the concentration of more digestible leaves and kernels.

It is well established that the nitrogen fertilization can increase the protein content and forage
yield and decrease the fiber content. Campos et al. reported a reduction in hemicellulose
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content and arabinose proportion of the fiber fraction in Milenio grass by N fertilization. They
also found that the fertilization increased fiber digestibility due to increase in (arabinose + glu-
cose):xylose ratio [99].

Environmental temperature has a significant impact on forage digestibility. The forages grown
under higher environmental temperature had the higher amount of lignin [100]. Altering the
time of seeding can shift the stage of maturity when plants are exposed to greater ambient
temperature, moisture availability, and photoperiod intensity. Chow et al. found that the
exposure of forages to a lower environmental temperature during heading stage increased
IVNDFD [101].

5.4. Silage inoculants

Silage inoculants can be added to the freshly harvested forages to obtain good-quality silage.
The first studies on adding inoculants for improving the quality of silage used the inoculants
that contain homolactic bacteria (LAB) such as Lactobacillus plantarum, which quicken the drop
in silage pH. Nevertheless, this rapid drop in pH inhibits the growth of yeasts, spoilage
bacteria, and fungi, as well as plant cell breathing, maintaining the sugars in the silage without
decomposition [102]. If this happens, the yeast consumes the lactic acid for its growth causing
an augment in silage pH. At this stage, each of yeast and mold can quickly take advantage of
sugars for their growth, and reduce the density of nutrients in silage. Due to the occurrence of
losses in silage-nutrient density, the studies on developing the inoculant production came up
with the second-generation silage inoculants that were generated from Propionibacteria spp.
and L. buchneri [102, 103]. Overall, studies have shown that buchneri L. inoculants are more
effective in improving aerobic stability of silage than Propionibacteria inoculant. Lactobacillus
buchneri is one of heterolactic bacteria, which is able to ferment lactic acid to acetic acid; the
acetic acid in turn has an inhibitory effect on the growth of yeast and subsequently prolong
the silage shelf life and reduce deterioration of silage nutrients [104]. It was proposed that L.
buchneri inoculation would reduce feed intake in ruminant livestock as a result of acetic acid
production. However, no effect of inoculant on feed intake has been reported when L. buch‐
neri-treated silage has been fed [105–109].

The first and second generation of inoculants focused only on improving the silage stability
without addressing improving the nutrient availability by animals. The main reason for the
limited effect in the first and second generation was the inoculants did not produce enzymes
that digest the plant cell walls. Thus, the third-generation silage was introduced more recently,
through feeding silage inoculated with lactic acid bacteria with ferulic acid esterases activity.
Previous studies by Yu et al. have shown that Aspergillus ferulic acid esterase and Trichoderma
xylanase act synergistically to release ferulic acid from feruloyl-polysaccharides in complex
plant cell walls [110, 111]. This activity opens the rest of the polysaccharides for more hydrolytic
attack and facilitates the accessibility of the main polysaccharide chain to cellulase, thereby
increasing the release of reducing sugars [110, 111]. Nsereko et al. performed a screening study
on 1000 esterase-producing Lactobacillus bacteria and found that half of this number could be
able to produce ferulic acid esterase, and run more detailed studies on eight of the bacteria.
When compared to untreated perennial ryegrass, all inoculated samples had 9–11% greater
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NDFD. Moreover, they found that the inoculation of four corn silage hybrids with a combi-
nation of L. buchneri and L. paracasei tolerans enhanced NDFD by 7% [112, 113]. Several studies
have confirmed that esterase enzymes can complement the effects of cellulose and hemicellu-
lase enzymes on plant cell walls, thereby increasing DM or fiber digestibility [114]. Conversely,
some studies have reported no effect from adding ferulic acid esterase-producing inoculant
on fiber digestibility of silage [115]. Kang et al. reported an enhancement in fiber digestibility
when corn hybrids were treated by a third-generation inoculant [116]. The author suggested
these effects to the properties of the forage to which they are applied. Other studies have
reported improvements in digestibility and steers performance fed barley silage treated with
a third-generation inoculant (Table 2) [117, 118].

5.5. Using enzymes to enhance fiber utilization

There is increasing interest in using exogenous enzymes as a cost-effective method for
improving animal productivity. The main enzyme products marketed for livestock are derived
mainly from only four bacterial (Bacillus subtilis, L. acidophilus, L. plantarum, and Streptococcus
faecium) and three fungal (A. oryzae, T. reesei, and Saccharomyces cerevisiae) species. Other fungal
species, including Humicola insolens and Thermomyces lanuginosus, are being marketed to a
lesser extent [119]. Several studies have confirmed that the addition of enzymes to feeds can
increase DMI and fiber digestibility [120].

Uninoculated Inoculated P-value

First generation

DMI (kg/day) 7.13 7.05 0.40

Average daily gain (kg) 1.43 1.41 0.70

Gain: feed DM ratio 0.20 0.20 0.65

Third generation

DMI (kg/day) 7.6 7.1 0.02

Average daily gain (kg) 1.29 1.31 065

Gain: feed DM ratio 0.17 0.19 0.02

Table 5. Effects of silage inoculants on feedlot steers performance fed whole-crop barley silage diets inoculated or
uninoculated using first and third generation.

Exogenous feed enzymes with fibrolytic activities have been reported to enhance fiber
digestion in the rumen [121, 122]. Most of the commercial products that have been investigated
in dairy cows have had cellulases and xylanases activates, with proteases and amylases being
tested in a minor number of studies. Table 5 showed some studies that have been performed
in dairy cows fed TMR supplemented with enzymes that were characterized by cellulase and/
or xylanase activities. It appeared that the preparations of the current enzyme do not introduce
novel enzyme activity into the rumen as they finally increase only the rate and not the extent
of digestion of the cell wall [123, 124]. Beauchemin et al. reported that DMI would increase by
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1.0 ± 1.3 kg/d and milk yield by 1.1 ± 1.5 kg/d with the addition of fibrolytic exogenous enzymes
to dairy cow diets [125]. It is evident from the dispersion of data from the mean of the responses
to the addition of enzymes fibrolytic to ruminant diets were fluctuating. Therefore, it not
surprising that the use of enzyme fibrolytic products in the dairy commercial operations is not
built broadly.

It is well established that the application of the exogenous enzymes before feeding is more
effective when it is applied as a liquid form than as a powder. Meanwhile, spraying enzymes
on the wet feed such as silage seems to be more effective than on dry feed such as hay and
grain, where the wet feed is easier for enzymes to decompose the complex carbohydrates from
polymers. This hydrolysis may enhance and simplify the microbial attachment, and hence
reduce the lag time required for microbial colonization [126].

In high-producing dairy cattle, the stage of lactation has an important effect on the efficiency
of enzyme additives. For instance, Schingoethe et al. found that the cows in early lactation
responded to enzyme supplementation, but they did not detect any effect for enzymes on the
cows in mid-lactation [127]. Differences in the response of early- and mid-lactation cows to
enzyme supplementation were also reported in other studies [128, 129].

Enzymes that bind to feed seem to be more active, perhaps due to better resistance to proteo-
lytic inhibition in the rumen. In general, the rumen ecosystem was found to have a minor effect
on exogenous enzymes as a result of glycosylation [130]. It has also been found that nongly-
cosylated enzymes could sustain in the rumen and resist the proteolytic activity by ruminal
microbiota, but this will be dependent on microbial sources of enzymes [131].

Due to the occurrence of internal fibrolytic enzymes yielded from the rumen bacteria, it is not
easy in many cases to define the potential of exogenous enzymes to directly digest carbohy-
drates alone [132]. There is a synergy between the internal ruminal fibrolytic enzymes and the
exogenous enzymes, where exogenous enzymes can enhance the microbial attachment to the
forage fiber, here then improving fiber digestibility [133], but the mechanism by which this
occurs is not known. It has been found that increasing amount of exogenous enzymes may
suppress the ruminal bacteria that digest the fiber, fiber, for example, White et al. [134]. found
the lower amount of exogenous enzymes enhanced the rumen bacteria attachment to fiber, in
contrast, increase a number of enzymes decrease the microbial activity where exogenous
enzymes have competed with ruminal bacteria enzymes for cellulose hydrogen binding sites
on forage fiber. Thus, it is recommended to complement the rumen bacterial enzymes with the
exogenous enzymes.

6. Conclusion

Silage contains a high content of neutral detergent fiber. Even under optimum conditions, NDF
digestibility in the rumen is frequently less than 50%. Improving ruminal fiber degradability
could allow cattle to consume more feed and hence increase milk yield. Selecting forage with
higher NDFD could be a practical approach to increasing digestible carbohydrate and feed
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intake in dairy cattle. Ferulic acid-producing bacteria that are targeted at breaking the bonds
between ferulic acid and hemicellulose could be the key to increasing fiber digestibility in
ruminants. Addition of enzymes to feeds would increase NDFD. However, responses to feed
enzymes are expected to be greatest in situations where digestible energy is the first limiting
nutrient in the diet.
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